首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Decreasing the corn (Zea mays L.) gap between the potential yield and farm yield and reducing the risk of grain yield of drought are very important for corn production in the Corn Belt of Northeast China (CBNC). To achieve a high and stable corn yield, the effects of supplementary irrigation on yield, water use efficiency (WUE) and irrigation water use efficiency (IWUE) were studied using a modelling approach. The Root Zone Water Quality Model 2 was parameterized and evaluated using two years of experimental data in aeolian sandy soil and black soil. The evaluated model was then used to investigate responses to various irrigation strategies (rainfed, full irrigation and 12 single irrigation scenarios) using long-term weather data from 1980 to 2012. Full irrigation guarantees a high and stable corn grain yield (12.92 Mg ha−1 and has a coefficient of variation (CV) of 14.8% in aeolian sandy soil; 12.30 kg Ma−1 and CV of 11.1% in black soil), but has a low water use efficiency (19.92 and 21.81 kg ha−1 mm−1) and a low irrigation water use efficiency (10.01 and 11.03 kg ha−1 mm−1). A single irrigation can increase corn yields by 3–35% for aeolian sandy soil and 5–35% for black soil over different irrigation dates compared with no irrigation. The most suitable single irrigation date was during late June to early July for aeolian sandy soil (yield = 10.73 Mg ha−1 and WUE = 27.94 kg ha−1 mm−1) and early to mid-July for black soil (yield = 11.20 Mg ha−1 and WUE = 27.70 kg ha−1 mm−1). The lowest yield risk of falling short of the yield goal of 8, 9, and 10 Mg ha−1 were 9.1%, 18.2%, and 33.33% in aeolian sandy soil and 3.0%, 15.25, and 21.2% in black soil when an optimized single irrigation was applied in late June or early July, respectively. Therefore, an optimized single irrigation should be applied in late June to early July with the irrigation amount to refill soil water storage of root zone to field capacity in CBNC.  相似文献   

2.
Increasing demand for livestock products is driving development of livestock systems worldwide. That requires improved and new forage production options. The Loess Plateau region in central-northern China is an important area for livestock production, as it supports11% and 19% of the country’s cattle and sheep, respectively (China statistical yearbook 2014). The rain-fed semi-arid environment of the Loess Plateau means that maximizing the water-use-efficiency (WUE) of forage production is vital to guarantee enough fodder supply the livestock demand. A three-year field experiment in north-west Loess Plateau compared forage production, water use and water-use-efficiency as well as crude protein (CP) content of forage maize, Sudan grass, foxtail millet and Japanese millet sown at three sowing dates according to the opening rain during 2011–2013. On average, forage maize produced the highest biomass (12.1 t ha−1) and had the highest WUE (43.4 kg DM ha−1 mm−1). This was followed by Sudan grass (7.8 t ha−1; 26.5 kg DM ha−1 mm−1), Japanese millet (6.7 t ha−1; 26.2 kg DM ha−1 mm−1) and foxtail millet (6.7 t ha−1; 24.6 kg DM ha−1 mm−1). Optimizing sowing date played an important role in maximizing forage production and WUE of all tested forages. Compared to the earliest sowing date, a delay of two weeks reduced forage production by 17% in maize, 35% in foxtail millet, and 16% in Japanese millet. A delay of four to six weeks reduced biomass yield by 58% in maize, 57% in foxtail millet, and 56% in Japanese millet. Late sowing also greatly reduced WUE of forage maize and foxtail millet by 33% and 42%, respectively, when compared to early sowing. The middle sowing date maximized forage production and WUE of Sudan grass in two of the three growing seasons, which was 20% and 38% higher than the early and late sowing, respectively. Late sowing in all forages reduced crop water use by 42–57 mm compared to the early sowing. Among four test crops, CP of Sudan grass (7.9%) and forage maize (7.7%) was higher than foxtail millet (6.8%) and Japanese millet (6.7%). Compared with early sowing, CPf in late sowing significantly increased in Sudan grass and decreased in Japanese millet, in contrast, no evident sowing date effect was found in forage maize and foxtail millet. This study showed that all four warm-season annual grasses had high forage production potential, forage maize was the most reliable and efficient option. Forage maize and the millets could easily be integrated into existing cropping systems and provide opportunities as both grain and forage-producing crop to provide added flexibility for farmers.  相似文献   

