首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A semiautomatic electronic blood cell counter (Sysmex F-800:Toa Medical Electronics Europa Gmbh, Hamburg, Germany) was evaluated using canine and feline blood, following the International Committee for Standardization in Hematology protocol (ICSH, 1984). Precision and overall reproducibility were acceptable for all the parameters studied except for the feline platelet count, in which overlapping of erythrocyte and platelet populations prohibited determination of an accurate platelet count. Since carry-over from canine hematocrit values and platelet counts and from feline hematocrit values was unsatisfactory, the use of a blank diluent sample between different analyses was necessary. Linearity of the analyzer was acceptable in the studied range. Thirty canine and feline blood samples were analyzed using the Sysmex F-800 and a manual method. Correlations between both methods were acceptable for all the parameters, except for feline platelet count and erythrocyte indices for both species. In the storage study, red blood cell count and hemoglobin concentration were the parameters with the longest stability (72 hours at 4 degrees C and 25 degrees C) in both species. A statistically significant increase in MCV was obtained at 12 hours post-extraction in canine samples stored at 25 degrees C and at 24 hours in refrigerated samples. Feline leucocyte counts showed a downward trend at 12 hours post-extraction at both temperatures. Canine platelet count decreased significantly at 6 hours post-extraction in samples stored at 4 degrees C. During the evaluation period, Sysmex F-800 was user friendly and appeared well suited for routine canine and feline blood cell analysis.  相似文献   

4.
Background: While screening programs have reduced the risk of infectious disease transmission by donors in human and veterinary blood banking, bacterial contamination of blood products has emerged as a major complication in human medicine. Objectives: To describe a Pseudomonas fluorescens (Pf)‐contaminated feline packed RBC (pRBC) unit and experimentally investigate Pf‐contaminated canine pRBCs. Methods: Canine pRBCs were inoculated with Pf‐rich pRBCs from the sentinel feline unit and stored at 4°C or 20°C for 72 hours. Aliquots from the pRBCs were serially evaluated by microscopy, culture, and a eubacterial 16S rRNA real‐time PCR assay. Results: One Pf‐contaminated feline unit turned black after 22 days of storage and was removed from the blood bank; a source was not found, and no other contaminated units were identified. Canine pRBCs spiked with 5 or 25 μL of the sentinel unit became culture‐ and/or 16S PCR‐positive at ≥8 hours at 20°C and 48 hours at 4°C and developed a color change at ≥24 hours. Sensitivity studies indicated that without incubation, inoculation of ≥100 μL Pf‐rich pRBCs was necessary for a positive 16S PCR test result. Conclusions: P. fluorescens grows in stored pRBCs slowly at 4°C and rapidly at 20°C. Screening of blood products for color change, estimating bacterial concentration with microscopy, and 16S PCR testing are simple and fast ways to detect bacteria in stored blood. Aseptic collection, temperature‐controlled storage, and regular visual monitoring of stored units is recommended. Discolored units should not be transfused, but examined for bacterial contamination or other blood product quality problems.  相似文献   

5.
6.
Background: A new commercial gel column agglutination system is reported to have high sensitivity in detecting cats with blood type AB. Objectives: The aims of this study were to compare gel column agglutination and card agglutination methods for feline blood‐typing and to determine the frequency distribution of feline blood types in northern Italy. Methods: Blood‐typing was performed on 120 cats using both a commercial gel column containing monoclonal antibodies (ID Gel‐Test Micro Typing System) and a card agglutination method (RapidVet‐H Feline). Results were confirmed with back‐typing. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for the 2 methods. A second group of 140 Domestic Shorthair (DSH) cats was blood‐typed using the gel column technique to determine the frequency distribution of feline blood types in northern Italy. Results: The card agglutination method demonstrated poor sensitivity in identification of type‐AB cats (61%) and was only 95% specific when identifying type‐B cats. The gel column agglutination technique demonstrated 100% sensitivity and specificity for typing all 3 blood types (A, B, and AB). The frequency distribution study of 140 cats demonstrated that 127 (90.7%) cats were type A, 10 (7.1%) were type B, and 3 (2.1%) were type AB. Conclusion: When blood‐typing cats of breeds with a relatively high frequency of blood types B and AB, methods that use monoclonal antibodies for detection of blood types B and AB are recommended. Alternatively, blood type can be confirmed by more sensitive supplemental testing, such as back‐typing. The high frequency of blood type A in DSH cats in northern Italy was comparable to previously reported frequencies in Italy and world‐wide.  相似文献   

7.
8.
9.
Background: The distribution and frequency of blood types in cat populations vary according to geographic region and breed. Frequencies of feline blood types in Rio de Janeiro city, as well as in other Brazilian areas, are unknown, and the risk of unmatched transfusions and neonatal isoerythrolysis has not been estimated. Objectives: The purpose of this study was to determine the frequency of feline blood types in the area of Rio de Janeiro, Brazil. Methods: EDTA blood samples were obtained from 172 nonpedigreed domestic shorthair (DSH) cats (92 female, 80 male, 3 months-20 years old) in different sites of Rio de Janeiro city. Blood typing was performed by agglutination assays using Triticum vulgaris lectin and feline anti-A serum. The hemagglutination results for type B and AB cats were confirmed by high-performance thin-layer chromatography (HPTLC) of erythrocyte membrane gangliosides. Results: The majority (163/172, 94.8%) of cats were type A, 2.9% were type B, and 2.3% were type AB. High-titer anti-A serum agglutinated RBCs from all cats in type A and type AB blood groups, with 3+ to 4+ agglutination. The probability that a type A cat would receive type B or AB blood in a first random transfusion was calculated as 2.25% and 2.20%, respectively. HPTLC analysis of glycolipids yielded a chromatographic profile characteristic of feline gangliosides for all blood groups. Conclusions: These results indicate a high prevalence of type A cats in Rio de Janeiro, Brazil, and a low frequency of type B and AB cats, consistent with what has been observed for DSH cats in other regions of the world.  相似文献   

10.
11.
12.
The effect of four different red blood cell storage media on in vitro parameters of stored canine red blood cells was studied. The storage media included citrate-phosphate-dextrose-adenine (CPDA-1), two additive solutions, and an additive solution modified by the addition of plasma. Biochemical and hematologic parameters, including red cell adenosine triphosphate (ATP); 2,3-diphosphoglycerate (2,3-DPG); pH; percent hemolysis; and supernatant sodium, potassium, and glucose were assessed immediately following preparation of the red cell concentrate and after 35 and 42 days of storage at 4 degrees C. All parameters changed significantly (p < 0.05) during storage. Significant differences due to effect of the storage media were also seen at each time period. After 35 days and 42 days of storage, CPDA-1 maintained the highest pH, potassium, and sodium values, and had the lowest 2,3-DPG, ATP (p=0.052), and glucose values. No differences were seen in hemolysis after 35 days of storage. No additional benefit was noted from the addition of plasma to the additive solution. The additive solutions compared favorably with CPDA-1.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号