首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
胚胎晚期富集蛋白(LEA)广泛参与植物对多种逆境胁迫的反应。本研究利用同源克隆的方法,从紫花苜蓿中克隆了一个LEA4类基因的开放阅读框(ORF),命名为MsLEA4-4。该基因编码512个氨基酸,结构分析显示MsLEA4-4包含5个重复的由11个氨基酸TAQAAKEKTQQ组成的序列特征。利用实时荧光定量PCR检测了MsLEA4-4在不同逆境下的表达量,结果显示,该基因受干旱、NaCl、Cu2+、Zn2+和外源ABA诱导表达上调,其中NaCl胁迫2 h、Cu2+和Zn2+胁迫8 h,MsLEA4-4基因表达量最高;冷胁迫和干旱胁迫下,该基因的表达量随处理时间的延长呈逐渐上升趋势,表明该基因可能参与了紫花苜蓿的抗逆性调控。构建植物超表达载体pCAMBIA3301-MsLEA4-4,采用农杆菌介导法侵染拟南芥花序,通过草铵膦(PPT)筛选和分子检测,7株抗性苗呈阳性,表明目的基因已成功导入拟南芥基因组中。本研究为进一步探索MsLEA4-4基因在紫花苜蓿抗逆性调控中的作用奠定了基础。  相似文献   

2.
紫花苜蓿是目前全国乃至世界上种植最多的牧草,在畜牧业生产中发挥着重要的作用。γ-生育酚甲基转移酶(γ-TMT)是维生素E合成途径中一种重要的合成酶,催化γ-生育酚向α-生育酚的转化,改变维生素E组成,利于动物和人体的吸收。本实验通过RACE-PCR技术,得到紫花苜蓿γ-TMT基因的全长cDNA序列,命名为MsTMT。测序和生物信息学分析表明,此序列全长1 306 bp,包含1个长为939 bp的完整开放阅读框(ORF),编码312个氨基酸。MsTMT属于甲基转移酶家族(AdoMet-MTases),有1个腺苷脱氨基酶信号(SLSTDDP),包含有2个保守的S-腺苷甲硫氨酸结合结构域(XXDXGCGIG,VXXPGGXXIX)。Real-time PCR检测结果表明MsTMT基因在紫花苜蓿各组织中均有表达,叶片中表达量最高。受NaCl、PEG以及黑暗诱导后,该基因表达上调;低温胁迫后该基因表达下降;外源ABA不影响该基因的表达。  相似文献   

3.
bZIP(Basic leucine zipper)是植物中一类非常重要的转录因子,参与植物从生长发育到抗性调控的多个生物学过程。为了了解紫花苜蓿(Medicago sativa)中bZIP转录因子的特性,解析紫花苜蓿MsbZIP1基因的生物学功能,从而阐述MsbZIP1基因响应紫花苜蓿抗逆调控机制,本研究利用RACE技术从紫花苜蓿中获得1个MsbZIP1基因的全长cDNA,该序列全长1 176 bp,编码361个氨基酸,预测分子量为42.3 kD,等电点为6.5。分析发现,该蛋白含有bZIP家族典型的BRLZ碱性结构域和亮氨酸拉链,属于bZIP家族蛋白。进化树分析表明,该蛋白属于bZIP转录因子C亚族,与拟南芥(Arabidopsis thaliana)的AtbZIP63具有很高的同源性,推测可能具有与该类蛋白相似的功能。qRT-PCR分析表明,MsbZIP1基因对干旱、高盐、高温、低温,以及脱落酸(Abscisic acid,ABA)和生长素(Auxin,IAA)处理都有不同程度的响应,推测该基因可能参与调控紫花苜蓿多种非生物胁迫。本试验通过构建表达载体PCAMBIA3301-MsbZIP1,以农杆菌介导的花序浸染法转化拟南芥,经后代筛选、扩繁和分子检测,得到7株超表达的转基因拟南芥。本研究第一次分离了紫花苜蓿C亚族bZIP转录因子,初步确定紫花苜蓿MsbZIP1基因响应多种逆境胁迫的反应,并获得了阳性转基因材料,并为进一步探索该类转录因子在紫花苜蓿抗逆性调控中的作用奠定了基础。  相似文献   

