首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of polydisperse ethoxylated fatty alcohol (EFA) surfactants on the penetration of six organic compounds varying in size (molar volumes, 107–282 cm3 mol-1) and lipophilicity (log Kow 0·8–6·5) were investigated using astomatous isolated cuticular membranes (CM) of Citrus and pear leaves. Mobilities of model compounds in CM were measured by unilateral desorption from the outer surface (UDOS). Rate constants (k*) obtained in these experiments are directly proportional to diffusion coefficients and, in the absence of EFA, k* values decreased by a factor of 52 when molar volumes increased only 2·64-fold. Under UDOS conditions using micellar surfactant solutions as desorption media, surfactants are sorbed in the CM and the volume fractions sorbed were found to decrease from approximately 0·062 to 0·018 when the average number of ethoxy groups (nE) increased from 5 to 17. In the presence of the EFA surfactants in the CM, solute mobilities increased markedly though this effect diminished with increasing nE. Surfactants with nE=17 affected solute mobilities only marginally. Surfactant effects on solute mobility increased with the size of the solutes leading to almost identical mobilities of the model compounds. With the current range of our model compounds, lipophilicity increased with increasing molar volumes, though evidence is presented showing that the mobilities of solutes depend on their molar volumes while lipophilicity has no effect. Effects of micellar aqueous solutions of polydisperse surfactants on solute mobilities followed the pattern observed with monodisperse ones. © 1997 SCI  相似文献   

2.
Pre-emergence applications of the novel tetrazole herbicide WL 110547 control a number of economically important grass and broad-leaved weed species in small grain cereals. To assess the influence of plant and environmental factors on the biological performance of WL 110547, a series of tests were carried out under controlled conditions and, where appropriate, comparisons were made with field observations. When presented with the maximum opportunity for compound uptake in the absence of soil, differences in the degree of susceptibility to WL 110547 were observed amongst both monocotyledonous and dicotyledonous species, although the latter group generally showed higher levels of phytotoxicity. This species susceptibility to WL 110547 was unaffected by temperature. Increasing the sowing depth in soil decreased the level of effect of WL 110547 on a number of monocotyledonous species, although small-seeded species (e.g. blackgrass, annual meadow grass), emerging from deep in the soil profile, subsequently developed levels of phytotoxicity comparable to, or even greater than, shallow-planted seedlings. This was attributed to less vigorous seedlings, emerging from depth, that were unable to regenerate new tissue and grow away from a treated soil layer. Reduced growth rates of wild oat, blackgrass and speedwell, induced by low temperatures, also increased the phytotoxicity of WL 110547. Furthermore, applications of WL 110547 during seedling emergence maximised herbicide effect, as did seedling emergence through moist rather than dry soil. The results are discussed in relation to the mobility of the herbicide in soil, the mode of action of WL 110547, its availability to the plant and the duration of contact between emerging shoot and treated soil layer.  相似文献   

3.
A novel compound, 1-(3-trifluoromethylphenyl)-5-phenoxy-1,2,3,4-tetrazole (WL 110547) is a pre-emergence bleaching herbicide with selectivities in certain crops. These selectivities and the weed-control spectrum are derived, in part, from features which influence the uptake of WL 110547 into sensitive tissue. WL 110547 is strongly adsorbed to soil with measured Koc values in the range 1500-2500 and, following application, is confined to the surface layers of soil, especially when the organic matter content is high. Some plant species have anatomical features which protect their developing leaf tissue from contact with the soil during emergence and thus escape direct contact with these treated layers. Furthermore, some of these plants are deeply rooted and thus there is little opportunity for sufficient uptake of WL 110547 to cause a phytotoxic effect. However some weeds, especially annual dicotyledons, germinate only from shallow depths and, during emergence, their cotyledons or leaves are in contact with the soil. In soils treated with WL 110547 they can thus absorb phytotoxic concentrations of herbicide directly into their cotyledons or leaves. Additional uptake may also occur through roots near the surface and allow WL 110547 to be translocated via the transpiration stream to the site of action in cotyledons and leaves and enhance phytotoxicity. Knowledge of the features controlling uptake, combined with a knowledge of intrinsic susceptibility, have allowed an understanding of the spectrum of weed control and the selectivities between weeds and crops.  相似文献   