3.
The lateness, tallness and high vigour of old tall durum wheat cultivars could be advantageous for dual-purpose use and their high propensity for lodging should be reduced by grazing. A 3-year field trial was performed in Sardinia, Italy, in a typical Mediterranean environment. Crops of the durum wheat cultivar Senatore Cappelli were sown in October, and grazing was simulated by clipping half of the plots at the terminal spikelet stage of development. The forage biomass derived from clipping varied greatly between seasons (from 0.8 to 3.3 t ha−1 dry matter) in response to the notable inter-seasonal variability in weather conditions. Cultivar Senatore Cappelli showed good recovery following clipping, with the ability to attain almost complete radiation interception well before anthesis. The high number of leaves that emerged after clipping might have contributed to this good recovery. Nevertheless, clipping reduced the dry matter produced by anthesis (16 t ha−1 in clipped compared to 21 t ha−1 in unclipped crops) as well as the final dry matter (DMMAT) (19 t ha−1 in clipped compared to 23 t ha−1 in unclipped crops), although these differences disappeared when the clipped biomass was included. The lower lodging observed at anthesis in the clipped (21%) compared with unclipped crops (63%) likely reduced the difference between treatments. The lower DMMAT of clipped treatments was reflected in a lower grain yield (GY) (3.4 t ha−1 vs 4.2 t ha−1 in the unclipped treatment). Clipping did not affect the amount of nitrogen present in the biomass, nitrogen uptake efficiency or radiation use efficiency. GY reduction after clipping was mediated by the reduction in spikes m−2 and kernels m−2 (KNO). Spike fertility was not affected by clipping, because the same amount of radiation was available for each spike (about 1 MJ). The period with reduced ground cover after clipping was reflected in an increased evaporation and reduced transpiration, which did not alter the total water used and increased the transpiration efficiency in terms of DMMAT.Old tall durum wheat cultivars manifested good suitability for dual-purpose use in environments with low attainable yields because their low grain yield potential contributed to reducing the negative effects of clipping on GY. Their high straw yield and kernel protein percentage represented an advantage with respect to semi-dwarf cultivars.  相似文献   

4.
UK livestock agriculture can significantly reduce its protein imports by increasing the amount of forage based protein grown on-farm. Forage legumes such as red clover (Trifolium pratense L.) produce high dry matter yields of quality forage but currently available varieties lack persistence, particularly under grazing. To assess the impact of red clover persistence on protein yield, diploid red clover populations selected for improved persistence were compared with a range of commercially available varieties. All populations were grown over four harvest years in mixed swards with either perennial ryegrass (Lolium perenne L.) or perennial plus hybrid ryegrass (L. boucheanum Kunth). Red clover and total sward dry matter (DM) herbage yields were measured in Years 1–4, red clover plant survival in Years 3 and 4 and herbage protein (CP) yield and concentration in Years 2 and 4. In general, red clover DM yield in year 4 (3.4 t ha−1) was lower than in year 1 (13.9 t ha−1) but the red clover populations differed in the extent of this decline. Differences in the persistence of the red clover populations in terms of plant survival and yield were reflected in the contribution of red clover to the total sward yield in Year 4, which ranged from 61% for the highest yielding population, AberClaret, to 11% in the lowest yielding, Vivi. Increased red clover DM yield was reflected in a greater CP yield (protein weight per unit area), which ranged from 1.6 t ha−1 year−1 to 2.9 t ha−1 year−1 in Year 2 and from 1.1 t ha−1 year−1 to 1.9 t ha−1 year−1 in Year 4. CP concentration (protein weight per unit herbage weight) of all of the red clover populations was within a range considered suitable for ruminant production. The implication of these results for the future use of red clover in sustainable grassland systems is discussed.  相似文献   

