首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption-desorption is one of the most important processes affecting the leaching of pesticides through soil because it controls the amount of pesticide available for transport. Subsurface soil properties can significantly affect pesticide transport and the potential for groundwater contamination. This research characterized the sorption-desorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) and three of its metabolites, 1-[(6-chloro-3-pyridinyl)methyl]-2-imidazolidinone (imidacloprid-urea), 1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine (imidacloprid-guanidine), and 1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine (imidacloprid-guanidine-olefin), as a function of changing soil properties with depth in two profiles extending from the surface to a depth of 1.8 or 8 m. Sorption of each compound was highly variable and hysteretic in all cases. Normalizing the sorption coefficients (K(f)) to the organic carbon or the clay content of the soil did not reduce the variability in sorption coefficients for any compound. These results illustrate the importance of evaluation of the sorption data used to predict potential mobility. Understanding the variability of soil properties and processes as a function of depth is necessary for accurate prediction of pesticide dissipation.  相似文献   

2.
Bioavailability of triazine herbicides in a sandy soil profile   总被引:1,自引:0,他引:1  
The bioavailability of atrazine was evaluated in a Danish soil profile (Drengsted) using a combination of soil sorption, transport and mineralisation methods as well as inoculation using Pseudomonas ADP. Sorption of atrazine decreased markedly with depth as indicated by Kd values of 5.2 l kg-1 for the upper soil and 0.1 l kg-1 for the subsoils. The transport of atrazine was evaluated using soil TLC plates and the resulting Rf values were 0.1 for the upper soil and 0.9 for the subsoil. Only a relatively small amount of atrazine leached through undisturbed soil columns taken from the upper 60 cm. Inoculating with Pseudomonas strain ADP (1᎒6 CFU g-1 dry weight soil) revealed that the degradation of 0.01 ppm atrazine was fully completed (80% mineralisation) within 10 days in the subsoil, while it reached less than 15% in the upper soil. Over a period of 500 days, a total mineralisation of 37% of added atrazine in the upper soil was found (2 mg kg-1 incubated at 20° C). However, in the subsurface soil where 0.02 mg kg-1 of atrazine was incubated at 10°C, the degradation was slower, only reaching about 12%. Terbuthylazine mineralisation was found to be temperature-dependent and low (less than 5%) in the upper soil and very much lower in the subsoil. Desethylterbuthylazine was the most frequently found metabolite. Finally, Pseudomonas strain ADP inoculated into soils from different depths increased the mineralisation of terbuthylazine dramatically. Modelling using a "two-compartment model" indicated that desorption of terbuthylazine is the limiting step for its mineralisation.  相似文献   

3.
To identify the key soil parameters influencing N2O emission from the wheat-growing season, an outdoor pot experiment with a total of 18 fertilized Chinese soils planted with wheat was conducted in Nanjing, China during the 2000/2001 wheat-growing season. Average seasonal N2O-N emission for all 18 soils was 610 mg m-2, ranging from 193 to 1,204 mg m-2, approximately a 6.2-fold difference between the maximum and the minimum. Correlation analysis indicated that the seasonal N2O emission was negatively correlated with soil organic C (r2=0.5567, P<0.001), soil total N (r2=0.4684, P<0.01) and the C:N ratio (r2=0.4530, P<0.01), respectively. A positive dependence of N2O emission on the soil pH (r2=0.3525, P<0.01) was also observed. No clear relationships existed between N2O emission and soil texture, soil trace elements of Fe, Cu and Mg, and above-ground biomass of the wheat crop at harvest. A further investigation suggested that the seasonal N2O-N emission (E, mg m-2) can be quantitatively explained by E=1005-34.2SOC+4.1Sa (R2=0.7703, n=18, P=0.0000). SOC and Sa represent the soil organic C (g kg-1) and available S (mg kg-1), respectively.  相似文献   

