首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood quality attributes were examined in six stands of slash pine (Pinus elliottii Engelm. var. elliottii) and loblolly pine (P. taeda L.) in the lower Coastal Plain of Georgia and Florida. Several plots comprised each stand, and each plot was divided so that it received three fertilizer treatments: a control treatment with herbaceous weed control at planting and brush control at mid-rotation only (control); 45 kg ha−1 N + 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer with N at planting); and 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer without N at planting). Ring width, ring earlywood specific gravity (SG), ring latewood SG, whole ring SG, and ring percent latewood were measured on each of seven trees. Of these measurements, this study focused mainly on the properties related to SG. Examination of the rings showed that latewood SG was significantly lower in trees treated with fertilizers with and without N at planting in the two to three years following fertilization, but that latewood SG gradually returned to a level similar to the control. Fertilizer without N at planting may also have had a brief negative effect on earlywood SG following mid-rotation fertilization, but it was not as clear or lasting as the effect on latewood SG. Additionally, although slash and loblolly pine appear to differ in the developmental patterns of these SG properties, there were no significant differences in how these patterns interacted with treatment. This study demonstrated that fertilization treatments have similar short-term effects on the SG of slash and loblolly pines, particularly in latewood, but the trees will return to a SG pattern consistent with unfertilized trees within two or three years.  相似文献   

2.
Bareroot Changbai larch (Larix olgensis Henry.) seedlings were reared with inorganic fertilizer (nitrogen (N):phosphorus (P) = 1:1, W/W) applied at a rate of 100 (F100) or 200 kg N ha−1 (F200) with (+) or without (−) chicken manure as a soil amendment (O) in north-eastern China. An unfertilized control treatment was included. Inorganic and organic fertilizer treatments tended to increase soil ammonium, nitrate, available P, total P, organic carbon content and electrical conductivity, and biomass and N concentration in seedlings. Organic amendment improved first order lateral root number, tap root length, fine root morphology (length, surface area, volume) in seedlings, while the F100 treatment increased N accumulation in needles and stems compared to the F200 treatment, on average. Most fertilizer treatments tended to increase P content in combined stems and roots, but F200 − O and F100 + O treatments diluted P in needles. Organic amendment combined with inorganic fertilizer at a rate of 100 kg N and P ha−1 is recommended to improve seedling growth and N reserves in woody tissues.  相似文献   

3.
4.
We quantified the effect of water and nutrient availability on aboveground biomass and nitrogen accumulation and partitioning in four species from the southeastern United States, loblolly pine (Pinus taeda), slash pine (Pinus elliottii), sweetgum (Liquidambar styraciflua), and sycamore (Platanus occidentalis). The 6-year-old stands received five levels of resource input (control, irrigation with 3.05 cm water week−1, irrigation + 57 kg N ha−1 year−1, irrigation + 85 kg N ha−1 year−1, and irrigation + 114 kg N ha−1 year−1). Irrigation significantly increased foliage, stem, and branch biomass for sweetgum and sycamore, culminating in 103% and 238% increases in total aboveground biomass. Fertilization significantly increased aboveground components for all species resulting in 49, 58, 281, and 132% increases in total aboveground biomass for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Standing total aboveground biomass of the fertilized treatments reached 79, 59, 48, and 54 Mg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased foliar nitrogen concentration for loblolly pine, sweetgum, and sycamore foliage. Irrigation increased total stand nitrogen content by 6, 14, 93, and 161% for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased total nitrogen content by 62, 53, 172, and 69% with maximum nitrogen contents of 267, 212, 237, and 203 kg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Growth efficiency (stem growth per unit of leaf biomass) and nitrogen use efficiency (stem growth per unit of foliar nitrogen content) increased for the sycamore and sweetgum, but not the loblolly or slash pine.  相似文献   

5.
Growth and yield modelers have incorporated mid-rotation fertilizer responses by: modifying site index; developing new models to include fertilizer responses directly; using multipliers or additional terms to scale existing models. We investigated the use of age-shifts to model mid-rotation fertilizer responses. Age-shift prediction models were constructed from 43 installations of a nitrogen (0, 112, 224 and 336 kg ha−1 elemental) by phosphorus (0, 28 and 56 kg ha−1 elemental) factorial experiment established in mid-rotation loblolly (Pinus taeda L.) pine stands in the southeastern US. Age-shifts for dominant height and basal area increased with time after fertilization, to a maximum and then either remained fairly constant, or declined. The initial rate of increase, maximum age-shift and decline were functions of the rate and combinations of fertilizers applied, as well as stand density and age at fertilization. Volume age-shifts increased linearly throughout the 10-year measurement period for most treatments with the rate of increase being a function of the elements applied, stocking, site index and age at fertilization. A mid-rotation fertilizer application of 224 and 28 kg ha−1 elemental N and P, respectively, resulted in age-shifts of 1.1, 1.9 and 2.4 years for dominant height, basal area and volume, respectively, 10 years after fertilization. The age-shifts were incorporated into growth and yield models.  相似文献   

