首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Weed and nutrient management in cropping systems of semi-arid areas is a major constraint to cereal yield. Where the use of herbicides is banned or discouraged, the competitive ability of a crop is crucial to reduce weed growth and diffusion. Genotypic differences in the competitive abilities of crops are an important trait to reduce weeds, especially for plant height. However, there is contrasting information about the interactions of other management practices and genotypic traits on wheat yield and competitive ability against weeds and weed growth. The present study investigated yield and quality of durum wheat (Triticum durum Desf.) and weed growth and composition for two wheat cultivars with contrasting competitive abilities against weeds. Wheat was grown under three spatial arrangements (5-cm, 15-cm, 25-cm inter-row distance) and three sowing densities, and broadleaf weeds were either removed or not. The sowing rate did not affect the yield of these wheat cultivars or the weed growth. Reduced inter-row distance dramatically reduced weed biomass for both wheat cultivars, and increased wheat yield and nitrogen uptake in the low-competitive, high-yielding, semi-dwarf cv. ‘PR22D89’, when both weed free and with weeds. These results have direct implications for weed and nutrient management in low-input and organic cropping systems.  相似文献   

2.
为了解不同轮耕模式对小麦-玉米两熟制耕层构造、作物产量和品质的影响,从2009年小麦季开始至2012年玉米生长季结束连续3个种植周期设置小麦季免耕、深松或翻耕+玉米季免耕或深松的6种耕作模式组合,研究其对农田土壤孔隙度和水分含量、作物产量、以及籽粒蛋白质含量、油分含量和容重的影响。结果表明,与免耕相比,玉米季深松大幅度提高0~40 cm土壤的周年总孔隙度,小麦季深松或翻耕改善了土壤孔隙状况。小麦季耕作和玉米季耕作的交互效应是各层次土壤毛管孔隙度的决定因素,而玉米季耕作的独立效应是土壤各层次非毛管孔隙度的决定因素。小麦季深松和翻耕促进小麦生育后期对土壤水分的吸收,深松较翻耕和免耕处理的小麦产量显著升高。玉米季深松比免耕提高了玉米在灌浆阶段对水分的吸收,有利于提高玉米产量,同时对后茬小麦有积极作用。从全年产量与品质看,6种耕作模式组合中,全年两季深松效果最佳,其次是小麦季深松+玉米季免耕,这两种轮耕模式均适合在华北平原推广应用。  相似文献   

3.
[Objective] Soil temperature affects the biochemical processes of crops; therefore, elucidating its spatial and temporal distribution characteristics in different cropping systems is an essential part of understanding how to boost cotton yield potential. [Method] In 2016 and 2017, continuous, real-time soil temperature monitoring was conducted at a depth of 10-110 cm in three cropping systems, including monoculture cotton (MC), wheat/intercropped cotton (WIC), and wheat/direct-seeded cotton (WDC). We investigated the growth process and various agronomic traits. [Result] Different cotton soil temperatures were found between MC and doubled in late May, indicating about 1-3 ℃ higher in the former during the symbiotic period. In early July, the cotton soil temperature of the double-cropping systems at 10-40 cm was higher than that of the MC, but showed the opposite at 40-110 cm. In early August, the differences in soil temperature reduced among the three cropping systems, while the soil temperature of the MC was still slightly lower than that of the double-cropping systems. After mid-September, the soil temperature of the double-cropping systems was lower than that of the MC. The soil temperature mainly influenced the duration of cotton seedling to squaring, and flowering to the boll-opening period. At the same time, there was a subtle effect on the squaring to flowering and boll period. In general, higher average soil temperatures were associated with shorter growth period durations. During the same period, the lowest daily soil temperature of the double-cropping systems occurred about one hour earlier than in the MC; however, the highest daily temperature appeared at the same time. There was a linear relationship between accumulated soil temperature and biomass at different layers across cropping systems. [Conclusion] Controlling the timing and quantity of irrigation water can assist agronomic practices by alleviating the effect of soil temperature on cotton growth. Increased accumulative soil temperature is beneficial to cotton emergence and boll opening in double-cropping systems. This study provides a theoretical basis for rational allocation and management of different cropping systems.  相似文献   