4.
WRKY转录因子是植物特有的转录因子,广泛参与植物对多种逆境胁迫的反应。但是对紫花苜蓿中WRKY转录因子的研究还较少。本研究从紫花苜蓿中克隆了一个WRKY I类转录因子MsWRKY33。该基因CDS全长1536 bp,编码512个氨基酸,结构分析显示MsWRKY33包括两个WRKY结构域和一个C2H2锌指结构(C-X4-C-X23-H-X-H),表明其属于WRKY I 族WRKY转录因子。亚细胞定位预测MsWRKY33蛋白定位在细胞核。MsWRKY33基因受盐、干旱和冷胁迫诱导,暗示基因可能参与了这些逆境胁迫的调控。构建原核表达载体pET-MsWRKY33, SDS-PAGE分析表明在大肠杆菌中表达了MsWRKY33蛋白。扩增MsWRKY33编码区cDNA,以pBI121为基础载体,构建植物超表达载体pBI121-MsWRKY33。采用农杆菌介导的愈伤组织培养法转化紫花苜蓿。利用nptⅡ基因引物和载体特异引物检测抗性苗呈阳性,表明目的基因已成功导入紫花苜蓿基因组中。qRT-PCR检测发现,MsWRKY33基因在转基因株系中得到增强表达。本研究为进一步探索WRKY转录因子基因在紫花苜蓿抗逆性调控中的作用奠定了基础。  相似文献   

5.
采用RACE技术以一段紫花苜蓿(Medicago sativa)盐诱导基因的EST(expressed sequence tag)序列为模板设计引物克隆此基因的全长序列.序列分析结果表明,该基因全长1551 bp,包含一个1230 bp的最大开放阅读框,编码409个氨基酸,包含3个RNA结合蛋白结构域(RRM domain),命名为MsRBP(GenBank accession No.JN986878.1).亚细胞定位分析表明此基因编码蛋白定位于细胞核.经同源比对和进化树分析,MsRBP基因编码的氨基酸序列与截形苜蓿(Medicago truncatula)、大豆(Gl ycine max)、拟南芥(Arabidopsis thaliana)等物种中的某些RNA结合蛋白的氨基酸序列具有很高的相似性.RT-PCR (Real-time PCR)分析结果表明,在NaCl,ABA和PEG胁迫下MsRBP基因的表达水平均上调,推测该基因可能在紫花苜蓿逆境胁迫调控中发挥重要作用.经构建植物超表达载体pBI21-MsRBP,采用农杆菌介导法对烟草(Nicotiana tabacum)进行遗传转化,获得了抗性转化再生植株.通过PCR,RT-PCR及GUS组织化学染色分析表明:MsRBP基因在烟草的基因组中能够进行转录和表达.本研究为该基因的功能鉴定与调控机制研究奠定了基础.  相似文献   

6.
为研究冷诱导转录因子CBF1(C-repeat-binding-factor)基因对我国优良豆科牧草紫花苜蓿的抗寒性改良作用,本实验以拟南芥基因组DNA为模板,利用PCR方法克隆得到了冷诱导转录因子AtCBF1基因,测序结果表明所克隆的DNA片段长度为642 bp, 将该序列与GenBank上的CBF1基因序列进行DANMAN序列比较分析,同源性可达99.84%。在此基础上成功构建了含有AtCBF1基因的植物表达载体pBI121-CBF1,并采用根癌农杆菌介导法对紫花苜蓿进行了遗传转化,获得了经卡那霉素筛选的抗性转化植株,进一步经PCR和RT-PCR检测,得到了650 bp左右的电泳条带,表明AtCBF1基因已在紫花苜蓿中得到表达。这为选育紫花苜蓿抗寒新品种奠定了良好的基础。  相似文献   