5.
Integrated no-till crop and livestock production systems may help rejuvenate degraded pastures, increase land use efficiency (LUE), and increase enterprise revenue. Our objectives were to evaluate: (1) planting date effects on seed yield and nutrient concentration of an early-maturing, no-till system (NTS) soybean (Glycine max) when intercropped with palisade grass (Brachiaria brizantha); (2) dry matter production and protein concentration of the grass pasture after soybean harvest; and (3) overall revenue and LUE for the intercrop system. Experiments were performed during two growing seasons in Botucatu, Brazil using a randomized complete block experimental design. When palisade grass and soybean were sown simultaneously, soybean yield averaged 3.28 Mg ha−1. Similar seed yields were observed when palisade grass was planted either 30 d after soybean emergence (DAE) (3.29 Mg ha−1) or at the soybean reproductive stage R6 (full seed) (3.50 Mg ha−1). Monocrop soybean yield averaged 3.50 Mg ha−1. First cut dry matter forage production was greater when palisade grass was sown at the same time as soybean or 30 DAE of soybean. This indicates that interseeding palisade grass with soybean does not significantly affect soybean nutrition or yield. Intercropping did increase LUE and resulted in 1.6 times more revenue than soybean alone. However, sowing palisade grass at the soybean reproductive stage R6 (full seed) significantly reduced the forage yield compared to early planting.  相似文献   

6.
The objective of this study was to characterize physiologically wheat cultivars released in different decades and identify selection criteria for the continued genetic progress in Brazil. Ten cultivars released from 1940 up to 2009 were tested during 2010 and 2011 crop seasons. The following traits were evaluated: grain yield (GY), thousand-kernel weight (TKW), grain number per m−2 (GN), plant height (PH), harvest index (HI), above-ground biomass (BIO), relative Chlorophyll content and leaf gas exchanges. The increase in grain yield was 29 kg ha−1 yr−1 a genetic gain of 0.92%, annually. Grain yield improvement was largely associated with HI (0.94**), number of grains m−2 (0.93**), BIO (0.88**) and reduced PH (−0.93**). The post-anthesis Chlorophyll content, stomatal conductance and pre/post-anthesis photosynthetic rate were positively correlated with GY. Genetic gains of Brazilian wheat are mainly related to the increases of HI, GN, and BIO. These improvements were achieved by reducing PH and raising gas exchanges and chlorophyll content.  相似文献   

7.
In recent years, the cultivation of the pseudocereal species amaranth, quinoa, and buckwheat has gained rising attention. This study was undertaken to explore nitrogen (N) fertility requirements and nitrogen use efficiency of these species. For this purpose, a 2-year field experiment with N rates of 0, 80, and 120 kg N ha−1 for amaranth and quinoa and 0, 30, and 60 kg N ha−1 for buckwheat and two cultivars of each species was conducted.Grain yield of amaranth responded to N and ranged between 1986 and 2767 kg ha−1. Nitrogen utilization efficiency (NUtE) ranged from 13.9 to 15.4 kg grain yield per kg above-ground plant N and decreased with increasing N rate. Higher grain yields and NUtEs seemed to be mainly inhibited by the low harvest index (0.22–0.23) of the investigated amaranth cultivars.Quinoa yielded between 1790 and 3495 kg grain ha−1 and responded strongly to N fertilization. NUtE averaged 22.2 kg kg−1 and did not decrease with increasing N rates.The grain yield of buckwheat did not respond to N fertilization and averaged 1425 kg ha−1. N uptake increased only slightly with N fertilization. NUtE ranged from 16.1 to 20.0 kg kg−1. Main problems occurring with the application of N to buckwheat were grain scattering and lodging.  相似文献   