4.
周宝元  王志敏  岳阳  马玮  赵明 《作物学报》2015,41(9):1393-1405
优化传统冬小麦-夏玉米模式并探索新型种植模式是挖掘黄淮海区周年高产潜力,提高资源利用效率的重要途径。本研究以冬小麦-夏玉米传统种植模式为对照(CK),建立了冬小麦–夏玉米优化种植模式(T1)和双季玉米模式(T2),于2009—2012年在河南新乡进行田间试验,对其周年资源分配、产量及资源利用效率进行了比较。结果表明:(1)T1模式通过播/收期调整,协调了两季的光、温资源分配比例(0.7∶1.0和1.4∶1.0);T2模式两季积温基本为均等分配,光照资源分配比例为1.5∶1.0。(2)资源分配的变化引起了产量的变化。与CK比,T1模式周年产量平均增幅为7.8%,其产量的增加主要来自于夏玉米季,T1模式夏玉米季平均叶面积指数(MLAI)、生物量和产量均显著高于CK,且冬小麦晚播并未造成减产。双季玉米(T2)是"双C4作物"的新型种植模式,其第1季的MLAI、生物量和产量均显著高于CK和T1,第2季(除MLAI外)显著低于CK和T1。T2与T1周年产量差异不显著,但显著高于CK,平均增幅为9.2%。另外,T2模式周年日产量显著高于CK和T1,平均增幅分别为53.9%和46.2%。(3)T2模式周年光、温生产效率及籽粒光能利用效率显著高于CK和T1,平均增幅分别为30.5%和23.3%,15.5%和9.7%,30.3%和23.0%。综上所述,T1和T2高产高效模式建立的核心均是充分利用C4作物玉米高物质生产能力的优势,二者的建立为黄淮海区周年产量潜力的挖掘及种植结构调整提供了思路。  相似文献   

5.
Cotton (Gossypium hirsutum L.) is the leading cash crop being grown across the globe including Pakistan. By the inclusion of insect resistant transgenic cotton (BT cotton), the cotton production has mounted many folds in Pakistan. BT cotton is mostly grown in Southern Punjab in cottonwheat cropping system of Pakistan; however there exists a time conflict among wheat harvest and BT cotton sowing in this system. Wheat is harvested during late April but the ideal sowing time of BT cotton is early-mid March indicating a time conflict of 46 weeks which is becoming the main concern leading to wheat exclusion from this system. Intercropping of BT cotton in standing wheat is one of the possible options to manage this overlapping period. This two year field study was, therefore, conducted at two locations (Multan, Vehari) to evaluate the economic feasibility of relay intercropping of BT cotton through different sowing methods in BT cottonwheat cropping system. BT cottonwheat cropping systems included in the study were: conventionally tilled cotton (CTC) on fallow land during early and late March, CTC during late April after harvest of flat sown wheat (FSW), bed sown wheat (BSW) + intercropped cotton during early and late March, and ridge sown wheat (RSW) + intercropped cotton during early and late March. Planting cotton in fallow land with conventional tillage during early March had more seed cotton yield; whereas planting in the same way during April after wheat harvest had minimum seed cotton yield. Likewise, FSW had more yield than ridge and bed sown wheat with intercropped BT cotton during early or late March. However, the system productivity in terms of net income, benefit: cost ratio and marginal rate of return of BSW + intercropped BT cotton during early March was the highest during both years at both locations. However, the system with sole crop of BT cotton sown on fallow land during late or early March was the least economical even than the system with CTC during late April after harvest of FSW. In conclusion, BSW + intercropped cotton during early March may be opted to manage the time conflict and improve the economic productivity of BT cottonwheat cropping system without wheat exclusion from the system.  相似文献   