7.
环境因素如高盐、干旱或冷冻等严重制约着豆科重要牧草紫花苜蓿的生长发育和产量。根据已发表的盐生植物唐古特白刺蛋白激酶基因NtCIPK2的序列信息(序列号KC823044),利用PCR方法扩增其编码区cDNA,连接pMD-19T simple 载体并测序,测序结果表明所克隆的DNA片段长度为1362 bp,与GenBank上公布的序列完全一致。在此基础上构建植物超表达载体pPZP221-NtCIPK2,采用CaCl2冻融法将该表达载体转入农杆菌GV3101中,然后通过农杆菌介导的方法转化紫花苜蓿的下胚轴,形成愈伤组织后经庆大霉素筛选培养,最终获得7株抗性幼苗。对抗性幼苗进行庆大霉素基因的PCR检测,结果表明,NtCIPK2基因成功整合到紫花苜蓿基因组中,进一步对其进行外源基因的RT-PCR检测,发现只有3株幼苗中的外源基因实现了过量表达,这可能是由于基因插入位点的差异引发的基因沉默所致。本研究的开展为进一步分析转化植株在各种逆境胁迫条件的表现及其遗传稳定性,培育具有多重抗逆能力的苜蓿品种,促进苜蓿产业发展奠定基础。  相似文献   

8.
根癌农杆菌介导的紫花苜蓿遗传转化体系的建立与优化   总被引:8,自引:3,他引:8  
以“中苜1号”紫花苜蓿7日龄无菌苗子叶和再生无菌苗的叶片为材料,建立了适用于农杆菌介导的转基因组织培养体系,并对MsNHX1基因进行转化。转化优化条件为:“中苜1号”紫花苜蓿7日龄无菌苗子叶、再生无菌苗叶片,用农杆菌菌液(A600=0.6)侵染6min,然后在培养基上铺一层灭菌滤纸培养7d后清洗,建立了苜蓿快速有效的遗传转化体系。  相似文献   

9.
徐畅  何好  李国良  金淑梅 《草业科学》2018,35(4):829-838
采用根癌农杆菌介导法将从水稻(Oryza sativa)中克隆出的一个金属硫蛋白基因(rgMT)转化到紫花苜蓿(Medicago sativa)品种"农菁1号"中,经PCR和Northern blot技术对获得的抗性植株进行了检测,证明rgMT基因已整合到苜蓿基因组中并在转基因植株中转录表达。以野生型苜蓿为对照,对获得的转基因苜蓿株系在不同浓度NaCl、NaHCO3胁迫下的表型和生理指标测定发现,NaCl、NaHCO3胁迫处理后,野生型苜蓿受胁迫严重甚至死亡,转基因苜蓿受胁迫较轻。转基因苜蓿的脯氨酸含量和超氧化物歧化酶活性显著高于野生型(P0.05),细胞膜透性显著低于野生型,野生型苜蓿叶片中积累的过氧化氢高于转基因苜蓿的叶片中积累的过氧化氢。研究结果表明,rgMT基因已在苜蓿中表达,并且提高了转基因苜蓿的耐盐性。  相似文献   

10.
糖基化作用在抑制和排除生物体一系列内生和外生有毒化合物的过程中非常重要,尿苷二磷酸-葡萄糖基转移酶(UGTs)参与了这一过程。在分析家蚕基因组中存在的UGT基因时选取其中的一个基因进行生物信息学分析与分子生物学实验,经分子克隆和表达谱分析,将该基因命名为BmUGT004965,其开放读码框(ORF)长1 578 bp,编码525个氨基酸,预测分子质量60.3 kD,等电点9.13。该基因编码蛋白的N端具有一段由19个氨基酸组成的信号肽序列,而且N端和C端各有一段疏水的跨膜区。将该基因cDNA与家蚕基因组序列进行比对表明其具有4个外显子,外显子/内含子边界处均符合GT-AG规则。将家蚕BmUGT004965基因与人类、果蝇、昆虫杆状病毒、植物及已报道的家蚕UGT基因进行氨基酸水平的比对,显示氨基酸序列一致性为20%~30%;多重序列比对结果表明C端序列的保守性高于N端区域,可能与UGT具有2个主要的功能域有关。实时定量RT-PCR检测表明,在5龄第3天家蚕幼虫的9种组织中,BmUGT004965基因只在丝腺和脂肪体中有表达,且丝腺中的表达丰度明显高于脂肪体,这与基因芯片的结果一致,推测这种特异的表达方式可能与其特异的功能有关。  相似文献   