4.
Intrinsic activities of monodisperse ethoxylated dodecanols (MEDs), diethyl suberate (DESU) and tributyl phosphate (TBP) were investigated using Stephanotis floribunda leaf cuticular membranes (CMs) and [14C]2,4‐dichlorophenoxy butyric acid (2,4‐DB) as a model solute. When sorbed in cuticular membranes, MEDs, DESU and TBP increase solute mobility and are called accelerators for this reason. With MEDs, dose‐effect curves (log mobility vs accelerator concentration) were linear but, with DESU and TBP, curves convex to the x axes were obtained that approached a maximum at 90 and 150 g kg−1, respectively. Accelerators increased the mobility of 2,4‐DB in the CMs by 9‐ to 48‐fold, and effects were larger at lower temperatures (range 15–30 °C). Activation energy for diffusion of 2,4‐DB was 105 kJ mol−1, decreasing with increasing accelerator concentrations to 26 kJ mol−1 with DESU at 90 g kg−1 and 64 kJ mol−1 with TBP at 150 g kg−1. Thus, the intrinsic activity of DESU was much higher than that of TBP, which implies that, for a given effect, less DESU than TBP would be needed. MEDs were also very effective accelerators, lowering activation energies to 36 kJ mol−1. Data are discussed in relation to increasing rates of foliar penetration of active ingredients at low temperatures. © 2001 Society of Chemical Industry  相似文献   

5.
A theory of cuticular penetration of crop protection agents (CPAs) is presented, which incorporates properties of cuticles and cuticular waxes as well as properties of active ingredients and adjuvants. Based on this theory, two models are developed which are analytical in the sense that they help to quantify and understand (i) differences in permeability among cuticles from different species, (ii) effects of properties of CPAs on permeabilities of cuticles and rates of uptake and (iii) the effects of adjuvants on properties of cuticles and rates of uptake of CPAs. The models can be used to predict rates of uptake of CPAs as affected by properties of cuticular waxes, active ingredients and adjuvants. However, before this can be done, a constant, two parameters and at least two variables must be estimated. Properties of cuticles are accounted for by the constant D0x and the parameter β′. The former, the ratio of the mobility of a hypothetical molecule having zero molar volume (D0x) divided by the path length (Δx) across the cuticle, has the dimension of velocity (ms?1) and is independent of the solubility of the CPA. The latter is a measure of size selectivity of the cuticle. Differences in permeabilities of cuticles from different species increase with increasing size of active ingredients due to size selectivity (β′). Removing cuticular waxes from Citrus cuticles increased D0x by a factor of 2042, while β was not affected. Differential solubility of CPAs is considered part of the driving force and at least two different partition coefficients are needed to account for differences in solubilities in cuticular waxes, cutin, water and the formulation residue on the surface of the cuticles. Adjuvants are solvents in the formulation residue on the leaf surface once the carriers (water and other volatile solvents) have evaporated and certain adjuvants also act as accelerators; they penetrate the cuticle and increase D0x. Thus, accelerators increase rates of uptake and this effect depends on two factors, (i) the intrinsic activity of the accelerator and (ii) rate of penetration into the cuticle, because the active ingredients follow the accelerator front across the cuticle. Since accelerators penetrate from the formulation residue into the cuticle, the volume of the formulation residue decreases with time. This maintains high concentrations of CPAs in the formulation residue and, thus, maximum driving forces and rates of penetration. To utilise fully this dual accelerator effect, it is necessary to match velocities of penetration of accelerators and active ingredients accurately.  相似文献   