6.
Weeds are harmful for crop production but important for biodiversity. In order to design cropping systems that reconcile crop production and biodiversity, we need tools and methods to help farmers to deal with this issue. Here, we developed a novel method for multi-objective cropping system design aimed at scientists and technical institutes, combining a cropping system database, decision trees, the “virtual field” model FlorSys and indicators translating simulated weed floras into scores in terms of weed harmfulness (e.g. crop yield loss, weed-borne parasite risk, field infestation), weed-mediated biodiversity (e.g. food offer for bees) and herbicide use intensity. 255 existing cropping systems were simulated with FlorSys, individual indicator values were aggregated into a multi-performance score, and decision trees were built to identify combinations of management practices and probabilities for reaching performance goals. These trees are used to identify the characteristics of existing cropping systems that must be changed to achieve the chosen performance goals, depending on the user's risk strategy. Alternative systems are built and simulated with FlorSys to evaluate their multi-criteria performance. The method was applied to an existing oilseed rape/wheat/barley rotation with yearly mouldboard ploughing from Burgundy which was improved to reconcile weed harmfulness control, reduced herbicide use and biodiversity promotion, based on a risk-minimizing strategy. The best alternative replaced a herbicide entering plants via shoot tips (during emergence) and roots after barley sowing by a spring herbicide entering via leaves, introduced crop residue shredding before cereals and rolled the soil at sowing, which reduced the risk of unacceptable performance from 90% to 40%. When attempting to reconcile harmfulness control and reduced herbicide use, the best alternative changed the rotation to oilseed rape/wheat/spring pea/wheat, replaced one herbicide in oilseed rape by mechanical weeding, delayed tillage before rape and applied the PRE herbicide before oilseed rape closer to sowing. This option reduced the risk of unacceptable performance to 30%. None of the initial or alternative cropping systems succeeded in optimal performance, indicating that more diverse cropping systems with innovative management techniques and innovative combinations of techniques are needed to build the decision trees. This approach can be used in workshops with extension services and farmers in order to design cropping systems. Compared to expert-based design, it has the advantage to go beyond well-known options (e.g. plough before risky crops) to identify unconventional options, with a particular focus on interactions between cultural techniques.  相似文献   

7.
不同播种措施对河北冬小麦产量影响研究   总被引:1,自引:1,他引:1  
针对河北平原冬小麦生产中大面积采用秸秆还田和旋耕后直接播种给冬小麦出苗带来的不利影响,在河北藁城市进行了冬小麦抢墒播种(对照)、播前灌溉、抢墒播种后镇压3种处理对冬小麦生长发育及产量的影响试验。结果表明,播前灌溉和抢墒播种+播后镇压的产量分别比对照高6.9%和6.0%,与对照处理的产量达到显著差异(P<0.01)。因此,小麦抢墒播种加镇压可节省冬小麦底墒水,具有很好的节水增产效果,可以大面积推广。  相似文献   

8.
超高产条件下农艺措施与小麦产量关系的研究   总被引:2,自引:1,他引:1  
为了探讨超高产小麦定量化、规范化、模式化栽培技术方案,采用五元二次回归旋转组合设计,研究了超高产小麦的播期、播种量、施氮量、施磷量及施有机肥量等5项农艺措施与产量的关系及其交互作用。结果表明,5项农艺措施与产量之间存在着明显的函数关系,建立了产量目标数学模型。5项农艺措施对产量影响的大小不同,播期与播种量、播种期与有机肥、播种量与施N量、施N量与施P2O5量、有机肥与施P2O5量之间的相互效应达到极显著水平,生产中注意协调5项农艺措施之间的关系。‘豫麦49-198’产量达到(9393±234.8) kg/hm2的优化农艺措施是:播种期10月11-13日,播种量91.9~99.4 kg/hm2,施N量213.5~231.4 kg/hm2,施P2O5量144.7~157.2 kg/hm2,有机肥施用量41117.0~41367.0 kg/hm2。经在同样生态类型区麦田示范推广应用,效果非常显著。  相似文献   

