共查询到20条相似文献,搜索用时 30 毫秒
1.
The degradation, sorption and transport of atrazine, hexazinone and procymidone in saturated coastal sand aquifer media were investigated in batch and column experiments. The pesticides were incubated with sterilised and non-sterilised groundwater or a mixture of groundwater and the aquifer material in the dark at 15 degrees C for 120 days. The estimated half-lives of the pesticides (and their ranges) in the mixture of groundwater and aquifer sand were 36 (31-40), 54 (40-77) and 84 (46-260) days for atrazine, procymidone and hexazinone, respectively. Compared with the relevant results for the groundwater-sand mixture phase, the estimated half-life of pesticides in the groundwater phase alone was shorter for procymidone (21 days) but longer for hexazinone (134 days); atrazine was not degraded in the groundwater phase. Chemical degradation appeared to have played the predominant role in the degradation of hexazinone and procymidone in the aquifer system, while both chemical and biological processes seemed to be important for the degradation of atrazine. Batch isothermal experiments were carried out at pH 4.6-4.7 to obtain sorption coefficients under equilibrium conditions. The isothermal data of the pesticides fitted well with the non-linear Freundlich function with an exponent of sorption coefficient that was greater than one. Contrary to reports in the literature, sorption of atrazine was the greatest, and procymidone was slightly more sorbed than hexazinone. A column experiment was conducted at a typical field-flow velocity of 0.5 m day(-1) over 60 days to study pesticide attenuation and transport in flow dynamic conditions. Retardation factors, R, derived from a two-site sorption/desorption model were 8.22, 1.76 and 1.63 for atrazine, procymidone and hexazinone, respectively. Atrazine displayed the lowest mobility and the mobility of procymidone was only slightly less than that of hexazinone, which is consistent with observations in the batch experiment. A possible explanation for these observations is that ionic atrazine is bound to oppositely charged ionic oxides, and ionic oxides have less effect on the sorption of the non-ionic procymidone. The significant tailing in the pesticide breakthrough curves (BTCs) in comparison with the bromide BTC, together with model-simulated results, suggests that the transport of the pesticides was under chemical non-equilibrium conditions with R values that were less than their equivalent values predicted using the batch equilibrium isothermal data. As a result of non-linear kinetic sorption, retardation factors of the pesticides in groundwater systems would not be constant and will decrease with decreasing pesticide concentrations and increasing flow velocities. Hence, the use of equilibrium isotherm data will probably over-predict the sorption of pesticides in groundwater systems. Rhodamine WT, a commonly used groundwater tracer, was significantly retarded (R = 5.48) and its BTC was much more spread out than the bromide BTC. Therefore, it would not be a good tracer for the indication of groundwater flow velocity and dispersion for the coastal sand aquifer system. In contrast to some aquifer media, the dye tracer was unsuitable as a marker of the appearance of atrazine in a coastal sand aquifer system. 相似文献
2.
The mobility and retention of atrazine and dicamba in six Atlantic Coastal Plain soils were estimated by soil thin-layer chromatography (soil-TLC). The soils studied were representative of the major agricultural regions in Delaware and were sampled, by horizon, to the water table. Four horizons from each profile were leached simultaneously with distilled water on one soil-TLC plate. Two values were obtained from each plate: the ratio of the distance traveled by the herbicide center of mass over that traveled by the solvent front (Rm), and a sorption distribution coefficient (Kd). The Rm values ranged from 0·06 to 0·94 for atrazine and from 0·80 to 0·94 for dicamba. Herbicide mobility was found to be greatest in coarse-textured soil horizons that contained low levels of organic matter, clay, and Fe and Al oxides. Correlation analysis indicated that effective cation exchange capacity, exchangeable acidity, exchangeable aluminum, and clay were useful predictive variables or both atrazine mobility and sorption. Organic matter was not useful for predicting soil-TLC derived sorption estimates; however, it was correlated to Kd-batch estimates. Distribution coefficients calculated from soil-TLC data were found to be in general agreement with Kd values obtained for the same soils by batch equilibrium techniques. The average Kd-soil-TLC values for atrazine and dicamba were 2·09(±2·24) and 0·03(±0·02), respectively. The ratio of the batch Kd to the soil-TLC Kd ranged from 0·1 to 19 (x̄=1·6, SD=3·8) for atrazine and from 2·9 to 38 (x̄=12·6, SD=8·7) for dicamba. Thus, although for some horizons agreement between the two methods was good, for other horizons significant discrepancies existed. It is suggested that the soil-TLC gives results under non-equilibrium conditions, whereas the batch procedure is, by definition, at quasi-equilibrium. These fundamental differences may account for the observed differences between the two methods. It is also suggested that, due to this difference, the soil-TLC procedure can provide additional information relevant to herbicide partitioning in the field environment that is not provided by traditional batch equilibrium techniques. © 1998 Society of Chemical Industry 相似文献
3.
