首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γ-Aminobutyric acid receptors (GABARs) mediate fast inhibitory neurotransmission and are targets for insecticides. GABARs are composed of five subunits, the composition of which dictates the pharmacological characteristics of GABARs. Both competitive and noncompetitive GABAR antagonists can be used as insecticides. Gabazine is a potent competitive antagonist of mammalian α1β2γ2 GABARs; however, it is less potent against insect GABARs. To explore how gabazine interacts with GABARs, we examined whether the sensitivity of the small brown planthopper (Laodelphax striatellus) RDL GABAR (LsRDLR) to gabazine is increased when its amino acid residues are substituted with α1β2γ2 GABAR residues. In the results, two of the generated mutants showed enhanced gabazine sensitivity. Docking simulations of gabazine using LsRDLR homology models and an α1β2γ2 GABAR cryo-EM structure revealed that the accommodation of gabazine into the “aromatic box” in the orthosteric site lowered the binding energy. This information may help in designing GABAR-targeting insecticides with novel modes of action.  相似文献   

2.
γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [3H]4′-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [3H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [3H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [3H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [3H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [3H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [3H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides in insect GABARs.  相似文献   

3.
Different structural features govern the interaction of picrodendrins and related terpenoids with rat and with housefly GABA receptors. This supports previous studies which suggest that there are significant differences between the structures of the binding sites in these two receptors.  相似文献   

4.
BACKGROUND: Monoterpenoids are a large group of plant secondary metabolites. Many of these naturally occurring compounds have shown good insecticidal potency on pest insects. Previous studies in this laboratory have indicated that some monoterpenoids have positive modulatory effects on insect GABA receptors. In this study, the key properties of monoterpenoids involved in monoterpenoid binding activity at the housefly GABA receptor were determined by developing quantitative structure‐activity relationship (QSAR) models, and the relationship between the toxicities of these monoterpenoids and their GABA receptor binding activities was evaluated. RESULTS: Two QSAR models were determined for nine monoterpenoids showing significant effects on [3H]‐TBOB binding and for nine p‐menthane analogs with at least one oxygen atom attached to the ring. The Mulliken charges on certain carbon atoms, the log P value and the total energy showed significant relationships with binding activities to the housefly GABA receptor in these two QSAR models. CONCLUSIONS: From the QSAR models, some chemical and structural parameters, including the electronic properties, hydrophobicity and stability of monoterpenoid molecules, were suggested to be strongly involved in binding activities to the housefly GABA receptor. These findings will help to understand the mode of action of these natural insecticides, and provide guidance to predict more monoterpenoid insecticides. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Bicyclophosphorothionates (2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane‐1‐sulfides) are blockers (or non‐competitive antagonists) of γ‐aminobutyric acid (GABA) receptor channels. Twenty‐two bicyclophosphorothionates with different 3‐ and 4‐substituents were synthesised, and [3H]4′‐ethynyl‐4‐n‐propylbicycloorthobenzoate (EBOB) binding assays were performed to evaluate their affinities for housefly and rat GABA receptors. RESULTS: Introduction of an isopropyl group at the 3‐position enhanced the affinity of bicyclophosphorothionates for housefly GABA receptors and reduced the affinity towards rat GABA receptors. The 4‐isopentyl‐3‐isopropylbicyclophosphorothionate showed the highest affinity for housefly GABA receptors (IC50 = 103 nM ) among the analogues tested, while the 4‐cyclohexylbicyclophosphorothionate showed the highest affinity for rat GABA receptors (IC50 = 125 nM ). Among the bicyclophosphorothionates synthesised to date, the former analogue exhibited the highest selectivity for housefly GABA receptors, with an IC50rat/IC50fly ratio of approximately 97. Three‐dimensional GABA receptor models successfully explained the structure–activity relationships of the bicyclophosphorothionates. CONCLUSION: The results indicate that minor structural modifications of blockers can change their selectivity for insect versus mammalian GABA receptors. The substituent at the 3‐position of the bicyclophosphorothionates dictates selectivity for housefly versus rat GABA receptors. This information should prove useful for the design of safer insecticides and parasiticides. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
Little information is available on the actions of β-carboline convulsants on insect GABA receptors or their potential as insecticides. Accordingly, two compounds (3-ethoxy-β-carboline, 3-EBC; dimethoxy-β-carboline-3-methyl ester, DMCM) were studied for their effects on Drosophila melanogaster larval neuron discharge and also in lethality bioassays on adult female D. melanogaster and adult male Blattella germanica. Recordings of nerve spiking in the isolated larval central nervous system showed that 3-EBC and DMCM inhibited nerve discharge, and this inhibitory effect was not additive with that of GABA, confirming that the inhibition was expressed through an action on the GABA receptor. Nerve blockage induced by β-carbolines could not be reversed by picrotoxinin, indicating that there may exist some overlap or negative allosteric coupling between the picrotoxinin and β-carboline binding sites. DMCM and 3-EBC effectively antagonized the effects of exogenously applied GABA in nerve preparations from insecticide-susceptible larvae. In contrast, preparations from the rdl strain of D. melanogaster, which possesses a GABA receptor that is highly resistant to cyclodienes and related convulsants, were less sensitive to the GABA antagonist effect of DMCM. Neither of the β-carbolines produced any appreciable mortality in insects, even when synergized with piperonyl butoxide or S,S,S-tributyl phosphorotrithioate, The toxicity of the β-carbolines is probably limited by their relatively weak effects on the GABA receptor and perhaps also by pharmacokinetic factors. These considerations, coupled with the cross-resistance observed in cyclodiene-resistant insects, suggest that the currently available β-carbolines are not viable as lead compounds for insecticide screening efforts. © 1997 SCI.  相似文献   