9.
对江淮下游稻麦两熟高产优质种植模式周年气候资源分配和利用特征的探究,可以为当地机插水稻–小麦周年产量和气候资源利用效率的提高提供一定的理论依据。在泰州兴化市,水稻季以迟熟中粳南粳9108和中熟中粳连粳11为材料,设置5月22日(R-Ⅰ)、5月29日(R-Ⅱ)和6月5日(R-Ⅲ) 3个播期,小麦季以冬小麦宁麦13为材料,设置11月5日(W-Ⅰ)、11月15日(W-Ⅱ)和11月25日(W-Ⅲ) 3个播期,分析了不同播期下机插水稻–小麦周年高产优质形成与稻季、麦季资源分配特征。结果表明,水稻季,随着播期推迟,迟熟中粳南粳9108产量、温光资源量及其生产效率均显著下降,中熟中粳连粳11温光资源量呈下降趋势,但产量及温光利用率呈先升后降趋势,各播期迟熟中粳产量均高于中熟中粳。小麦季,产量、温光资源量及其生产效率均随播期推迟有不同程度降低。从周年生产看,周年稻麦产量随两季作物播期的推迟显著降低,其中迟熟中粳南粳9108播期R-Ⅰ与小麦播期W-Ⅰ组合在所有处理中产量最高。水稻产量占周年产量比例最高为62.99%,最低为55.86%。两季间积温分配率水稻季最高为68.38%,小麦季最高为34.14%。季节间辐射量分配率水稻季平均为51.7%,小麦季平均为48.3%。周年积温生产效率和光能生产效率随着稻麦播期推迟,呈下降趋势,播期越迟减少越显著。品质方面,迟熟中粳南粳9108的加工品质均随着播期推迟变劣而外观品质变优,中熟中粳连粳11加工品质变优而外观品质变劣。两品种蒸煮食味品质及营养品质(除中熟中粳连粳11食味值外)均随播期推迟变劣。小麦的湿面筋含量和蛋白质含量均随播期推迟而减少。通过优化稻麦播栽期,选用适宜生育期水稻品种,可提高周年产量和光温资源生产效率,是提升江淮下游机插水稻–冬小麦模式生产力的有效技术途径。  相似文献   

10.
Moving to more agroecological cropping systems implies deep changes in the organization of cropping systems. We propose a method for formalizing the process of innovating cropping system prototype design using a tool called PRACT (Prototyping Rotation and Association with Cover crop and no Till) applied to a Malagasy case study. The input information for PRACT is comprised of: (i) crop and cover crop adaptation to biophysical conditions, (ii) agroecological functions of the cover crops, (iii) crop production, (iv) association possibilities between crop and cover crop, and (v) agroecological functions of the cropping system. All the information was derived from expert knowledge developed over more than 12 years of agronomic experiments in Madagascar. The final output from PRACT is a list of cropping systems, i.e., crop and cover crop associations and their sequences over three years. These cropping systems are characterized by their potential agroecological functions and crop production. The PRACT model selects a list of cropping systems taking into account the above information by using elaborate rules governing the intercropping and sequences between crops and cover crops. Examples of the outcomes of model simulations are provided for four different kinds of field. Taking into account the range of potential crops and cover crops, the number of cropping systems that was theoretically possible for the different field types ranged from 19,683 to 2.98 ×  1013. In a first step, PRACT reduced this number by a factor of up to 28 times to propose possible cropping systems. To do so, cropping systems are selected in terms of the biophysical requirements of plants, plant compatibility and agronomic rules. Not all of these systems are suitable for every farmer. Thus using PRACT output, a second cropping system selection step can be taken based on these cropping system characteristics, i.e., crop production and agroecological functions. By doing so the number of cropping systems selected can reach a reasonable value that can be handled by technicians and farmers. Possible uses and further development of the tool are discussed.  相似文献   