6.
Composition-concentration relationships between a series of C13/C14 polyoxyethylene primary alcohol (AE) surfactants and the foliar uptake enhancement of five model neutral organic compounds were examined in factorially designed experiments on wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants grown under controlled environment conditions. Model compounds were applied to leaves as c.0.2-μl droplets of 0.5 g litre?1 solutions in aqueous acetone in the absence or presence of surfactants at 0.2, 1 and 5g litre?1. Uptake of the highly water-soluble compound, methylglucose (log octanol-water partition coefficient (P) = - 3.0) was best enhanced by surfactants with high E (ethylene oxide) contents (AE15, AE20), whereas those of the lipophilic compounds, WL110547 (log P = 3.5) and permethrin (log P = 6.5), were increased more by surfactants of lower E contents, especially AE6. However, there was little difference between AE6, AE11, AE15 and AE20 in their ability to promote uptake of the two model compounds of intermediate polarity, phenylurea (log P = 0.8) and cyanazine (log P = 2.1). Absolute amounts of compound uptake were also influenced strongly by both surfactant concentration and plant species. Greatest amounts of uptake enhancement were often observed at high surfactant concentration (5 g litre?1) and on the waxy wheat leaves compared with the less waxy field bean leaves. The latter needed higher surfactant thresholds to produce significant improvements in uptake. Data from our experiments were used to construct a simple response surface model relating uptake enhancement to the E content of the surfactant added and to the physicochemical properties of the compound to be taken up. Qualitative predictions from this model might be useful in rationalising the design of agrochemical formulations.  相似文献   

7.
Impacts of pH and sorption-desorption of ‘Pegosperse’ 100-O (PEG. 100-O; diethylene glycol monooleate, containing 15% diester) surfactant by apple (Malus pumila M.) leaf cuticles on surfactant-enhanced cuticular penetration of 2,4-D [(2,4-dichlorophenoxy)acetic acid] were studied. Glass cylinders were affixed to enzymatically isolated adaxial apple leaf cuticles after the cuticle segments had been soaked in 10 ml liter?1 PEG 100-O solution and washed for 20 and 120 min, respectively. Quantities of [14C]2,4-D in the glass-cuticle chambers passing through the cuticles at pH values from 1 to 6 5 were determined. PEG 100-O significantly increased cuticular penetration of dissociated 2,4-D at pH 4–5; the surfactant had no effect on penetration of undissociated 2,4-D at pH 10. Surfactant-enhanced penetration of 2,4-D occurred only when the surfactant was in the cuticles, while the process of surfactant sorption-desorption alone had no effect on penetration. These results support a ‘hydrophilic channel’ hypothesis, i.e. that surfactants may create hydrophilic channels or increase the area of the channels in the cuticle and, consequently, enhance the passing of polar molecules like dissociated 2,4-D through the cuticle.  相似文献   

8.
Effects of n-alcohols, ethoxylated alcohols and glycols on mobility of 2,4-dichlorophenoxy acetic acid (2,4-D) in cuticular membranes (CM) isolated from bitter orange (Citrus aurantium L.) leaves were studied. 1-Heptanol, 1-octanol and 1-nonanol had the highest effects, as they increased solute (2,4-D) mobility by 25- to 30-fold. Increasing the number of carbon atoms in the alcohols decreased their effectiveness. Ethoxylation of alcohols did not increase 2,4-D mobility and effectiveness decreased with increasing ethoxylation. Free glycols had no effect on solute mobility in isolated cuticles. The results show that ethoxylation is not required for increasing solute mobility in cuticles. It is suggested that alcohols and ethoxylated alcohols are sorbed in cuticular waxes and plasticize them. The data show that alcohols and ethoxylated alcohols having between seven and ten carbon atoms are powerful accelerator adjuvants, as long as the degree of ethoxylation is not too high. Free short-chain alcohols synthesized by leaves may act as endogenous plasticizers and modulate permeabilities of cuticles, depending on environmental and growing conditions.  相似文献   