4.
Effects of earthworms on Zn fractionation in soils   总被引:11,自引:0,他引:11  
Laboratory incubation experiments were conducted to examine the effect of earthworm (Pheretima sp.) activity on soil pH, zinc (Zn) fractionation and N mineralization in three soils. No Zn uptake by earthworms was observed. Zinc addition decreased pH of red soil (soil 1) and hydragric paddy soil (soil 3) by 0.5 and 0.2 unit, respectively, but had no effect on alluvial soil (soil 2). The effect of Zn on soil pH was possibly due to a specific adsorption mechanism between Zn and oxides. Earthworm activity significantly decreased the pH of the red soil, a key factor affecting Zn solubility, but not of the other two soils. Earthworm activity significantly increased DTPA-Zn (DTPA-extractable) and OxFe-Zn (NH2OH-HCl-extractable) in the red soil, but had little effect on other fractions. In the alluvial soil, earthworm activity significantly increased OxFe-Zn but decreased organic-Zn (organic-associated Zn). In the hydragric paddy soil, earthworm activity significantly increased MgCl2-Zn (MgCl2-extractable) and organic-Zn. The level of CaCl2-extractable Zn in all three soils was not affected by earthworm activity. Nitrogen mineralized as a result of earthworm activity was equivalent to 110, 120 and 30 kg N ha-1 in soils 1, 2 and 3, respectively. Zinc added at rates less than 400 mg Zn kg-1 did not seem to affect the activity of N-mineralizing microorganisms. The present results indicated the possibility of increasing the metal bioavailability of relatively low level metal-contaminated soils, with a higher organic matter content, by earthworm inoculation.  相似文献   

5.
A pot experiment was carried out with three soils at ambient temperature in which temporal changes in fractions of soil organic matter that were extractable with either 0.01 M CaCl2 or 0.01 M NaHCO3 were compared with changes in N mineralisation and microbial biomass C. UV spectral analysis of soil extracts was also carried out on sub-samples taken at the beginning of the experiment. The objective was to quantify the fractions of extractable soil organic matter and determine whether these could be used to estimate the mineralisable organic N content of the soils. The results suggested that part of the NaHCO3-extractable organic matter originated in the microbial biomass but that non-biomass material was also present. The non-biomass material was not identified directly, but was composed of compounds with high UV absorbance. In the case of CaCl2, the results suggested that extracellular proteins were contained in the extract and that some material released from the actively growing microbial biomass may also have been present. A supplementary study with 16 soils was carried out to determine the ability of the organic matter solubilised by either extractant to predict soil N uptake by barley seedlings. A significant relationship (P<0.01) was found between N uptake and CaCl2-extractable material only.  相似文献   

6.
Soil phosphatase activities play an important role in the mineralisation of soil phosphorus (P). In this study acid and alkaline phosphomonoesterase and phosphodiesterase activities of soils under long-term fertiliser management (ca. 100 years) were measured to determine the effects of fertiliser inputs on the cycling and availability of P. Enzyme activities were compared with microbial biomass P, determined by fumigation-extraction, and with extractable P using NH4F-HCl. Experimental plots were divided into three groups: those receiving farm-yard manure (FYM), those receiving mineral P and those receiving no P amendment. Plots receiving FYM had the highest extractable P values and the greatest enzyme activities. There was no obvious relationship between extractable P and microbial biomass P except in those plots where no P was added (r2=0.778), emphasising the importance of fertiliser management in P dynamics in soils. Acid phosphomonoesterase activity was high in all plots, including those where microbial biomass P levels were low. This supports the findings of previous studies suggesting that acid phosphomonoesterase activity in soils is primarily of root origin. All phosphatase enzyme activities were significantly correlated with extractable P in plots receiving mineral P. This relationship was negative for acid phosphomonoesterase activity (r2=-0.947), suggesting that acid phosphomonoesterase activity is suppressed by extractable P in managed grasslands receiving mineral P fertilisers.  相似文献   