11.
This paper describes a methodology for analysing management strategies to find best agronomic practices using a crop simulation model (CERES-Wheat). The study area is the estate of Imperial College at Wye, in the Stour Catchment, Kent, UK, an area highly suited to winter wheat production. The model is validated using historic crop performance data. Yield responses to differing sowing rates (range 200–450 seeds m−2), sowing dates and rates of nitrogen application (between 100 and 220 kg ha−1) with soil types of medium to heavy texture were simulated under water-limited conditions using historical daily weather data. In model validation, observed yields ranged between 6.9 and 7.4 t ha−1, while simulated ranges were between 6.9 and 7.8 ha−1. The RSMD of the difference was small (0.24 t ha−1) and non-significant. Optimum management practices (in terms of planting date, seed density and nitrogen application) were thereby defined. Also, simulations of potential yield (i.e. yield with no water and nutrient stress) were run for comparison. Results of this study reveal that the calibrated and validated CERES-Wheat model can be successfully used for the prediction of wheat growth and yield under conditions appropriate to Western Europe.  相似文献   

12.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

13.
The effect of agronomic practices and cultivars on grain yield, grain protein and small grain sievings was examined in field experiments over four years in the winter rainfall wheatbelt of Western Australia. Rotation with legume crops and pastures was the main factor responsible for increasing grain protein percent. Grain proteins were increased by 4-5% for crops grown in good legume pasture rotations compared to continuous wheat rotations, but only by 1-2% by factors such as delayed sowing time, applied nitrogen, cultivar or grass weed control. In legume based rotations, wheat crops sown at their highest yielding times produced proteins in the appropriate ranges for premium paying grades. Applying N fertilisers up to the optimum rates for yield did not result in proteins below the levels required for premium paying grades, except for hard wheats at >11.5% grain protein. Legume rotations and appropriate soil types were required for hard wheats to exceed 11.5% at economic N rates. The yield penalty often associated with high quality cultivars has been reduced or eliminated in the modern cultivars used in the experiments. Some longer season cultivars only produced grain proteins >10% if sown after their optimum time for yield, but sowing at optimum time reduced the probability of producing small grain sievings. Some cultivars were more susceptible than others to producing excessive sievings, especially those with inherently smaller than average seed size. Seed rates up to the optimum for grain yield did not result in excessive small grain sievings except where the site was highly fertile, where the crop was sown too late for optimum yield or where too much N fertiliser was used. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
In arid and populated areas or countries, water shortage and heavy carbon emissions are threatening agricultural sustainability with food security severely, and becoming a major issue. It is unclear whether improved farming systems can be developed to tackle those issues through a sustainable agriculture. Here three farming practices that have proven to be essential and successful, which were: (a) crop intensification through strip intercropping, (b) water harvesting through conservation tillage; and (c) carbon sequestration through improved crop residue management options, were integrated in one cropping system. We hypothesize that the integrated system allows the increase of crop yields with improved water use efficiency, while reducing carbon emissions from farming. The hypothesis was tested in field experiments at Hexi Corridor (37°96′N, 102°64′E) in northwest China. We found that the integrated system increased soil moisture (mm) by 7.4% before sowing, 10.3% during the wheat–maize co-growth period, 8.3% after wheat harvest, and 9.2% after maize harvest, compared to the conventional sole cropping systems. The wheat/maize intercrops increased net primary production by 68% and net ecosystem production by 72%; and when combined with straw mulching on the soil surface, it decreased carbon emissions by 16%, compared to the monoculture maize without mulch. The wheat/maize intercrops used more water but increased grain yields by 142% over the monoculture wheat and by 23% over the monoculture maize, thus, enhancing water use efficiency by an average of 26%. We conclude that integrating strip intercropping, conservation tillage as well as straw mulching in one cropping system can significantly boost crop yields, improve the use efficiency of the limited water resources in arid areas, while, lowering the carbon emissions from farming. The integrated system may be considered in the development of strategies for alleviating food security issues currently experienced in the environment-damaged and water-shortage areas.  相似文献   