9.
The effects of several nonionic surfactants on [14C]glyphosate mono(isopropylammonium) diffusion across isolated tomato fruit cuticles (Lycopersicon esculentum Mill.) were compared under controlled atmospheric conditions (25°C; 65% R.H.) using a model system consisting of 1-μl droplets applied to isolated cuticles on agar blocks. Rates of diffusion for glyphosate (10 g acid equivalent litre?1 in the applied solution) and overall amounts recovered in underlying agar blocks were influenced by the ethylene oxide (EO) chain length for a homologous nonylphenol surfactant series (10 g litre?1). Glyphosate uptake increased with EO content, reaching an optimum at a mean of 17 EO, then decreasing below control values for surfactants with 40 EO. There was a strong influence of the hydrophobe on glyphosate penetration for different surfactants with similar mean EO content (10 EO). The primary aliphatic amine enhanced penetration the most, followed by the nonylphenol while the aliphatic alcohol showed no improvement on glyphosate transfer across cuticles. Water soprtion was greatly enhanced by a primary aliphatic amine (10 EO) and by a nonylphenol (17 EO). The aliphatic alcohol (10 EO) and a shorter-chained nonylphenol (4 EO) did not significantly enhance water sorption. Comparison of water sorption with glyphosate diffusion across cuticles suggests a strong relationship between the two. Change in solution pH over a limited range had no significant effect. Promotion of cuticular hydration by surfactants may thus play an important role in the enhancement of foliar uptake of water-soluble herbicides such as glyphosate.  相似文献   

10.
The mobility of chlorfenvinphos in isolated pear (Pyrus communis cv. Bartlett) leaf cuticular membranes (CM) was studied as a function of concentration of chlorfenvinphos sorbed in the cuticle. Mobilities of chlorfenvinphos increased approximately 9-fold when the amount sorbed increased from 1 to 100 μg cm−2 pear leaf cuticle. From the amounts per area, average volume fractions of chlorfenvinphos in the cuticle were calculated ranging from 2×10−3 to 5·1×10−2. The increase in mobilities was steepest at the lower and levelled off at higher volume fractions. This correlation could be described for the whole range of volume fractions investigated by an equation which assumes homogeneously dispersed chlorfenvinphos. Temperature dependence of mobilities was studied at 17, 25 and 35°C and chlorfenvinphos volume fractions of 5·5×10−3 and 0·12, respectively. Arrhenius graphs were linear for both volume fractions, showing that cuticles did not undergo a phase transition due to the high amount of sorbed chlorfenvinphos. However, at a volume fraction of 0·12, the activation energy of diffusion, ED, was significantly lower (83·6 kJ mol−1) than at 5·5×10−3 (135 kJ mol−1). We interpret these findings as evidence for a plasticising effect on cuticular waxes by chlorfenvinphos. So far, such an effect had been demonstrated only for certain adjuvants (ethoxylated alcohols) but not for active ingredients. Chlorfenvinphos not only increased its own mobility in pear leaf cuticles, but also that of 2,4-D in Citrus leaf cuticles. This would be expected if plasticising of waxes was the sole mechanism responsible for increased mobilities. From these data we predict that permeabilities of cuticles to chlorfenvinphos are not constant. Depending on temperature as well as types and amounts of adjuvants, rates of foliar penetration of chlorfenvinphos can be higher if its concentration in the spray liquid is increased.  相似文献   