7.
An isotopic exchange method is presented that characterizes the irreversibility of pesticide sorption-desorption by soil observed in batch equilibration experiments. The isotopic exchange of (12)C- and (14)C-labeled triadimefon [(1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1, 2,4-triazol-1-yl)-2-butanone] and imidacloprid-guanidine [1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine] in Hanford sandy loam soil indicated that these systems can be described by a two-compartment model in which about 90% of sorption occurs on reversible, easily desorbable sites, whereas 10% of the sorbed molecules are irreversibly sorbed on soil and do not participate in the sorption-desorption equilibrium. This model closely predicted the hysteresis observed in the desorption isotherms from batch equilibration experiments. The isotopic exchange of triadimefon and imidacloprid-guanidine in Drummer silty clay loam soil indicated that there was a fraction of the sorbed (14)C-labeled pesticide that was resistant to desorption, which increased as pesticide concentration decreased and was higher for triadimefon than for imidacloprid-guanidine. In contrast, the batch equilibration method resulted in ill-defined desorption isotherms for the Drummer soil, which made accurate desorption characterization problematic.  相似文献   

8.
Nitrification inhibitors specifically retard the oxidation of NH4+ to NO2- during the nitrification process in soil. In this study, the influence of soil properties on the nitrification-inhibiting effect of 3,4-dimethylpyrazole-phosphate (DMPP), a newly developed nitrification inhibitor, has been investigated. Based on short-term incubation experiments, where the degradation of DMPP could be largely disregarded, the oxidation of the applied NH4+ was more inhibited in sandy soils compared with loamy soils. The influence of soil parameters on the relative NO2- formation could be described by a multiple regression model including the sand fraction, soil H+ concentration and soil catalase activity (R2=0.62). Adsorption studies showed that the binding behaviour of DMPP was influenced markedly by soil textural properties, viz. the clay fraction (r2=0.61). The adsorption of DMPP was found to be an important factor for the inhibitory effect on NH4+ oxidation in a short-term incubation (r2=0.57). It is concluded that the evaluated soil properties can be used to predict the short-term inhibitory effect of DMPP in different soils. The significance of these results for long-term experiments under laboratory and field conditions needs further investigation.  相似文献   

9.
The fate of isoproturon {N,N-dimethyl-N'-[4-(1-methylethyl)phenyl]urea} in biobeds with and without inoculation with the white rot fungus Phanerochaete chrysosporium was studied. Total extractable isoproturon, its metabolites and formation of non-extractable residues were evaluated. Studies with 14C-isoproturon were also included. A strong decrease in isoproturon was observed in non-inoculated biobeds. Total extractable isoproturon decreased by 76% after 100 days. The decrease was even larger in biobeds inoculated with the white rot fungus P. chrysosporium. After 28 days, total extractable isoproturon decreased by 78%, and after 100 days >99% had disappeared in the inoculated biobeds. However, the studies with 14C-isoproturon showed that 30% of the initially recovered 14C-isoproturon remained in the non-inoculated biobeds as non-extractable residues. As no studies with 14C-isoproturon were performed in inoculated biobeds, it is unclear if the higher rate of disappearance was due to higher biodegradation or higher formation of bound residues.  相似文献   

10.
Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, Georgia, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and sterile samples treated with the fungicide metalaxyl and the herbicide propachlor at 10 mg kg-1 soil. Pesticide transformation rate, basal respiration (basal) and substrate-induced respiration (SIR) rates, and microbial metabolic quotient (qCO2) were measured for the initial application of metalaxyl [methyl-N-(2,6-dimethylphenyl)-N-(metoxyacetyl)-DL-alaninate] or propachlor (2-chloro-N-isopropyl-acetanilide) at 22°C and 60% water holding capacity. Positive correlations were found for the following: metalaxyl transformation rate constant (Kmet) and basal (r=0.73); Kmet and SIR (r=0.83); propachlor transformation rate constant (Kpr) and basal (r=0.89); and Kpr and SIR (r=0.91). Regression analysis of pesticide transformation rate and soil respiration activity, coupled with specific soil properties (pH, Corg, and clay content), revealed a positive correlation between K and SIR for Corg (r=0.88 and 0.98, for metalaxyl and propachlor, respectively). qCO2s were not significantly different (P=0.05) in propachlor-amended and pesticide-free soils. Metalaxyl amendment resulted in a change in the ecophysiological status of the soil microbial community as expressed by qCO2. The qCO2 values in metalaxyl-amended soils were significantly greater (P=0.05) in pine forest (by 25%) and arable and pasture (by 20%) soils compared to unamended soils. Differences in qCO2 values may represent the magnitude of pesticide-induced disturbance. The duration of this disturbance was greater in the pine forest soil (48 days) compared to arable and pasture soils (21 and 15 days, respectively).  相似文献   