In addition to the molecular structure of a pesticide, environmental conditions may influence its persistence through their effect on the growth and activity of pesticide-degrading micro-organisms. As a result, transformation rates may decrease rapidly when a compound is leached into subsoil. Metamitron sorption isotherms were determined and incubation series were set up for a sandy loam soil, simulating single and combination effects that occur during transport of metamitron into subsoils. KOC values increased with increasing depth from 185 to 700 litre kg−1. A combination of conditions that are unfavourable for microbial activity, such as low temperature (5°C), low concentrations (0·5 mg kg−1) and a large sorbed fraction (KOC = 700) resulted in half-lives of over one year. Oxygen inhibition decreased the transformation rate of metamitron from 0·058 to 0·019 day−1. In order of significance, the transformation of metamitron appears to be a function of temperature, oxygen availability and sorption to organic carbon. Increasing doses did not change transformation rates significantly, although different transformation pathways were observed. 相似文献
4.
5.
BACKGROUND: Following the discovery of pesticides in wells, the Hawaii Department of Agriculture (HDOA) supported research to evaluate the likelihood of pesticide leaching to the groundwater in Hawaii. The aim of this study was to evaluate the relative leaching pattern of five pesticides at five different sites on three islands and to compare their leaching behavior with bromide and a reference chemical (atrazine) that is known to leach in Hawaiian conditions. Laboratory measurements of sorption and degradation of the pesticides were made. RESULTS: Most of the applied mass of pesticides was still present in the top 80 cm after the 16 week study period. The aggregated oxisol at Kunia showed the most intensive leaching among the five sites. The revised attenuation factor screening approach used by the HDOA indicated that all chemicals, with the exception of trifloxystrobin, had the potential to leach. Similarly, the groundwater ubiquity score ranked trifloxystrobin as a non‐leacher. The field leaching data, however, suggested that trifloxystrobin was the most mobile compound among the pesticides tested. CONCLUSION: Although the results were variable among the sites, the field and laboratory experiments provided useful information for regulating use of these pesticides in Hawaii. Copyright © 2010 Society of Chemical Industry 相似文献
6.
A field tracer experiment, simulating point source contamination, was conducted to investigate attenuation and transport of atrazine, hexazinone and procymidone in a volcanic pumice sand aquifer. Preliminary laboratory incubation tests were also carried out to determine degradation rates. Field transport of the pesticides was observed to be significant under non‐equilibrium conditions. Therefore, a two‐region/two‐site non‐equilibrium transport model, N3DADE, was used for analysis of the field data. A lump reduction rate constant was used in this paper to encompass all the irreversible reduction processes (eg degradation, irreversible adsorption, complexation and filtration for the pesticides adsorbed into particles and colloids) which are assumed to follow a first‐order rate law. Results from the field experiment suggest that (a) hexazinone was the most mobile (retardation factor R = 1.4) and underwent least mass reduction; (b) procymidone was the least mobile (R = 9.26) and underwent the greatest mass reduction; (c) the mobility of atrazine (R = 4.45) was similar to that of rhodamine WT (R = 4.10). Hence, rhodamine WT can be used to delimit the appearance of atrazine in pumice sand groundwater. Results from the incubation tests suggest that (a) hexazinone was degraded only in the mixture of groundwater and aquifer material (degradation rate constant = 4.36 × 10?3 day?1); (b) procymidone was degraded not only in the mixture of groundwater and aquifer material (rate constant = 1.12 × 10?2 day?1) but also in the groundwater alone (rate constant = 2.79 × 10?2 day?1); (c) atrazine was not degraded over 57 days incubation in either the mixture of aquifer material and groundwater or the groundwater alone. Degradation rates measured in the batch tests were much lower than the total reduction rates. This suggests that not only degradation but also other irreversible processes are important in attenuating pesticides under field conditions. Hence, the use of laboratory‐determined degradation rates could underestimate reduction of pesticides in field conditions. © 2001 Society of Chemical Industry 相似文献
7.