11.
Radiolabelled deoxyglucose (DOG) and glyphosate were used to investigate the effects of certain non-ionic surfactants on the kinetics of foliar uptake in three species. ‘Silwet L-77’ (5 g litre?1), an organosilicone surfactant, enabled spray solutions to infiltrate stomata, providing uptake of DOG into Vicia bean (50%), oat (35%) and wheat (20%) within 10 min of application. ‘Silwet Y-12301’, another organosilicone, also induced stomatal infiltration but to a lesser extent; unlike L-77, this was attenuated by partial stomatal closure. A third organosilicone, ‘Silwet L-7607’, and two conventional surfactants, ‘Triton X-45’ (OP5) and ‘Agral 90’ (NP9), did not induce stomatal infiltration. The effective minimum concentration of L-77 required to enable infiltration of stomata was 2 g litre?1. The uptake of glyphosate into bean did not differ from that of DOG but the ‘Roundup’ formulation of glyphosate partially antagonised the infiltration provided by L-77. Addition of surfactants did not increase the rate of cuticular penetration of DOG into bean but total uptake was increased, except by NP9, either via infiltration (L-77 and Y-12301) or by extending the period during which penetration occurred (L-7607 and OP5). The surfactants had a variable effect on rates of penetration of DOG into wheat and oat. In general, foliar uptake followed an exponential timecourse which was largely complete within 6 h and only rarely approached 100% of the applied chemical. The stomatal infiltration provided by L-77 caused an increase in translocation of DOG in bean.  相似文献   

12.
Penetration of glyphosate salts across isolated poplar (Populus canescens (Aiton) Sm) cuticular membranes (CM) was studied using Na+, K+, NH4+, trimethylsulfonium+ (TMS) and isopropylamine+ (IPA) as cations. After droplet drying, humidity over the salt residues on the outer surfaces of the CM was kept constant, and cuticular penetration was monitored by sampling the receiver solution facing the inner surfaces of the CM. Glyphosate salts disappeared exponentially with time from the surfaces of the CM. This first-order process could be quantitatively described using rate constants (k) or half-times (time for 50% penetration; t1/2). Humidity strongly affected the velocity of penetration, as k increased by factors of 5.3 (K-glyphosate), 6.9 (TMS-glyphosate), 7.1 (NH4-glyphosate), 8.5 (Na-glyphosate) and 10.5 (IPA-glyphosate) when humidity was increased from 70 to 100%. Depending on the type of cation and humidity, t1/2 varied between 4 and 70h, but the humidity effect was statistically significant only at 100% humidity, when half-times were highest with IPA-glyphosate and lowest with TMS-glyphosate. Glyphosate acid penetration was measured only at 90% humidity and found to be extremely slow (t1/2 = 866 h). Adding 0.2 g litre-1 of a wetter (alkylpolyglucoside) to the donor increased IPA-glyphosate rate constants by about four times, but increasing concentration produced no further increase in k. When donors contained 0.2 g litre-1 wetter, further additions of 4 g litre-1 Ethomeen T25 did not change rate constants measured with IPA-glyphosate at 90% humidity, while Genapol C-100 and diethyl suberate increased k by only 35%. Concentration of IPA-glyphosate (1, 2 and 4 g litre-1) did not influence k at 90% humidity, and pH of donor solutions (4.0, 7.7, 9.5) had no effect on k of K-glyphosate at 90% humidity. Temperature (10 to 25 degrees C) had only a small influence on velocity of penetration of IPA-glyphosate and K-glyphosate, as energies of activation amounted to only 4.26 and 2.92 kJ mole-1, respectively. These results are interpreted as evidence for penetration of glyphosate salts in aqueous pores.  相似文献   