11.
Use of renewable N and C sources such as green manure (GM) and crop residues in rice-wheat cropping systems of South Asia may lead to higher crop productivity and C sequestration. However, information on measurements of gaseous N losses (N2O+N2) via denitrification and environmental problems such as N2O and CO2 production in rice-wheat cropping systems is not available. An acetylene inhibition-intact soil core technique was employed for direct measurement of denitrification losses, N2O and CO2 production, in an irrigated field planted to rice (Oryza sativa L.) and wheat (Triticum aestivum L.) in an annual rotation. The soil was a coarse-textured Tolewal sandy loam soil (Typic Ustochrept) and the site a semi-arid subtropical Punjab region of India. Wheat residue (WR, C:N=94) was incorporated at 6 t ha-1 and sesbania (Sesbania aculeata L.) was grown as GM crop for 60 days during the pre-rice fallow period. Fresh biomass of GM (C:N.=18) at 20 or 40 t ha-1 was incorporated into the soil 2 days before transplanting rice. Results of this study reveal that (1) denitrification is a significant N loss process under wetland rice amounting to 33% of the prescribed dose of 120 kg N ha-1 applied as fertilizer urea-N (FN); (2) integrated management of 6 t WR ha-1 and 20 t GM ha-1 supplying 88 kg N ha-1 and 32 kg FN ha-1 significantly reduced cumulative gaseous N losses to 51.6 kg N ha-1 as compared with 58.2 kg N ha-1 for 120 kg FN ha-1 alone; (3) application of excessive N and C through applying 40 t GM ha-1 (176 kg N ha-1) resulted in the highest gaseous losses of 70 kg N ha-1; (4) the gaseous N losses under wheat were 0.6% to 2% of the applied 120 kg FN ha-1 and were eight- to tenfold lower (5-8 kg N ha-1) than those preceding rice; (5) an interplay between the availability of NO3- and organic C largely controlled denitrification and N2O flux during summer-grown flooded rice whereas temperature and soil aeration status were the primary regulators of the nitrification-denitrification processes and gaseous N losses during winter-grown upland wheat; (6) the irrigated rice-wheat system is a significant source of N2O as it emits around 15 kg N2O-N ha-1 year-1; (7) incorporation of WR in rice and rice residue (C:N=63) in wheat increased soil respiration, and increased CO2 production in WR- and GM-amended soils under anaerobic wetland rice coincided with enhanced rates of denitrification; and (8) with adequate soil moisture, most of the decomposable C fraction of added residues was mineralized within one crop-growing season and application of FN and GM further accelerated this process.  相似文献   

12.
Seasonal dynamics of in situ gross nitrogen (N) mineralization rates were measured using the 15N-NH4+ isotope dilution method in a Danish soil subjected to four different agricultural practices (set aside, barley, winter wheat and clover). Results were compared to arginine ammonification in the soil samples measured as NH4+ production following addition of excess (1 mM) arginine. In the set aside, barley, winter wheat and clover soils the average annual rates of gross N mineralization (0.29, 0.60, 1.34 and 1.75 µg NH4+-N g-1 day-1, respectively) and arginine ammonification activity (0.21, 0.55, 0.88, and 1.33 µg NH4+-N g-1 h-1, respectively) were well correlated. Furthermore, the seasonal variations of gross N mineralization and arginine ammonification activities were very similar, showing rapid responses to rainfall and generally higher activities in wetted soils. As tested in the laboratory, the arginine ammonification activity correlated well with heterotrophic microbial respiration activity (CO2 production) in soil samples and further displayed a simple, one-component Michaelis-Menten kinetics with a high affinity for arginine (Km value of 48 µM LJ µM) as determined from non-linear parameter estimation. This indicated that arginine ammonification activity was primarily due to microorganisms, and the activity was also shown to be at a minimum in sterile soil samples. All evidence thus supported that our standard assay of arginine ammonification activity provides a good index of gross N mineralization rates by the microorganisms in soil under in situ conditions.  相似文献   