6.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

7.
Green manure of multipurpose trees is known to be a good source of nutrients to crop. However, most agroforestry species do not have adequate phosphorus (P) in their leaves. Supplementing green manure with moderate dose of P is a beneficial strategy to improve food security in Rwanda. This study examines the effects of Calliandra calothyrsus Meissner, Tithonia diversifolia Hensley A.Gray and Tephrosia vogelii Hook.f. green manure applied independently or in combination with triple super phosphate (TSP) and lime on maize yield and P uptake in the Oxic Tropudalf of Rubona, Rwanda. The treatments were the control, lime at 2.5 t ha−1, TSP at 25 and 50 kg P ha−1, leaf of C. calothyrsus, T. diversifolia, and T. vogelii each at 25 and 50 kg P ha−1, respectively. Leaf shrubs biomass, TSP and lime were applied for four consecutive seasons (2001–2004). The results showed that the combination of green manure with TSP at a rate of 50 kg P ha−1 significantly increased maize yield from 24 to 508% when compared to the control and T. divesifolia combined with TSP was leading (508%). Equally, the same treatments as indicated above showed higher P uptake (15.6–18. 6 kg P ha−1) than the control (5 kg P ha−1) and 65% of maize yields variation was explained by total P uptake. The plant residues quality such as C:N ratio, total plant N, and P significantly influenced the variability of maize grain yields.  相似文献   

8.
Prévost  Marcel  Charette  Lise 《New Forests》2019,50(4):677-698

Vast areas of hardwood and mixedwood forests of eastern North America have been high-graded in the past and need silvicultural treatments to increase their value and productivity. To rehabilitate a high-graded temperate mixedwood stand, in Quebec, Canada, we used a split–split-split plot design with three replicates to assess different seed-tree and strip cutting systems, in combination with scarification and planting. The experiment consisted of three regeneration cuts in main plots: 10 seed-trees/ha, 40 seed-trees/ha and a 40-m wide strip clearcut (0 seed-tree/ha) with 60 seed-trees/ha in leave strips, thereby resulting in four levels of tree retention, and all included understory brushing. We applied two types of scarification (patch scarification or disk-trenching) to subplots, two regeneration modes (natural regeneration or planting with white spruce [Picea glauca]) to sub-subplots and two mechanical release treatments (softwood or mixedwood production) to planted sub–sub-subplots. Density of seed-trees did not affect the natural regeneration dynamics after 5 years, but disk-trenching was more efficient for the establishment of yellow birch (Betula alleghaniensis) and sugar maple (Acer saccharum). Few seed-trees of desirable white spruce were present and most died standing, confirming the importance of supplemental planting. Height growth of planted seedlings was 15% higher in the 0 and 10 (26–27 cm/year) than in the 40 and 60 (23 cm/year) seed-trees/ha treatments, and release doubled mean height growth (33.1 vs. 16.6 cm/year). Despite intensive site preparation, pre-established beaked hazel (Corylus cornuta) and mountain maple (Acer spicatum) were present at high densities in the regeneration stratum. Controlling this recalcitrant layer might be the greatest challenge for rehabilitating degraded stands of the mixedwood forest, especially since the use of herbicides is prohibited on Quebec’s public lands.