8.
An experiment was conducted in order to investigate hay yield and nitrogen harvest in binary smooth bromegrass (Bromus inermis Leyss cv. Tohum Islah) mixtures with alfalfa (Medicago sativa L. cv. Kayseri) and red clover (Trifolium pratense L. cv. Tohum Islah) in Erzurum, Turkey for 5 years between 1991 and 1995. The Hay yield, nitrogen harvest, protein concentration and land equivalent ratio (LER) in the mixtures with alternating rows of 1:1, 2:1 and 1:2 of smooth bromegrass with alfalfa and red clover were compared to those in pure legume stands without any N-fertilizer application or pure smooth bromegrass stands that received 0, 50, 100 and 150 kg ha−1 N. The mixtures had no N fertilization apart from 40 kg N ha−1 in the establishment year. The dry matter production in all the mixtures receiving no N fertilizer application was higher than in pure legume stands. Pure grass stands were sustained only with the application of 150 kg ha−1 N. The highest hay yields were obtained from the mixtures of smooth bromegrass (Sb) with red clover (Rc) (2Rc 1Sb) (14.65 t ha−1) and with alfalfa (A) (1A 1 Sb) (14.49 t ha−1). Although N application increased Sb yields in pure stands, the highest yields obtained with N fertilization were still lower than the yields in the mixtures without N application. The superiority of the mixtures was also reflected by their large N harvests (e.g. 355.9 kg N ha−1 in 2Rc 1Sb plots) compared to pure Rc (317.8 kg N ha−1), pure A (294.3 kg N ha−1) and pure Sb stands that received 150 kg N ha−1. The nitrogen harvest increased in pure Sb plots as the N doses applied increased. Furthermore, the protein concentration of the hay from the mixtures (158.2–165.7 mg g−1) was equal to that of the pure A stands (165.7 mg g−1) and higher than that of pure Sb stands (122.9 mg g−1 at 150 kg N ha−1 application) although the hay from pure Rc plots had the highest protein concentration (179.3 mg g−1). The LER values were also higher in the mixtures (e.g. 1.28 in 1A 1Sb and 1.28 in 2Rc 1Sb plots) compared with the pure stands. The mixture plots also had a more balanced temporal distribution of hay. The grass component was more productive in early spring, whereas the legume fractions grew better in the summer. In conclusion, for a sustainable production of high-quality hay and greater N harvests without using N fertilizers, binary mixtures of Sb with A in alternating rows (1A 1Sb) were recommended for long-purpose stands and in alternation with double red clover rows (2Rc 1Sb) for short purpose stands under similar conditions. N application could be eliminated in the grass–legume mixtures without any yield depression.  相似文献   

9.
The effects of radiation and temperature during the seed set period (SSP) on pod number per square metre (PN m−2) and seed number per square metre (SN m−2) and those of temperature during grain filling on unit seed weight (USW, milligram per seed) of field pea (Pisum sativum L.) were examined in experiments involving irrigated crops of three or more cultivars of contrasting maturity sown on two or more dates per year from 1996 to 1998 at Buenos Aires, Argentina. The duration of the seed-setting phase was estimated from records of the progress of flowering on the main stem and an estimate (obtained using an optimisation procedure) of the thermal time from flowering at which the uppermost reproductive node reached the final stage of seed abortion (FSSA). The FSSA at a particular node was assumed to be achieved 200 °C day (Tb=4 °C) after flowering at the same node. The grain-filling phase was assumed to run from the achievement of FSSA at the first reproductive node through to 200 °C day (Tb=0 °C) after the date of achievement of the FSSA by the second flowering node.The treatments (cultivar, sowing date, year) produced important ranges of above-ground biomass (AGB) at maturity (271–782 g m−2), seed yield (SY, 119–331 g m−2), SN (1062–3698 seeds m−2) and USW (67–150 mg seed−1). Seed yield was strongly correlated with SN, and there was full compensation between SN and USW in large-seeded cultivars in the high SN range, but not at lower values of SN or in small-seeded cultivars. Both PN (r=0.83) and SN (r=0.87, P<0.0005) were strongly correlated with the mean daily value of the photothermal quotient (PQ=incident radiation/(mean temperature − base temperature)) for the seed-setting phase. Large- and small-seeded cultivars had PN/PQ and SN/PQ relationships with slopes which did not differ among categories but with significantly different intercepts. When the effects of low temperatures during flowering and early grain growth were allowed for, outliers on the PN/PQ and SN/PQ relationships for unstressed crops fell within the confidence limits of the respective linear regressions. Unit seed weight showed a negative response to mean temperature during the grain-filling phase in large- and small-seeded cultivars. We conclude that the relationships established in these experiments, taken together with previous work by other authors, constitute a robust basis for modelling the yield of unstressed field pea crops.  相似文献   

10.
Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566 kg ha−1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127 kg ha−1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193 Mg ha−1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only.  相似文献   