13.
The effect of adjuvants on the performance of emulsifiable concentrate (EC) and wettable powder (WP) formulations of dimethomorph, a new systemic Oomycete fungicide, has been investigated using a two-day therapeutic (curative) assay with downy mildew (Plasmopara viticola, Berl. & de T.) on vines (Vitisvinifera L., cv. Cabernet Sauvignon) in glasshouse trials. The EC formulation had some therapeutic activity in this type of test. This activity was increased by the spray tank incorporation of 6 g litre−1 of either emulsifiable rape seed oil (‘Atplus’ 412) or emulsifiable paraffinic oil (‘Atplus’ 411F). However, these improvements in performance were overshadowed by those brought about by incorporation of 3 g litre−1 of a series of C13/C14 alcohol ethoxylates varying in ethylene oxide content from 5 to 20 moles:(‘Marlipal’ 34/6EO, 34/11EO, 34/20EO). Nearly complete fungal control was obtained in the presence of these adjuvants with a dimethomorph application rate of 25 g ha−1 compared with only around 90% control at 400 g ha−1 without adjuvants. The WP formulation was inactive in this therapeutic test but the presence of the adjuvants improved the performance of this formulation towards the high levels observed with the EC plus adjuvants, demonstrating that adjuvants could markedly influence the performance of solid, otherwise therapeutically inactive, dimethomorph formulations. Further trials examined other types of adjuvants (nonylphenol, alkylamine and silicone ethoxylates) but either they were no better than the alcohol ethoxylates or they induced unacceptable phytotoxicity. Trials with alcohol ethoxylates (‘Genapols’) from another source demonstrated activity equivalent to the ‘Marlipal’ surfactants. A two-factorial matrix experiment with ‘Genapol’ C050 showed that, under glasshouse conditions, >90% control could be obtained with the dimethomorph EC at 25 g AI ha−1 with 375 g ha−1 ‘Genapol’ C050. Applications of the WP formulation required slightly higher rates of either 50 g AI ha−1 plus 375 g ha−1 ‘Genapol’ C050 or 25 g AI ha−1 plus 750–1500 g ha−1 ‘Genapol’ C050. The overall conclusion was that alcohol ethoxylates varying in alkyl chain length from C12 to C18 and ethylene oxide content between 5 and 20 moles for the C12 surfactants and ∽15 moles for the C18 surfactants were effective adjuvants in promoting the therapeutic activity of dimethomorph formulationsagainst P. viticola on glasshouse-propagated vines.  相似文献   

14.
Uptake of pesticides into barley leaves was measured under controlled conditions. Leaves detached from plants were submerged in aqueous solutions of 14C-labelled (2,4-dichlorophenoxy)acetic acid, triadimenol, bitertanol and pentachlorophenol. Uptake was biphasic. A short (30-min) period with high rates of uptake was followed by uptake that proceeded more slowly and was steady over hours. Compartmentation of pesticides was studied by desorbing pentachlorophenol from leaves previously loaded with [14C]pentachlorophenol. From the uptake and desorption kinetics it was concluded that penetration of pesticides proceeds as follows: the compounds are first sorbed at the surface of epicuticular wax aggregates where they are in contact with the donor solutions. Solutes then diffuse through the surface wax aggregates into the cuticle. Equilibrium between donor solutions, surface wax and cuticle is established in about 30 min. After this time the amounts of solutes in these compartments no longer increase. Uptake after this time represents penetration into the leaf cells. This fraction of the pentachlorophenol is retained irreversibly, while that sorbed in wax and cutin can be desorbed again. All compounds were sorbed in cuticular waxes and partition coefficients wax/water were determined. On a mass basis only 5 to 10% of the amounts sorbed in cutin are sorbed in wax. This comparatively low solubility in wax contributes to the barrier properties of cuticular waxes. The other determinant of permeability is the very low mobility of solutes in cuticular waxes.  相似文献   

15.
Interactions occurring during the surfactant-enhanced foliar uptake of seven model organic compounds were examined using two homogeneous surfactants, hexaethylene glycol monotridecyl ether (C13E6) and hexadecaethylene glycol monododecyl ether (C12E16). Surfactant–compound and compound–surfactant interactions were detected by measurement of their relative uptake rates following application of c. 0·2 μl droplets of the corresponding radiolabelled formulations. The magnitude of surfactant–compound interaction was found to vary according to the physicochemical properties of both the compound and the surfactant, and was influenced by surfactant concentration and target plant species. Interactive and non-interactive mechanisms, both leading to substantial enhancement of compound uptake, could be identified, but their precise nature could not be elucidated. Although penetration of C13E6 into the site of application appeared to be essential in order to activate the uptake of a compound, substantial absorption of C12E16 was not always required to produce the same effect. The results are discussed in the light of possible sites and modes of action for activator polyoxyethylene surfactant adjuvants.  相似文献   