  相似文献   

9.
The effects of nutritional treatments and the flowering promoter Paclobutrazol™ on tree growth and fertility were studied in unpedigreed seedling seed orchards (SSOs) of Eucalyptus camaldulensis and E. tereticornis at two locations in southern India. At Pudukkottai, a semi-arid site in Tamil Nadu State, five treatments were applied: (1) untreated control, (2) nitrogen (two doses of urea at 217 g N/tree), (3) nitrogen plus phosphorus (two doses of 312 g single superphosphate), potassium (two doses of 83 g muriate of potash) and trace elements (two doses of 10 g sodium borate and 25 g zinc sulphate), (4) pollarding trees at 4 m height with application of N, P, K and trace elements, (5) drenching with the flowering promoter Paclobutrazol (0.25 ml active ingredient per cm of stem girth) along with N, P, K and trace elements. At Panampalli, a higher-rainfall site in Kerala State, only treatments 1, 2 and 3 were applied. Four replicates of treatment plots sized 18 m × 18 m, with 22–32 trees per plot were set up in each orchard in randomized complete block designs. Untreated plots of E. camaldulensis and E. tereticornis at Pudukkottai displayed 12 and 21% fertile trees, respectively, in the first year of monitoring, while at Panampally the percentage of fertile trees in untreated E. camaldulensis plots was higher at 72%, and that of E. tereticornis similar at 23%. Both species attained greater stem diameter at breast height at age 9 years at the higher-rainfall location but there was no significant impact of fertilizer application on 9-year diameter at either site. Diameter was reduced by pollarding and Paclobutrazol application at Pudukkottai. Only Paclobutrazol produced a significant increase in fertility in both species for four successive years, increasing the percentage of fertile trees to 59 and 71%, respectively, for E. camaldulensis and E. tereticornis 1 year after application. The number of capsules produced per tree also increased significantly with Paclobutrazol application, although the difference was comparatively less by the fourth year. The number of capsules per umbel did not differ significantly between locations, whereas the germination rate varied between treatments although no consistent trends were observed.  相似文献   

10.
To investigate the potential effects of nitrogen (N) deposition on Japanese forests, a chronic N-addition experiment that included three treatments (HNO3, NH4NO3, and control) was carried out in a 20-year-old Japanese cedar (Cryptomeria japonica D. Don) stand in eastern Japan over 7 years. The amount of N applied was 168 kg N ha−1 year−1 on the HNO3 plots and 336 kg N ha−1 year−1 on the NH4NO3 plots. Tree growth, current needle N concentration, and soil solution chemistry were measured. Nitrogen application decreased the pH and increased NO3 , Ca2+, Mg2+, and Al concentrations in the soil solution. The needle N concentration increased in both of the N plots during the first 3 years. Nevertheless, the annual increments in height and in the diameter at breast height of the Japanese cedars were not affected by N application, and no visible signs of stress were detected in the crowns. Our results suggest that young Japanese cedar trees are not deleteriously affected by an excess N load.  相似文献   

11.
The effects of fertilizer treatment on nutrient transfers to the forest floor were examined in regrowth Eucalyptus diversicolor F. Muell. forest. Dry weight and nutrient content of leaf litterfall and total litterfall were measured for 3 years in a stand to which two levels of N (0, 200 kg ha-1 year-1) were applied each year at each of three levels of a single initial application of P (0, 30, 200 kg ha-1). Annual accessions of litter to the forest floor were significantly increased by additions of both N (by 17%, 18% and 21% in the 3 years) and 200 kg P ha-1 (by 8%, 8% and 4% in the 3 years) but there was no interaction between effects of N and P treatments. Fertilizer application also had a significant effect on the nutrient content of leaf litterfall and total litterfall. Concentration of N in leaf litterfall was 9% to 23% greater on plots treated with N fertilizer compared to untreated plots. The amounts of N in litterfall were about 30% greater on N-treated compared to untreated plots. On plots treated with 200 kg P ha-1, P concentrations in leaf litter were 50% to 100% greater than in litter from plots receiving no P. Application of 200 kg P ha-1 increased the amounts of P in annual litterfall by 32% to 87%. The greatest increase in P accessions occurred soon after fertilizer treatment. The amounts of Ca, K, and Na in litterfall were also significantly increased by fertilizer application. For Ca and K this was due partly to increases in element concentrations in litterfall following application of treatments. The effect of fertilizers on internal recycling of plant nutrients and on litter accumulation and nutrient dynamics in forest floor litter is discussed.  相似文献   

12.
辣木幼林对氮、磷、钾肥效响应及叶片的生理反应   总被引:2,自引:1,他引:2       下载免费PDF全文
[目的]研究辣木幼林时期对大量元素的需求状况。[方法]应用"3414"配方施肥试验设计,探讨N、P、K配方施肥对元阳干热河谷辣木幼龄林的生长量、叶片色素含量(叶绿素a、b及类胡萝卜素)和叶片含水率的影响。[结果]肥力补充对辣木幼林的生长具有非常明显的促进效果,其中N肥各施肥配方对幼林的各项生长量指标和生理指标具有显著或极显著的影响,P肥对除地径增量和叶片含水率之外的其它设定指标也表现出显著效果,而K肥各施肥处理仅对冠高增量、冠高比增量和叶片含水率具有显著影响。[结论]综合方差分析、多重比较、极差分析和相关分析结果,显著促进树高、地径、冠幅生长和叶片色素积累的组合均为本试验设计的中高施肥量配比,其中N3P2K3为最优组合。辣木幼龄阶段对大量元素需求非常旺盛,以维持其快速增长的生物量。  相似文献   