11.
豌豆清蛋白1(PA1)基因的克隆及对苜蓿的转化   总被引:6,自引:6,他引:0  
张改娜  贾敬芬 《草业学报》2009,18(3):117-125
 本研究用PCR 方法从豌豆(食荚大菜豌)克隆出富含硫氨基酸、同时具有抗虫作用的双功能的蛋白质基因-豌豆清蛋白1(PA1)基因,并构建了植物表达载体pCAMBIAl301-PA1。采用农杆菌介导法转化了紫花苜蓿,并对其转化体系进行了优化,得到了多个转基因胚性愈伤组织及其再生植株。PCR 和Southern杂交检测表明,PA1基因和潮霉素抗性基因已被整合到了宿主细胞。SDS-PAGE 分析表明该基因在再生植株中有一定表达。游离氨基酸分析表明,PA1基因的表达转基因苜蓿中蛋氨酸和半胱氨酸的含量从0.1%提高到0.4%。  相似文献   

12.
根据NCBI中紫花苜蓿1型金属硫蛋白基因(MET1, 登录号:AF189766.1)cDNA序列设计一对特异性引物,以紫花苜蓿品种“农菁1号”的cDNA为模板,利用PCR技术克隆出的一个基因,命名为MsMT1,测序发现该基因全长228 bp,编码75个氨基酸。通过碱基序列比对发现MsMT1与MET1的相似度为99%。通过氨基酸序列分析和进化树分析,发现与其他植物的1型金属硫蛋白基因具有较高的同源性。利用qRT-PCR对MsMT1在苜蓿不同器官中的表达进行分析,发现该基因在根和子叶中表达量较高。将苜蓿幼苗进行不同浓度NaCl、Na2CO3、NaHCO3及不同pH值胁迫处理后, 观察MsMT1基因的表达,发现MsMT1的表达量随盐碱处理液浓度和pH值变化发生改变,说明MsMT1与植物的抗逆性相关。采用农杆菌介导法将MsMT1导入苜蓿植株体内,卡那抗性的筛选和Northern blot结果显示MsMT1基因能够在转基因苜蓿中高效表达。用不同浓度NaCl、NaHCO3处理野生型和转化MsMT1基因的苜蓿幼苗,观察幼苗受胁迫后的表型,发现转基因的苜蓿幼苗比未转基因的苜蓿幼苗抵抗力高。本研究表明MsMT1基因能够增加苜蓿对胁迫的抗性。  相似文献   

13.
紫花苜蓿基因转化的影响因素分析   总被引:9,自引:1,他引:8  
通过农杆菌介导法对紫花苜蓿不同品种植株进行了抗旱基因转化的研究,得到了一套紫花苜蓿基因转化的优化体系。研究表明,100 mg/L的卡那霉素对苜蓿愈伤组织的生长有着显著的抑制效应。250 mg/L头孢霉素能够有效地抑制农杆菌菌株LBA4404的生长。紫花苜蓿供试材料被切后直接用OD600值为0.3~0.5的农杆菌LBA4404菌液侵染10~15 min;培养材料共培养3 d后在愈伤组织诱导培养基MS 2 mg/L 2,4-D 0.5 mg/LKT 30 g/L蔗糖 9 g/L琼脂 250 mg/L Cef上诱导出愈伤组织;在体细胞胚分化培养基MS 1.0 mg/L BA 0.3 mg/L NAA 30 g/L蔗糖 9 g/L琼脂 50 mg/L Kan 250 mg/L Cef上促进体细胞胚的分化;分化出的体细胞胚在再生培养基上(同分化培养基,Kan为80 mg/L)进一步发育成抗性转化苗;转化的无根小苗在生根培养基1/2 MS 1.0 mg/L IBA 1%蔗糖 0.8%琼脂 100 mg/L卡那霉素上可生长出根系。  相似文献   