16.
A finite dose diffusion system was employed to study cuticular penetration of 2‐(1‐naphthyl) [1−14C]acetic acid (NAA) from simulated spray droplets through enzymatically isolated tomato fruit cuticles (Lycopersicon esculentum Mill cv Pik Red). Isolated cuticles were mounted on diffusion half‐cells with the cell wall surfaces facing a 20 mM citric acid receiver solution (pH 3.2, volume 2.9 ml, prepared with deionized water). A 5‐µl donor droplet containing NAA at 100 µM in 20 mM citric acid buffer (pH 3.2) was applied to the outer surface. Penetration was monitored by repeated sampling of the receiver solution. NAA penetration was characterized by (1) an initial lag phase of about 2.3 h, (2) a phase of nearly constant maximum rate of penetration averaging 6.3% of applied NAA h−1 (equivalent to 0.032 nmol h−1) and (3) a plateau phase approaching an asymptote at 81.2% of applied NAA (equivalent to 0.406 nmol) at 120 h. Within 1 h after application droplets appeared dry on visual inspection. Immediately after droplet drying, 7.0% of the applied NAA was sorbed to the cuticle, but only 0.5% penetrated into the receiver solution, indicating that penetration occurred almost exclusively from the apparently dry deposit. At 120 h, 5.2% of the NAA applied was associated with the deposit and 4.3% with the cuticle. The distribution of maximum rates of penetration was log‐normal, but penetration at 120 h followed a normal distribution. Cuticle thickness (estimated 5–25 µm) had no significant effect on NAA penetration. Maximum rates of penetration through pepper fruit and citrus and ficus leaf cuticles were 4.9‐, 2.6‐ and 0.1‐times that through tomato fruit cuticles. At 120 h, penetration averaged 85.5, 79.5 and 34.7% for pepper, citrus and ficus cuticles, respectively. Extracting epicuticular and embedded waxes increased NAA penetration rates through tomato fruit cuticle more than three‐fold, but had little effect on penetration at 120 h (71.0 vs 87.7% for cuticular vs dewaxed cuticular membranes). The maximum penetration rate and total penetration were found to be useful parameters in describing the penetration time‐course. © 2000 Society of Chemical Industry  相似文献   

17.
The influence of a number of commercial nonionic polyoxyethylene surfactants on the foliar penetration and movement of two systemic fungicides, ethirimol and diclobutrazol, was studied in outdoor-grown wheat plants at different growth stages and post-treatment temperatures in two consecutive growing seasons. Both fungicides were applied as ca 0·2 μl droplets of aqueous suspension formulations containing 0·5 g litre?1 of 14C-labelled active ingredient; surfactants were added to these suspensions at concentrations ranging from 0·2-10 g litre?1. To achieve optimum uptake of each fungicide the use of surfactants with different physicochemical properties was required. For diclobutrazol, a lipophilic compound, uptake of radiolabel was best with surfactants of low mean molar ethylene oxide (E) content (5-6) but it was necessary to use concentrations of ca 5 g litre?1 to attain this. The surfactant threshold concentration for uptake enhancement of radiolabel from ethirimol formulations (< 2 g litre?1) was much lower than that for diclobutrazol but surfactants with E contents > 10 induced the greatest amount of uptake. For both fungicides, surfactants with an aliphatic alcohol hydrophobe were generally more efficient in promoting their uptake than those with a nonylphenol moiety. The sorbitan-based surfactant ‘Tween 20’ proved to be an effective adjuvant only for the ethirimol formulation; the uptake enhancing properties of the block copolymer ‘Synperonic PE/F68’ were weak. Uptake performance could not be related to the spreading properties of the respective formulations on the wheat leaf surface or to differences in solubilisation of the two fungicides by the surfactants. Although surfactants could substantially increase the amount of acropetal transport of radiolabel from both fungicides, none of those tested specifically promoted it; a constant proportion of the radioactive dose absorbed by a treated leaf was usually exported away from the site of application. The results are discussed in the light of current theories about the mode of action of surfactants as spray adjuvants.  相似文献   