11.
The aims of these field experiments were to investigate the effectiveness of soil application of rubber tire ash in comparison with soil and foliar applications of zinc (Zn) sulfate to increase Zn and decrease cadmium (Cd) concentrations in wheat grain. A two-year field experiment was conducted during the 2007–2008 and 2007–2008 growing seasons at Isfahan research field, Iran. Ten different Zn-efficiency bread wheat cultivars (Triticum aestivum L.) commonly cultivated in different parts of Iran were subjected to no Zn fertilizer addition (control), soil application of 40 kg ha−1 ZnSO4, soil application of 100 (for the first year) and 250 (for the second year) kg ha−1 waste rubber tire ash, foliar application of Zn at the mid tillering stage, and foliar application of Zn at the early anthesis stage. In the foliar application, ZnSO4 was sprayed at a rate of 0.66 kg Zn/ha. Foliar spray of zinc sulfate at early anthesis, in general, had no significant effect on the yield and grain Cd while significantly increased grain Zn concentrations of most cultivars. On average, the foliar Zn treatment at the mid tillering stage (0.66 kg Zn/ha), decreased the mean grain Cd concentration from 0.032 mg kg−1 in the control treatment to 0.024 mg kg−1. While the grain Zn concentrations of some cultivars increased with soil application of Zn sulfate, they were not affected or even decreased in other cultivars. For most studied wheat cultivars, pre-planting application of rubber tire ash in soil resulted in a significant decrease of grain Cd concentrations. The results show that the effectiveness of soil and foliar application of Zn on yield and grain Zn and Cd concentrations greatly depends on the cultivar. The currently recommended rates of soil applications of Zn to ameliorate Zn deficiency are sufficient to increase grain Zn and decrease grain Cd concentrations in some wheat cultivars, while they do not in the others. In this study, soil application of 250 kg rubber tire ash/ha and foliar spray of 0.66 kg Zn/ha at tillering stage were the most effective treatments to ameliorate Zn deficiency and to increase Zn and decrease Cd concentration in grains of most wheat cultivars.  相似文献   

12.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

13.
In dryland agricultural systems, pig slurry (PS) is usually applied to cereal crops only at sowing, and slurries accumulate for the rest of the year in pits. In this context, a four-year experiment was established in order to evaluate the feasibility of PS applications at the barley or wheat tillering stage. The main treatments were PS either applied at sowing (25 Mg ha−1) or not, but they alternated after a two-year period. Both were annually combined with eight side-dressing treatments at cereal tillering: mineral N as NH4NO3 (M; 60 or 120 kg N ha−1 yr−1), PS from fattening pigs (PSf; 17, 30, 54 Mg ha−1 yr−1), PS from sows (PSs; 25, 45, 81 Mg ha−1 yr−1) and a treatment without N. The combined fertilization treatments were 18 plus a control (no N applied). In the context of crop rotation, the biennial alternation of PS applied at sowing allowed the control of soil nitrate increments, while PS side-dressing improved N recovery compared with a unique application at sowing. The highest yields (>3.6 Mg ha−1 yr−1) were obtained with an annual average (4-yr) N rate close to 173 kg N ha−1 (±40 kg N ha−1). The best overall strategies corresponded to PSs side-dressings of 50–90 kg N ha−1. These PSs rates also recorded the highest values on the five calculated N-efficiency indexes, which were higher than or similar to results from M side-dressings or those recorded in the literature. These similarities (M vs. PSs) were also shown by the reduction of unaccounted-for N inside the overall N balance. Thus, split PS application during the crop cycle is a sound fertilization option in dryland systems.  相似文献   

14.
The efficient use by crops of nitrogen from manures is an agronomic and environmental issue, mainly in double-annual forage cropping systems linked to livestock production. A six-year trial was conducted for a biennial rotation of four forage crops: oat-sorghum (first year) and ryegrass-maize (second year) in a humid Mediterranean area. Ten fertilization treatments were introduced: a control (without N); two minerals equivalent to 250 kg N ha−1 year−1 applied at sowing or as sidedressing; dairy cattle manure at a rate of 170, 250 and 500 kg N ha−1 year−1 and four treatments where the two lowest manure rates were supplemented with 80 or 160 kg mineral N ha−1 year−1. They were distributed according to a randomized block design with three blocks. The highest N mineral soil content was found in the summer of the third rotation, in plots where no manure was applied. The yearly incorporation of manure reduced, in successive cropping seasons, the amount of additional mineral N needed as sidedressing to achieve the highest yields. Besides, in the last two years, there was no need for mineral N application for the manure rate of 250 kg N ha−1 year−1. This amount always covered the oat-sorghum N uptake. In the ryegrass-maize sequence uptakes were as high as 336 kg N ha−1 year−1. In the medium term, the intermediate manure rate (250 kg N ha−1 year−1) optimizes nutrient recycling within the farming system, and it should be considered in the analysis of thresholds for N of organic origin to be applied to systems with high N demand.  相似文献   