13.
Restoration of CH4-oxidation activities of desiccated paddy soils and the NH4+ effect after watering were investigated in laboratory incubations. Fresh paddy soil collected from an intermittently flooded rice field in Wuxi, Jiangsu province, showed a parabolic relationship between CH4-oxidation activity and soil moisture with an optimum CH4-oxidation rate at 71% water-holding capacity (WHC), while the paddy soil collected from a permanently flooded rice field in Yingtan, Jiangxi province, showed a much smaller CH4-oxidation ability, which increased exponentially with soil moisture increasing from 28% WHC to 95% WHC at an initial CH4 concentration of ~2,200 µl l-1 and at room temperature (25°C). CH4-oxidation ability was inversely related to N2O emission and related positively with CO2 emission in response to the change in soil moisture. Desiccated paddy soils lost their CH4-oxidation abilities. However, this was recovered after the soils were re-watered. The restoration of CH4-oxidation ability was directly dependent upon soil moisture and the rate of its restoration increased with increasing soil moisture content from 40% to 90% WHC. Addition of NH4Cl at rates of 0-3.57 µmol g-1 soil inhibited the restoration of CH4-oxidation ability significantly (P<0.01), but the inhibitory effect was alleviated by a high soil moisture content. The restoration of CH4-oxidation ability was much slower in the Yingtan soil than in the Wuxi soil. The studies show that the optimum moisture content of paddy soils for CH4 oxidation depends on the methanotrophic bacteria in relation to the prevailing water regime; desiccation damages the CH4-oxidation ability of permanently flooded paddy soil more severely than that of frequently well-drained soils.  相似文献   

14.
During freeze-thaw events, biophysical changes occurring in soils can affect processes such as mineralization, nitrification and denitrification which control inorganic N balances in agro-ecosystems. To evaluate the impact of these climatic events on soil biochemical properties, a study was conducted comparing soil denitrification enzyme activity (DEA), dissolved organic C (DOC) and inorganic N levels before and after the winter season in plots under: (1) continuous corn (Zea mays L.) (CC) with annual chisel plow and disking, (2) corn-soybean (Glycine max L.) (CS) rotation with chisel plow every other year prior to planting soybean, and (3) corn-soybean-wheat (Triticum aestivum L.)/hairy vetch (Vicia villosa Roth) (CSW-V) with ridge tillage during the corn and soybean crops, and dairy manure application during the corn year. Soil cores were collected in late autumn and immediately after spring thaw at 0-5, 5-10, 10-15, and 15-30 cm depths. Regardless of management practices, freeze-thaw events resulted in significant (2-10 times) increases in NH4+-N, NO3--N (P<0.001) and DOC (P<0.01) levels at all soil depths. Following freeze-thaw, DEA remained unchanged in the 5-30 cm depth but dropped significantly (P<0.01) in the 0-5 cm soil layer. In that layer, soils which had been chisel plowed during the previous growing season lost 78-84% of the DEA recorded during the fall, whereas in the plots amended with manure during the previous season, the loss of activity was 40-45%. These data indicate that frequent tillage, compared with manure additions, is more conducive to overwinter loss of DEA in surface layers of soils subject to freeze-thaw cycles.  相似文献   