15.
为了进一步明确黄淮平原冬小麦晚播、夏玉米晚收的“双晚”增产及资源高效的效应,选用2个中熟冬小麦品种和2个中晚熟夏玉米品种,于2006—2008年先后在河南温县和焦作进行大田试验,研究作物群体物质生产、产量形成参数定量指标及光温资源的分配利用。结果表明,冬小麦晚播产量降低不明显,夏玉米晚收产量显著提高747~2 700 kg hm-2,“双晚”周年产量21 891~22 507 kg hm-2,比对照提高442~2 575 kg hm-2。冬小麦晚播平均叶面积指数、每平方米穗数和穗粒数降低,但平均净同化率、收获指数和粒重提高达5%显著水平;夏玉米晚收平均叶面积指数、收获指数、生育期天数和粒重均显著提高。“双晚”栽培优化了周年资源分配,提高生育期与光、温资源变化的吻合度,其生产效率分别提高2.22%~10.86%和0.47%~11.56%。小麦和玉米品种的遗传类型是影响“双晚”栽培技术的关键。因此,选用小麦晚播早熟高产和玉米长生育期晚熟品种,通过有效调节资源配置,将小麦冗余的光温资源分配给C4高光效作物玉米,是提高周年高产高效的重要途径。  相似文献   

16.
为了进一步明确播期对胡麻产量、品质和农艺性状的影响,本研究选用5个胡麻品种,设置4个播期,调查了产量、品质和农艺性状相关的15个性状。结果表明:(1)随着播期的推迟,5个胡麻品种的单产显著减少,籽粒的营养物质主要表现为减少趋势,其中棕榈酸含量能够保持稳定或略有增加;(2)‘坝选十六’和‘选三’的单产在4个播期均高于其他品种,其中‘坝选十六’的单产最高,而且含有丰富的亚麻酸、亚油酸、蛋白质、木酚素等营养物质,含油率较高,为供试品种中的最佳品种。本研究进一步量化了播期对胡麻产量、品质和农艺性状的影响,早播有利于获得高产、增强品质,并且筛选出‘坝选十六’为最佳品种,为胡麻生产的良种良法配套提供理论依据。  相似文献   

17.
Knowing pests and diseases that may cause injuries and are likely to affect plant health and quality is critical to minimizing the gap between attainable yield and actual yield. In this paper, we highlight concepts and strategies aimed at controlling major biotic constraints affecting wheat in intensive production systems and present emerging challenges, with a special attention to the developing world. Disease epidemics result from the combination of inoculum, favorable environment, and host susceptibility. Changes in cropping systems as a result of adoption of conservation agriculture may have serious implications. Necrotrophic pathogens such as those responsible for tan spot or septorias are likely to emerge, and Fusarium head blight may increase. However, resistance breeding combined with rotations, timely sowing, and irrigation or even fungicide utilization, if affordable, are part of integrated crop management practices that can minimize losses. In South Asia, the effect of spot blotch, a devastating foliar disease caused by Cochliobolus sativus, can be minimized by reducing physiological stress through timely sowing and adequate use of fertilizers, which demonstrates the complex relationships among crop physiology, disease resistance, and yield. Although some root rots that induce premature death of tillers in cooler high-yielding humid environments can be important, the dryland crown rot (Fusarium spp.), common root rot (C. sativus), and the cereal nematode (Heterodera spp. and Pratylenchus spp.) should not be ignored. These are all known to be much more damaging under suboptimal moisture (rainfed or supplementary irrigation), particularly where plant growth is stressed. Climate change is likely to modify the wheat disease spectrum in some regions, and pathogens or pests considered unimportant today may turn out to be potential new threats in future.  相似文献   