13.
Nitrogen fertilization increased largely over the last decade in tropical eucalypt plantations but the behaviour of belowground tree components has received little attention. Sequential soil coring and ingrowth core methods were used in a randomized block experiment, from 18 to 32 months after planting Eucalyptus grandis, in Brazil, in order to estimate annual fine root production and turnover under contrasting N fertilization regimes (120 kg N ha−1 vs. 0 kg N ha−1). The response of growth in tree height and basal area to N fertilizer application decreased with stand age and was no longer significant at 36 months of age. The ingrowth core method provided only qualitative information about the seasonal course of fine root production and turnover. Mean fine root biomasses (diameter <2 mm) in the 0–30 cm layer measured by monthly coring amounted to 0.91 and 0.84 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root production was significantly higher in the 0 N treatment (1.66 t ha−1 year−1) than in the 120 N treatment (1.12 t ha−1 year−1), probably as a result of the greater tree growth in the control treatment throughout the sampling period. Fine root turnover was 1.8 and 1.3 year−1 in the 0 N and the 120 N treatments, respectively. However, large fine root biomass (diameter <1 mm) was found down to a depth of 3 m one year after planting: 1.67 and 1.61 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root turnover might not be insubstantial in deep soil layers where large changes in soil water content were observed.  相似文献   

14.
Three models for the prediction of bamboo culm length and two for culm volume were fitted from data of 303 guadua bamboo (Guadua angustifolia Kunth) culms. Data are from 101 temporary inventory plots systematically distributed over the coffee region of Colombia (inventory area about 1,029,525 ha). Linear and non-linear regression models were used, and the precision of the models was evaluated by cross-validation. The models were compared by studying the adjusted coefficient of determination, the bias, mean square error and Akaike’s information criterion and by the F-test that compares predicted and observed values. For culm length, the best fit showed models that included predictor variables related to stand characteristics such as quadratic mean diameter and number of culms per ha. For culm volume prediction, the inclusion of culm length improved the model significantly. For the simple form factor model, precision of prediction was least. The models developed are useful in facilitating the estimation of stand characteristics that are relevant for the silvicultural management of Guadua stands and also for the assessment of their environmental services (such as carbon sequestration).  相似文献   

15.
We studied the effects of five thinning treatments (T1 = 5.5, T2 = 11, T3 = 16.5, T4 = 22.5 and T5 = 28.5 m(2) ha(-1) basal area under bark) x two fertilizer treatments (F0 = unfertilized and F1 = fertilized with 400 kg ha(-1) N plus 229 kg ha(-1) P) on growth and water relations of pole-sized Eucalyptus marginata J. Donn ex Sm. trees growing in southwestern Australia. Thinning reduced leaf area index (LAI) from 2.1 in the T4 and T5 treatments to 0.8 in the T1F0 treatment. Fertilizer had no effect on LAI in the T2, T4 or T5 treatments, but increased LAI by 45 and 20% in the T1 and T3 treatments, respectively. Thinning plus fertilizing increased diameter growth most in the fastest growing trees, from 0.4 cm year(-1) for trees in the T5F0 and T5F1 treatments to 0.7 and 1.2 cm year(-1) for trees in the T1F0 and T1F1 treatments, respectively. In both fertilizer treatments, stand basal area and volume growth increased with increasing stand density up to 15 m(2) ha(-1), and thereafter declined with increasing stand density, such that the growth rate of trees in the T5 treatment was only half of that at a stand density of 15 m(2) ha(-1). In response to fertilizer, growth rates of the slowest and fastest-growing trees increased from 0.35 and 3.5 m(2) ha(-1) year(-1) (F0) to 0.56 and 5.4 m(3) ha(-1) year(-1) (F1), respectively. Stand growth efficiency (growth per unit LAI) increased in response to thinning, and fertilizer increased stand growth efficiency at all stand densities. Throughout the dry season, T5 trees had lower predawn shoot water potentials (Psi(pd)) (minimum of -1.5 MPa) than T1 or T2 trees (minimum of -0.7 MPa). Fertilizer decreased Psi(pd) in T5 trees (by -0.9 and -1.5 MPa, respectively, in F0 and F1), but not in T1 or T2 trees. Stand growth rate was closely related to cumulative midday water stress (CMWS) over the dry season, and volume growth rate declined sharply from 6 m(3) ha(-1) year(-1) at a CMWS of 130 MPa days, to zero at a CMWS of 220 MPa days. Application of fertilizer to thinned stands increased LAI, stand growth efficiency and stand growth. In unthinned stands, fertilizer increased stand growth efficiency and stand growth; however, it also increased tree water stress, which limited the fertilizer-induced increases in LAI and growth. We attribute the increase in tree and stand growth in response to application of fertilizer to increased photosynthetic rates, increased allocation to stem wood, and in thinned stands also to higher LAIs.  相似文献   