18.
The plant cuticle is a highly complex membrane which forms the outer surface of the aerial portion of plants. The nature of the plant cuticle is reviewed with particular regard to its action as a potential barrier to the penetration of pesticide molecules; the role of the cuticular waxes is highlighted. The physicochemical properties of the cuticle influence the behaviour of spray droplets and, in turn, may affect the rate and efficiency of cuticle penetration. The permeation of active ingredients is influenced by their solubility characteristics as indicated by octanol/water (log Kow) and cuticle/water (Kcw) partition coefficients. Penetration of hydrophilic compounds (low log Kow) may be enhanced by hydration of the cuticle, while transcuticular transport of non-polar solutes (high log Kow) is increased by factors which reduce wax viscosity. The use of in-vitro models involving isolated cuticle membranes, isolated cuticle waxes, or isolated leaves has helped to focus on the activities of the cuticle in the absence of other physiological factors. Using these systems, the role of the waxes as a transport-limiting barrier has been identified and the factors influencing sorption, permeance and desorption examined. The action of surfactants, in vitro and in vivo, has been briefly addressed in regard to their role in facilitating cuticle penetration; other steps involving surfactant/solute/cuticle are complex, and synergy appears to depend on a number of factors including test species, concentration of active ingredient, surfactant type and concentration. Adjuvants may greatly influence the surface properties of the droplet, predispose the cuticle to solute transport, and enhance pesticide activity. The nature of these complex inter-relationships is discussed. © 1999 Society of Chemical Industry  相似文献   

19.
Surfactants increase the uptake of some foliar-applied chemicals to a greater extent than would be expected from their effects on surface tension and spray coverage. This study of the uptake of 2, 4-D [(2, 4-dichlorophenoxy)acetic acid] evaluated the effect of surfactants on penetration through and sorption by isolated cuticles of apple leaves. [14C]2, 4-D was placed in glass chambers affixed to enzymatically isolated adaxial apple leaf cuticles after the cuticle segments had been treated with various surfactants. The same surfactant pretreatments were included in sorption studies in which cuticle segments were immersed in [14C]2, 4-D for 96 h. Quantities of 2, 4-D passing through or sorbed by the cuticle were determined. Similar experiments were conducted with unaltered cuticles and cuticles dewaxed with chloroform. The hydrophile-lipophile balance (HLB) of polyethylene-glycol-based surfactants was inversely related to the sorption of those surfactants by the cuticles and penetration of 2, 4-D. Sorption of 2, 4-D by apple leaf cuticles was unaffected by surfactant pretreatment. Dewaxed cuticle membranes showed a similar response to 2, 4-D penetration and sorption following the surfactant pretreatment.  相似文献   

20.
Imperata cylindrica (cogongrass) is one of the most invasive grass weeds found worldwide. In Japan, this grass grows as three climate types: cool temperate (CT), common (CM) and subtropical (ST). An early flowering (E) type has been also reported. Among them, the CM type is large and most invasive. Recent global warming may cause the extension of distribution of the CM type to northern parts of Japan and may allow hybrids to form between the CM and CT or E types. The hybrids sometimes show heterosis and this leads to new weed problems. Distinguishing between the hybrids and parents on a morphological basis is difficult. We investigated polymorphisms of eight cpDNAs to enable distinction between the ecotypes and the hybrids. Fourteen haplotypes were detected in 33 Japanese clones, based on variations in eight cpDNA regions. Based on three substitutions in the psbA–matK spacer, the ORF170 intron1, the trnL(UAA) intron–trnF(GAA) spacer and indels in the trnL(UAA) intron–trnF(GAA) spacer, the haplotypes were clustered into three phylogenetic groups: I, IIa and IIb, which corresponded with the CM and ST, E and CT types, respectively. The polymorphism in the cpDNA therefore enables us to distinguish among the ecotypes and is useful for prediction of the range expansion of the CM type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号