15.
Field experiments were conducted in 2006 and 2007 to evaluate the competitive ability of bush type red kidneybean (RKB) (Phaseolus vulgaris L.) cultivars against redroot pigweed (Amaranthus retroflexus L.). Three cultivars of RKB (Akhtar, Sayyad and D81083) and five A. retroflexus densities (0, 4, 8, 16 and 32 plants m−2) were established in a factorial arrangement. A. retroflexus had a greater plant height and growth rate (GR) but a lower leaf area index (LAI) than RKB cultivars in almost all treatments. Higher densities of A. retroflexus increased LAI and GR but decreased yield of RKB cultivars. The cv. Sayyad and D81083 had the greatest and lowest LAI and GR, respectively, in competition with A. retroflexus. The maximum intercepted photosynthetically active radiation (PAR) at noon by A. retroflexus was 90.4 and 66.0% in competition with cv. D81083 and Sayyad, respectively. The seed yield and pod number per plant of RKB cultivars decreased severely with increasing A. retroflexus density. A. retroflexus seed number m−2 was the highest and lowest in competition with cv. D81083 and Sayyad, respectively. The competitive ability of RKB cultivars was compared using parameters estimated through two-parameter yield loss-relative leaf area model. The relative ranking of the RKB cultivars examined for their competitiveness, supported by modeling results, was Sayyad > Akhtar > D81083.  相似文献   

16.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

17.
In areas of Southern Europe with very intensive pig production, most of the pig slurry (PS) is applied as fertilizer. However, in the European Union, no more than 170 kg N ha−1 year−1 can be applied in nitrate vulnerable zones (NVZs) from livestock manures. In this context, a six-year trial was conducted for a maize-triticale double-annual forage cropping rotation under rainfed conditions. Four different N rates were applied (0, 170, 250 and 330 kg N ha−1 year−1), to evaluate their effect on crop yield, N uptake, unrecovered N and soil nitrate content. The corresponding PS rates were defined as zero (PS 0), low (PSL) medium (PSM) and high (PSH). The annual average dry matter (DM) yields (maize + triticale) for the PS fertilization treatments PS0, PSL, PSM and PSH were 12.6, 17.7, 20.2 and 22.0 Mg DM ha−1, respectively. Maize DM yield was influenced mainly by weather conditions, and triticale DM yield was clearly influenced by initial soil NO3-N and PS fertilization rates. Unrecovered N was affected by PS fertilization rate and initial soil NO3-N content. A residual effect of the PS when applied to maize had an important effect on soil NO3-N and subsequent triticale DM yield. Moreover, total annual average unrecovered N, considering the sum of both crops (maize + triticale), were 91, 144, and 222 kg N ha−1 in PSL, PSM and PSH, respectively. In order to avoid part of this unrecovered N, mainly by lixiviation of nitrates, PS fertilization in triticale should be applied as side dressing at tillering. The application of N, in the form of PS, at rates higher than the legally permitted maximum of 170 kg N ha−1 year−1, may result in better yields. However, high rates of PS fertilization may originate in significantly lower N use efficiency and a higher potential environmental impact in double-cropping systems, practiced in rainfed sub-humid Mediterranean conditions.  相似文献   