16.
Current silvicultural treatments in beech forests are aimed at achieving thick logs without discoloured hardwood. Therefore intensive thinning is applied already in younger stands with the objective of large-sized trunks at an age of 100 years. However, this approach bears the risk that dead wood structures and broken trees are completely removed from the forest. The impact of three different silvicultural management intensity levels on wood-inhabiting fungi over decades was investigated in a large beech forest (>10,000 ha) in southern Germany in 69 sampling plots: A Intensive Thinning and Logging with high-value trees, B Conservation-Oriented Logging with integration of special structures such as dead wood and broken trees and C Strict Forest Reserves with no logging for 30 years. The analysis of community showed marked differences in the fungus species composition of the three treatments, independent of stand age. The relative frequencies of species between treatments were statistically different. Indicator species for naturalness were more abundant at sites with low silvicultural management intensity. Fomes fomentarius, the most common fungus in virgin forests and strict forest reserves, is almost missing in forests with high-management intensity. The species richness seemed to be lower where intensive thinning was applied (P = 0.051). Species characteristic for coarse woody debris were associated to low management intensity, whereas species with a significant preference for stumps became more frequent with increasing management intensity. A total amount of dead wood higher than 60 m3/ha was found to enable significantly higher numbers of species indicators of naturalness (P = 0.013). In conclusion, when applying intensive silvicultural treatment, the role of dead wood needs to be actively considered in order to maintain the natural biocoenosis of beech forests.  相似文献   

17.
Above‐ground biomass has been measured on fertilized and control plots up to stand age 31 years. Each biomass fraction was estimated by two statistically coupled linear models with squared diameter at breast height as independent variable. All fractions except reproductive structures of pine and dead branches of spruce were estimated at high precision levels, R. between 0.93 and 0.99. The above‐ground biomass fractions per hectare could be precisely described by stem volume with bark. Application of the models for prognostic purposes is discussed. Annual above‐ground net biomass production in pine increased from 2.05 to 4.34 MT d.m./ha‐yr on control plots over 11 years, while plots given complete fertilizer mixture ranged from 6.75 to 9.09. Spruce stands with a nearly optimum water relationship and fertilizer programmes yielded from 9.50 to 11.86 MT d.m./ha‐yr. The combination of energy and timber production in highly productive peatland stands is discussed.  相似文献   

18.
Rice grain weight and quality (weight of larger size fractions), soil pH, and N, P, K and organic matter content were studied where rice was alley cropped with cassia on a semiarid site in The Gambia. The four treatments, control (no cassia prunings or inorganic fertilizer added), only prunings added, prunings plus half the recommended fertilizer rate and prunings plus full recommended rate of fertilizer, were applied in a Latin square design with 10×8 m plots, each sub-divided into two 4-m wide alleys. Fertilizer was applied twice; full rates were 93.7 kg/ha NPK (8:24:24) plus 32.4 kg/ha urea followed two weeks later by 100 kg/ha urea applied as side dressing. Soil samples collected before and after cropping at 0–10 cm and 10–15 cm depths and cassia pruning samples were analyzed for pH, N, P, K and organic matter content.Our results do not show significant benefit of cassia prunings applied as mulch to grain weight or quality in alley cropping rice with cassia. The addition of inorganic fertilizer plus cassia prunings did not increase rice grain and straw weights (p=0.3447 and p=0.0691, respectively) compared to the control and prunings only treatments. In all treatments, the outer rows, those within 80 cm of hedgerows, produced significantly less grain (p=0.0002) and straw than inner rows. Neither the larger grade A nor the smaller grade B grain weights were significantly different (p=0.6017 and p=0.0629, respectively) between treatments. Weight of grain, straw, and larger grade A and smaller grade B quality grain did not differ significantly for inner and outer rows (p=0.6329, p=0.7148, p=0.7171 and p=1.000, respectively).  相似文献   