Heistermann M Jene B Fent G Feyerabend M Seppelt R Richter O Kubiak R 《Pest management science》2003,59(12):1276-1290
Results of laboratory batch studies often differ from those of outdoor lysimeter or field plot experiments--with respect to degradation as well as sorption. Laboratory micro-lysimeters are a useful device for closing the gap between laboratory and field by both including relevant transport processes in undisturbed soil columns and allowing controlled boundary conditions. In this study, sorption and degradation of the herbicide metsulfuron-methyl in a loamy silt soil were investigated by applying inverse modelling techniques to data sets from different experimental approaches under laboratory conditions at a temperature of 10 degrees C: first, batch-degradation studies and, second, column experiments with undisturbed soil cores (28 cm length x 21 cm diameter). The column experiments included leachate and soil profile analysis at two different run times. A sequential extraction method was applied in both study parts in order to determine different binding states of the test item within the soil. Data were modelled using ModelMaker and Hydrus-1D/2D. Metsulfuron-methyl half-life in the batch-experiments (t1/2 = 66 days) was shown to be about four times higher than in the micro-lysimeter studies (t1/2 about 17 days). Kinetic sorption was found to be a significant process both in batch and column experiments. Applying the one-rate-two-site kinetic sorption model to the sequential extraction data, it was possible to associate the stronger bonded fraction of metsulfuron-methyl with its kinetically sorbed fraction in the model. Although the columns exhibited strong significance of multi-domain flow (soil heterogeneity), the comparison between bromide and metsulfuron-methyl leaching and profile data showed clear evidence for kinetic sorption effects. The use of soil profile data had significant impact on parameter estimates concerning sorption and degradation. The simulated leaching of metsulfuron-methyl as it resulted from parameter estimation was shown to decrease when soil profile data were considered in the parameter estimation procedure. Moreover, it was shown that the significance of kinetic sorption can only be demonstrated by the additional use of soil profile data in parameter estimation. Thus, the exclusive use of efflux data from leaching experiments at any scale can lead to fundamental misunderstandings of the underlying processes. 相似文献
8.
We investigated the sorption of five widely used sterol biosynthesis inhibitor fungicides (SBIs: flusilazole, propiconazole, epoxiconazole, fenpropimorph and prochloraz) on a loam soil to assess availability of the SBI residues that are usually left in soil after crop treatments. We focused particularly on the soil moisture content effect, which is poorly documented and is difficult to investigate under realistic conditions. SBI sorption was determined (using diuron as a reference) at two soil moisture contents (26.1% and 46.6% w/w) over a period of 3 weeks using a direct soil solution sampling method. After 24 h of contact, <1% of each applied fungicide was recovered in the soil solution. Despite their low availability in the liquid phase, long‐term sorption was observed for all the compounds, reducing concentrations in the soil solution and doubling the value of the partition coefficient. Significant effects of soil moisture on long‐term sorption were observed, depending on the properties of the chemicals and the sorption mechanisms. Wershaw's humus model (humic substances have a membrane‐like structure) was adapted to fit our observations. Low soil moisture content is assumed to modify the structure of humic substances and to generate hydrophobic surfaces, which favour sorption of hydrophobic fungicides (flusilazole, propiconazole and epoxiconazole). This effect is likely to decrease with the increase in the hydrophobic character of non‐ionic pesticides. It becomes adverse for the more hydrophilic compounds (diuron), which are more sorbed at high soil moisture content due to their higher affinity for hydrophilic regions of humus and to diffusion. Soil moisture effects are more complex when compounds are likely to be protonated in soil. Weakly basic compounds (prochloraz) may partition rapidly into the liquid‐like interior of humus at low soil moisture content but increased diffusion at high soil moisture content may cause additional sorption by ion exchange at colloid surfaces. Strongly basic compounds (fenpropimorph) may essentially adsorb due to ionic interactions with colloids, and their sorption is enhanced at high soil moisture content due to diffusion. Consequences for environmental fate and biological activity of pesticides are briefly discussed. © 2000 Society of Chemical Industry 相似文献
9.