18.
Explaining yield gaps is crucial to understand the main technical constraints faced by farmers to increase land productivity. The objective of this study is to decompose the yield gap into efficiency, resource and technology yield gaps for irrigated lowland rice-based farming systems in Central Luzon, Philippines, and to explain those yield gaps using data related to crop management, biophysical constraints and available technologies.Stochastic frontier analysis was used to quantify and explain the efficiency and resource yield gaps and a crop growth model (ORYZA v3) was used to compute the technology yield gap. We combined these two methodologies into a theoretical framework to explain rice yield gaps in farmers’ fields included in the Central Luzon Loop Survey, an unbalanced panel dataset of about 100 households, collected every four to five years during the period 1966–2012.The mean yield gap estimated for the period 1979–2012 was 3.2 ton ha−1 in the wet season (WS) and 4.8 ton ha−1 in the dry season (DS). An average efficiency yield gap of 1.3 ton ha−1 was estimated and partly explained by untimely application of mineral fertilizers and biotic control factors. The mean resource yield gap was small in both seasons but somewhat larger in the DS (1.3 ton ha−1) than in the WS (1.0 ton ha−1). This can be partly explained by the greater N, P and K use in the highest yielding fields than in lowest yielding fields which was observed in the DS but not in the WS. The technology yield gap was on average less than 1.0 ton ha−1 during the WS prior to 2003 and ca. 1.6 ton ha−1 from 2003 to 2012 while in the DS it has been consistently large with a mean of 2.2 ton ha−1. Varietal shift and sub-optimal application of inputs (e.g. quantity of irrigation water and N) are the most plausible explanations for this yield gap during the WS and DS, respectively.We conclude that the technology yield gap explains nearly half of the difference between potential and actual yields while the efficiency and resource yield gaps explain each a quarter of that difference in the DS. As for the WS, particular attention should be given to the efficiency yield gap which, although decreasing with time, still accounted for nearly 40% of the overall yield gap.  相似文献   

19.
Agricultural soil could be made to serve as a sink rather than a source of greenhouse gases by suitable soil management. This study was, therefore, conducted to assess the impact of tillage and fertilizer application on soil and plant carbon and nitrogen fractionation and intrinsic water use efficiency (iWUE). The experiment was a split–split-plot factorial design with three replications. The main plot consisted of two tillage treatments: zero tillage (ZT) and conventional tillage (CT). The sub-plot contained four NPK fertilizer treatments (0, 90, 120 and 150 kg N ha−1), while the sub–sub-plot comprised three poultry manure (PM) treatments (0, 10 and 20 Mg ha−1). Soil carbon and nitrogen sequestration were evaluated using stable isotope of carbon (δ13C) and nitrogen (δ15N). The δ13C in maize plant was used to obtain iWUE. It was observed that soil δ13C and δ15N were more depleted under ZT than CT and in plots treated with 20 Mg ha−1 PM (PM20) implying carbon and nitrogen sequestration under ZT and by PM20. Relative to the control, application of PM20 raised soil δ15N enrichment by 82% and 96% under CT and ZT, respectively. Higher iWUE of 25.7% was obtained under CT and was significantly higher than the iWUE values under ZT in the second year of the study while the iWUE was significantly lower with PM20 application than other fertilizer treatments. The significant δ13C depletion and hence lower iWUE with combination of NPK fertilizer and PM under CT than the control implied that soil disturbance under tilled plots was mediated by combined nutrient management thereby limiting soil C available for fractionation resulting in lower iWUE. This suggests that conservation tillage such as zero tillage and integrated application of organic and inorganic fertilizers are good strategies for reducing soil carbon and nitrogen emission.  相似文献   

20.
Ridge and furrow rainfall concentration (RC) system has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid area of northwest China. The system is comprised of two elements: the plastic-covered ridge serves as rainfall harvesting zones and the furrow serves as planting zones. To make this system more perfect for alleviating drought stress in semiarid region, it is necessary to test optimum planting systems. A field experiment was conducted from 2007 to 2010 to evaluate the effects of RC planting on soil moisture, wheat yield and water use efficiency (WUE) under different ridge widths. Four planting systems were designed (RC40: 40 cm ridge with 60 cm furrow width, RC60: 60 cm ridge with 60 cm furrow width, RC80: 80 cm ridge with 60 cm furrow width, and CF: conventional flat without ridging). The results showed that RC planting can significantly increase soil moisture in 0–200 cm during the growing seasons of winter wheat. The rainfall-harvesting effect increased with ridge width increasing. Winter wheat yield and WUE was significantly higher under RC60 than under CF by 405.1 kg ha1 and 2.39 kg mm1 ha1, respectively, on average across the three experimental years (P < 0.05). The above findings indicate that RC60 can benefit winter wheat cropping for higher yield through improving soil moisture. It could be concluded that the RC planting system with 60 cm ridge and furrow width will offer a sound opportunity for sustainable farming in semiarid dryland agricultural area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号