15.
Heterotrophic N2-fixing bacteria are a potentially important source of N2 fixation in rice fields due to the moist soil conditions. This study was conducted at eight sites along a geographic gradient of the Yangtze River Plain in central China. A nitrogen-free solid malate-sucrose medium was used to isolate heterotrophic N2-fixing bacteria. Numbers of the culturable N2-fixing bacteria expressed as CFU (colony forming units) ranged between 1.41ǂ.42᎒6 and 1.24ǂ.23᎒8 in the sampled paddy field sites along the plain. Thirty strains with high ARA (acetylene reduction activity) were isolated and purified; ARA of the strains varied from 0.9 to 537.8 nmol C2H4 culture-1 h-1, and amounts of 15N fixed ranged between 0.008 and 0.4866 mg·culture-1·day-1. According to morphological and biochemical characteristics, 14 strains were identified as the genus Bacillus, 2 as Burkholderia, 1 as Agrobacterium, 4 as Pseudomonas, 2 as Derxia, 1 as Alcaligenes, 1 as Aeromonas, 2 as Citrobacter, and 3 strains belonged to the corynebacter-form group.  相似文献   

16.
Samples from topsoils (0-10 cm) of 16 Polish arable Cambisols developed from different parent materials (sand, silt, sandy gravel, loess, loam and clay), were incubated under flooded conditions with NO3-. Dehydrogenase activity, redox potential (Eh), and emissions of CO2 and N2O were measured. According to dehydrogenase activity, the soils were divided into two groups: those of low activity (I), where the final dehydrogenase activity was <0.03 nmol triphenylformazan (TPF) g-1 min-1, and those with high final dehydrogenase activity (II), >0.03 nmol TPF g-1 min-1. Generation of CO2 and of N2O under flooded conditions was shown to be significantly related to dehydrogenase activity. Soil dehydrogenase activity increased curvilinearly with organic matter content, showed a maximum at pH 7.1, and decreased curvilinearly with Eh. The final cumulative CO2 production increased linearly with soil organic matter content and curvilinearly with dehydrogenase activity and decreased linearly with Eh. The most significant relationship was found with dehydrogenase activity (R2=0.74, P<0.001). The final cumulative N2O production decreased linearly with Eh and increased curvilinearly with pH and dehydrogenase activity but linearly with organic matter content; the most significant relation being found with dehydrogenase activity (R2=0.69, P<0.001). The CO2:N2O ratio in the gases evolved increased curvilinearly with Eh and decreased with dehydrogenase activity and N2O and CO2 production.  相似文献   

17.
An incubation experiment was conducted to study N2O emissions from a Typic Ustochrept, alluvial soil, fertilized with urea and urea combined with different levels of two nitrification inhibitors, viz karanjin and dicyandiamide (DCD). Karanjin [a furano-flavonoid, obtained from karanja (Pongamia glabra Vent.) seeds] and DCD were incorporated at rates of 5, 10, 15, 20 and 25% of applied urea-N (100 mg kg-1 soil), to the soil adjusted to field capacity moisture content. The highest N2O flux (366 µg N2O-N kg-1 soil day-1) was obtained on day 1 after incubation from soil fertilized with urea without any inhibitor. The presence of the inhibitors appreciably reduced the mean N2O flux from the urea-treated soils. The application of karanjin resulted in a higher mitigation of total N2O-N emission (92-96%) compared to DCD (60-71%). Rates of N2O flux ranged from 0.9 to 140 µg N2O-N kg-1 soil day-1 from urea combined with different levels of the two inhibitors (coefficient of variation=24-272%). Karanjin (62-75%) was also more effective than DCD (9-42%) in inhibiting nitrification during the 30-day incubation period.  相似文献   