19.
The above- and belowground biomass and nutrient content (N, P, K, Ca, S and Mg) of pure deciduous Nothofagus antarctica (Forster f.) Oersted stands grown in a marginal site and aged from 8 to 180 years were measured in Southern Patagonia. The total biomass accumulated ranged from 60.8 to 70.8 Mg ha−1 for regeneration and final growth stand, respectively. The proportions of belowground components were 51.6, 47.2, 43.9 and 46.7% for regeneration, initial growth, final growth and mature stand, respectively. Also, crown classes affected the biomass accumulation where dominant trees had 38.4 Mg ha−1 and suppressed trees 2.6 Mg ha−1 to the stand biomass in mature stand. Nutrient concentrations varied according to tree component, crown class and stand age. Total nutrient concentration graded in the fallowing order: leaves > bark > middle roots > small branches > fine roots > sapwood > coarse roots > heartwood. While N and K concentrations increased with age in leaves and fine roots, concentration of Ca increased with stand age in all components. Dominant trees had higher N, K and Ca concentrations in leaves, and higher P, K and S concentrations in roots, compared with suppressed trees. Although the stands had similar biomass at different ages, there were important differences in nutrient accumulation per hectare from 979.8 kg ha−1 at the initial growth phase to 665.5 kg ha−1 at mature stands. Nutrient storage for mature and final growth stands was in the order Ca > N > K > P > Mg > S, and for regeneration stand was Ca > N > K > Mg > P > S. Belowground biomass represented an important budget of all nutrients. At early ages, N, K, S, Ca and Mg were about 50% in the belowground components. However, P was 60% in belowground biomass and then increased to 70% in mature stands. These data can assist to quantify the impact of different silviculture practices which should aim to leave material (mainly leaves, small branches and bark) on the site to ameliorate nutrient removal and to avoid a decline of long-term yields.  相似文献   

20.
Studies of growth rates of trees in managed neotropical forests have rarely employed complete botanical identification of all species, while published information for Central American lowland rain forests largely concerns forests free of recent disturbance. We studied diameter increments of trees in a managed Costa Rican rain forest. The Pentaclethra macroloba-dominated forest was located on low hills with Ultisols in Holdridge's Tropical Wet Forest life zone. The 540 m × 540 m (29.2 ha) experimental area was lightly logged during 1989–1990. The 180 m × 180 m (3.24 ha) experimental plots comprised a 100 m × 100 m (1.0 ha) central permanent sample plot (PSP) with a 40-m wide buffer strip. Post-harvest silvicultural treatments were liberation/refinement (in 1991) and shelterwood (in 1992), applied under a complete randomized block design with three replicates, using logged but untreated plots as controls. All live trees ≥10 cm DBH in the PSPs, were identified to species; data reported are for 1993–1996. Cluster analysis was used to group species on the basis of the median and quartiles of their diameter increment distributions, separating data by silvicultural treatments; five diameter increment groups were established and subdivided on the basis of the adult height of each species (four categories), giving 17 species groups in the final classification. Adult height and silvicultural treatment made a significant contribution to growth rate variation. Median annual increments of the slowest-growing species groups, which featured many under- and middle story species, were ca. 1 mm; those for the fastest growing species, which were mainly canopy and emergents, were ca. 16 mm. All species in the groups of very fast growth were pioneers, whether short or long-lived, though many other pioneer species did not show fast growth. The proportions of species found in groups of moderate, fast or very fast growth were greater in the silviculturally treated plots than in the controls, and one complete diameter increment group, of fast growth, was only represented in the treated plots. Crown form, crown illumination and presence of lianas in the crown, showed significant correlations with diameter increments, though the importance of these latter two variables varied with silvicultural treatment. The very fast growth groups differed from the others in having higher proportions of trees with well-formed, well-illuminated crowns and an irregular diameter distribution with relatively few individuals in the smallest DBH class. Comparison with data from other neotropical forest sites shows that long-lived pioneers such as Vochysia ferruginea and Jacaranda copaia grow fast or very fast at all sites, while non-commercial canopy and emergent species of Chrysobalanaceae and Sapotaceae appear to be uniformly slow-growing. Growth data for the majority of species are, however, published for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号