18.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

19.
针对冬小麦因播期推迟造成产量损失的问题,以2个不同分蘖能力的冬小麦品种中麦8号和航麦501为供试材料,研究苗期覆膜和补施氮肥对晚播小麦产量及氮素利用的影响。试验设置3个播期:10月5日适期播种(S0,对照)、10月15日适当晚播(S1)和10月25日过晚播(S2)。结果表明:随着播期推迟,小麦产量逐渐降低。晚播条件下,苗期覆膜和补施氮肥可调控冬小麦产量构成因素、农艺性状、茎蘖生长、成穗率以及氮素的吸收利用。综合而言,晚播条件下,覆膜和补施氮肥有利于提高小麦穗长、总小穗数及冬前群体数量;同时,覆膜可显著提高2个品种晚播条件下的分蘖成穗率和过晚播条件下的植株氮素积累量(PNA)及氮肥偏生产力(PFP),增幅分别为46.4%~89.1%、12.7%~26.5%和19.5%~20.1%;补施氮肥在过晚播条件下有利于成穗率的提高,增幅为18.5%~34.7%。2种调控措施均有利于增加晚播小麦产量,增幅达1.4%~19.5%。但不同分蘖力的小麦对2种调控措施的响应存在差异。综合考虑产量及氮素利用等各方面因素,在晚播条件下,相比于补施氮肥,苗期覆膜更有利于提高晚播小麦产量,弥补晚播造成的产量损失,但在实际操作和节约生产成本方面,前者优于后者。  相似文献   

20.
The reduction in crop diversity and specialization of cereal-based cropping systems have led to high dependence on synthetic nitrogen (N) fertilizer in many areas of the globe. This has exacerbated environmental degradation due to the uncoupling of carbon (C) and N cycles in agroecosystems. In this experiment, we assessed impacts of introducing grain legumes and cover crops to innovative cropping systems to reduce N fertilizer application while maintaining wheat yields and grain quality. Six cropping systems resulting from the combination of three 3-year rotations with 0, 1 and 2 grain legumes (GL0, GL1 and GL2, respectively) with (CC) or without (BF, bare fallow) cover crops were compared during six cropping seasons. Durum wheat was included as a common high-value cash crop in all the cropping systems to evaluate the carryover effects of rotation. For each cropping system, the water use efficiency for producing C in aerial biomass and yield were quantified at the crop and rotation scales. Several diagnostic indicators were analyzed for durum wheat, such as (i) grain yield and 1000-grain weight; (ii) aboveground biomass, grain N content and grain protein concentration; (iii) water- and N-use efficiencies for yield; and (iv) N harvest index. Compared to the GL0-BF cropping system, which is most similar to that traditionally used in southwestern France, N fertilizer application decreased by 58%, 49%, 61% and 56% for the GL1-BF, GL1-CC, GL2-BF and GL2-CC cropping systems, respectively. However, the cropping systems without grain legumes (GL0-BF and GL0-CC) had the highest water use efficiency for producing C in aerial biomass and yield. The insertion of cover crops in the cropping systems did not change wheat grain yield, N uptake, or grain protein concentration compared to those of without cover crops, demonstrating a satisfactory adaptation of the entire cropping system to the use of cover crops. Winter pea as a preceding crop for durum wheat increased wheat grain production by 8% (383 kg ha−1) compared to that with sunflower  the traditional preceding crop  with a mean reduction in fertilizer application of 40–49 kg N ha−1 during the six-year experiment. No differences in protein concentration of wheat grain were observed among preceding crops. Our experiment demonstrates that under temperate submediterranean conditions, properly designed cropping systems that simultaneously insert grain legumes and cover crops reduce N requirements and show similar wheat yield and grain quality attributes as those that are cereal-based.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号