18.
The mineralisation of green manure from agroforestry trees was monitored with the objective to compare the temporal dynamics of mineralisation of litter from different species. Green manures from five agroforestry tree species were used on a fallow field during the long rainy season of 1997 (March-August) and from two species in the following short rainy season (September-January) in western Kenya. Different methods, i.e. measurements of isotopic ratios of C in respired CO2 and of soil organic matter (SOM) fractions, soil inorganic N and mass loss from litterbags, were used in the field to study decomposition and C and N mineralisation. Soil respiration, with the separation of added C from old soil C by using the isotopic ratio of 13C/12C in the respired CO2, correlated well with extractable NH4+ in the soil. Mineralisation was high and very rapid from residues of Sesbania sesban of high quality [e.g. low ratio of (polyphenol+lignin)/N] and low and slow from low quality residues of Grevillea robusta. Ten days after application, 37% and 8% of the added C had been respired from Sesbania and Grevillea, respectively. Apparently, as much as 70-90% of the added C was respired in 40 days from high quality green manure. Weight losses of around 80%, from high quality residues in litterbags, also indicate substantial C losses and that a build-up of SOM is unlikely. For immediate effects on soil fertility, application of high quality green manure may, however, be a viable management option. To achieve synchrony with crop demand, caution is needed in management as large amounts of N are mineralised within a few days after application.  相似文献   

19.
Nitrous oxide (N2O) emissions were monitored for a period of 60 days in a pot culture study, from two kharif (June-September) and two rabi (October-March) season legumes, which were grown on a Typic Ustochrept, alluvial sandy loam soil. Black gram (Vigna mungo L. Hepper), var. T-9, and soybean (Glycine max L. Merril), var. Punjab 1, were taken up in kharif season whereas lentil (Lens esculenta Moench), var. JLS-1, and Bengal gram (Cicer arietinum L.), var. BGD-86, were grown in rabi season. All the crops were grown with and without urea and one pot (containing soil but with no fertilizer or crop) was used as a control. Nitrous oxide emissions were significantly higher in unfertilized cropped soil than in the control, while the addition of urea to the crops further increased the emissions. Significant emissions occurred during third and seventh week after sowing for all the treatments in both kharif and rabi seasons. In kharif, soil cropped with soybean had higher total N2O-N emission than soil sown with black gram both under fertilized and unfertilized conditions; while in rabi, lentil had a higher total N2O-N emission than Bengal gram under both fertilized and unfertilized conditions. In kharif, total N2O-N emissions ranged from 0.53 (control) to 3.84 kg ha-1 (soybean+urea), while in rabi it ranged from 0.45 (control) to 3.06 kg ha-1 (lentil+urea). Higher N2O-N emissions in kharif than in rabi was probably due to the favorable effect of temperature on nitrification and denitrification in the former season. The results of the study indicated that legume crops may lead to an increase in N2O formation and emission from soils, the extent of which varies from crop to crop.  相似文献   

20.
A field study was conducted to investigate the effects of N fertilization on soil N pools and associated microbial properties in a 13-year-old hoop pine (Araucaria cunninghamii) plantation of southeast Queensland, Australia. The treatments included: (1) control (without N application); (2) 300 kg N ha-1 applied as NH4NO3; and (3) 600 kg N ha-1 as NH4NO3. The experiment employed a randomized complete block design with four replicates. Soil samples were taken approximately 5 years after the N application. The results showed that application of 600 kg N ha-1 significantly increased concentrations of NH4+-N in 0-10 cm soil compared with the control and application of 300 kg N ha-1. Concentrations of NO3--N in soil (both 0-10 cm and 10-20 cm) with an application rate of 600 kg N ha-1 were significantly higher compared with the control. Application of 600 kg N ha-1 significantly increased gross N mineralization and immobilization rates (0-10 cm soil) determined by 15N isotope dilution techniques under anaerobic incubation, compared with the control. However, N application did not significantly affect the concentrations of soil total C and total N. N application appeared to decrease microbial biomass C and N and respiration, and to increase the metabolic quotient (qCO2) in 0-10 cm soil, but these effects were not statistically significant. The lack of statistical significance in these microbial properties between the treatments might have been associated with large spatial variability between the replicate plots at this experimental site. Spatial variability in soil microbial biomass C and N was found to relate to soil moisture, total C and total N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号