14.
Na+/H+逆向转运蛋白基因SOS1(salt overly sensitive 1)是植物在抵御盐胁迫过程中一个重要的必需基因之一。本研究在紫花苜蓿(Medicago sativa)叶片中克隆得到一个MsSOS1基因,编码859个氨基酸,具有一个CAP-ED superfamily结构域、一个Crp superfamily结构域和一个Na+/H+ Exchanger superfamily结构域。与鹰嘴豆、大豆、羽扇豆、花生和葡萄的一致性分别是91%,87%,85%,84%和77%。实时荧光定量PCR分析表明,MsSOS1基因在根、茎、叶和花中均有表达,其中在根中的表达量最高,花中最低。此外,MsSOS1基因在4℃、PEG和ABA的胁迫中的表达均受到调控,推测该基因的表达与紫花苜蓿的抗逆性有关。  相似文献   

15.
二氢黄酮醇还原酶(dihydroflavonol reductase,DFR)是缩合单宁生物合成途径中的关键酶,在单宁的合成中起着重要的作用。根据同源克隆的原理,利用RACE技术,从“中苜一号”苜蓿中克隆得到DFR基因(MsDFR),并对其进行了序列分析及不同胁迫条件下的表达模式分析。结果表明,MsDFR基因cDNA全长1 402 bp,包括开放阅读框1 023 bp,编码340个氨基酸,在N端存在1个NADP结合位点“VTGASGFIGSWLVMRLMERGY”,中部存在1个底物特异性结合的氨基酸基序“TLNVTEDQKPLWDESCWSDVEFCRRV”。实时荧光定量PCR结果表明,该基因在荚果中表达量较高,根中较弱;在NaCl和GA3诱导下,MsDFR基因表达受到抑制;在黑暗条件下,该基因被诱导表达。由此推测“中苜一号”苜蓿中可能存在不依赖于GA3信号的单宁合成途径。  相似文献   

16.
豆科植物作为重要的农作物和牧草资源, 是人类和动物的重要蛋白质来源。蒺藜苜蓿(Medicago truncatula)是豆科模式植物, 其遗传转化体系的建立和完善对促进豆科植物基因工程研究和功能基因组学研究均具有重要意义。本文结合国内外蒺藜苜蓿基因工程研究动态, 从转化方法、外植体类型、菌株型、载体和培养基使用等方面对R108、Jemalong 2HA、Jemalong J5、Jemalong A17和Jemalong M9-10a这5种生态型蒺藜苜蓿转基因研究进展进行了系统综述, 并对当前存在的问题及今后的研究趋势进行了讨论, 以期为豆科植物遗传转化体系进一步完善提供参考。  相似文献   

17.
 利用15对SSR引物和10个ISSR引物对紫花苜蓿复合体3个种黄花苜蓿、多变苜蓿及紫花苜蓿共10个居群的遗传多样性及亲缘关系进行研究。结果表明,SSR标记下,10个居群中多变苜蓿VG 居群多态位点百分率、Shannon信息指数及Nei’s基因多样性指数均最高;ISSR标记下,黄花苜蓿FH居群以上3个指数均最高;黄花苜蓿居群FH在2种分子标记下都存在特有位点。说明在10个居群中多变苜蓿居群VG与黄花苜蓿居群FH表现出较丰富的遗传多样性,值得进一步保护。UPGMA聚类分析结果表明,在2种分子标记下3个种可以被有效区分,结合它们在新疆境内的分布,本研究支持仍将紫花苜蓿、黄花苜蓿和多变苜蓿划分为3个种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号