10.
微生物降解农药的研究进展 总被引:7,自引:0,他引:7
在农药的微生物降解研究中,分离构建一种由天然微生物构成的复合系,将其应用于被污染的环境是消除农药污染的一个有效方法。本文综述了环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。 相似文献
11.
12.
采用浸虫法测定不同药剂对苹果黄蚜的毒力,并对不同药剂进行复配,测定复配药剂对苹果黄蚜的毒力和复配效果.结果表明:苹果黄蚜对啶虫脒最敏感,其次是吡虫啉、联苯菊酯、阿维菌素,对高效氯氰菊酯、氰戊菊酯敏感度较低,对马拉硫磷基本无敏感性.不同药剂复配以啶虫脒与阿维菌素配合效果最好,5种不同比例配合均表现为增效作用,其中啶虫脒与阿维菌素质量配比为2∶1时增效作用最明显,其余依次为啶虫脒与阿维菌素(1∶4)和(4∶1)、啶虫脒与高效氯氰菊酯(1∶4)、啶虫脒与氰戊菊酯(1∶4)、啶虫脒与联苯菊酯(1∶2),其共毒系数均高于400.田间试验同样表明:啶虫脒与阿维菌素(2∶1)桶混处理效果明显好于单剂. 相似文献
13.
Isoxaflutole, [4-(2-methanesulfonyl-4-trifluoromethylbenzoyl)-5-cyclopropyl isoxazole] is a relatively new pre-emergence herbicide which undergoes rapid conversion to a diketonitrile metabolite in soil. The half-life of isoxaflutole is very short but the half-life of diketonitrile is much longer and hence, diketonitrile remains for a extended period of time in soil. Sorption-desorption studies were conducted with five soils varying in physical and chemical properties. The batch equilibration technique was used for the sorption experiments, while completely mixed batch reactor systems with the decant and refill method was used for the desorption experiments. Four subsequent desorptions were examined after the sorption process in each soil with an equilibration period of seven days. An apparent sorption-desorption hysteresis was observed in all five soils. Organic matter content and the clay content of the soils were the two determining factors for hysteresis. In soils with high organic matter content, the sorption-desorption hysteresis was mainly governed by organic matter content, but in soils with low organic matter clay content played an important role. With the exception of the Chelsea soil, which had a very high organic matter content (57.4%), all other soils exhibited a high correlation between the clay content and hysteresis index (HI) values calculated at 0.75 ( r 2 = 0.960), 25 ( r 2 = 0.934) and 150 mg L−1 ( r 2 = 0.928). In conclusion, the potential for leaching through soil and crop injury due to isoxaflutole and its metabolite would decrease as soil organic matter and clay content increases. 相似文献
14.
美国登记注册的生物农药主要分为生物化学农药和微生物类农药,其中生物化学农药包括引诱剂、驱避剂、天然昆虫/植物生长调节剂及除草剂、信息素、其他生化农药等;微生物类农药包括细菌、真菌、病毒、酵母、原生动物、工程菌、转基因植物等。 相似文献
15.
J. A. Sutherland 《国际虫害防治杂志》2013,59(3):332-364
Abstract An outline of the origins and format of specifications designed for the comparative evaluation of lever-operated and motorised knapsack sprayers is given. The interpretation of scores derived from the evaluation of sprayers to the specifications is considered and the presentation of results is discussed and illustrated with examples. 相似文献
16.
17.
Anna Gulkowska Ignaz J Buerge Thomas Poiger Roy Kasteel 《Pest management science》2016,72(12):2218-2230
18.
19.