7.
N3-substituted imidacloprid congeners containing C1-C6 alkyl groups or various analogous groups, and their corresponding nitromethylene analogues, were used in this study. Their insecticidal activity against the housefly, Musca domestica, and their binding activity toward the nicotinic acetylcholine receptor were determined. The insecticidal test was conducted using the synergists piperonyl butoxide and propargyl propyl phenylphosphonate. The binding assay was performed with housefly head membrane preparations using radio-labelled alpha-bungarotoxin. Both insecticidal and binding activities were drastically lowered by the introduction of alkyl/allyl groups at the imidazolidine NH sites of both nitroimino and nitromethylene compounds. The binding activity of N3-substituted nitromethylene analogues was much higher than that of the corresponding nitroimino analogues. However, the insecticidal activity of both series of compounds with a given substituent was nearly identical. The insecticidal activity correlated positively with the binding activity after taking into account the structural difference of the nitroimino and nitromethylene moieties and a structural feature of the N3-substituents.  相似文献   

8.
5-tert-Butyl-2-(4-ethynylphenyl)pyrimidine and the corresponding 2,5-disubstituted-4H-1,3-thiazine block the GABA-gated chloride channel at c.20and c.200 nm , respectively, measured as 50% inhibition of the binding of 1-(4-ethynylphenyl)-4-[3H]propyl-2,6,7-trioxabicyclo[2.2.2]octane (4′-ethynyl-4-n-[3H]propylbicycloorthobenzoate; [3H]EBOB) in house fly and mouse brain membranes, and they are also toxic to topically-treated flies with LD50 values of 6–27 μg g−1 alone and 2–6 μg g−1 with piperonyl butoxide (PB) as synergist. In the pyrimidine series, the general pattern of effectiveness of substituents in the 5-position is tert-butyl>isopropyl≈cyclohexyl≈cyclopropyl>methyl, phenyl and 3- and 4-fluorophenyl, and in the 2-position is 4-ethynylphenyl≪4-bromophenyl. These planar pyrimidines and nearly-planar 4H-1,3-thiazines with 2-ethynylphenyl or 2-bromophenyl and 5-tert-butyl or 5-isopropyl substituents are more effective than the corresponding 6H-1,3-thiazine, 6-oxo-1,3-thiazines and 4,6-dioxo-1,3-thiazine examined, but they are less active than the analogous conformationally flexible trans-1,3-dioxanes and -1,3-dithianes. The heterocyclic moiety confers a region of high electron density and positions the 2- and 5-substituents in a linear or parallel relationship for optimal affinity at the receptor. Two observations indicate that the new pyrimidines and thiazines probably act as chloride channel blockers. First, the poisoning signs are identical to those of EBOB in both mice and house flies. Second, each of the pyrimidines, thiazines and dioxanes falls on the same correlation line for inhibition of [3H]EBOB binding and toxicity to house flies (with PB) as that obtained earlier for EBOB analogs, dithianes and polychlorocycloalkanes, suggesting that they all act at the same or closely coupled binding sites in the GABA-gated chloride channel.  相似文献   

9.
Quantitative structure–activity relationships for insecticidal activity (against houseflies) and competitive activity against a specific [35S]tert-butylbicyclophosphorothionate binding (to rat brain membranes) of some picrotoxinin-type 4-aminobutyric acid antagonists, including γ-BHC, endosulfan, bicyclophosphates, dioxatricyclododecenes and related compounds, were examined three-dimensionally using comparative molecular field analysis (CoMFA). The antagonists were classified into two series according to their molecular shapes: i.e. whether their structure was ‘linearly’ extended beyond the ‘mast-head’ position of the ‘boat-like’ skeletons (series 1) or not (series 2). The CoMFA showed that the slopes in steric and electrostatic fields around the molecule were significant for both series in governing the potency variations in insecticidal and binding activities. Hydrophobicity, a possible factor controlling transport behaviour of compounds, was significant in governing variations in insecticidal activity, but not for the case of the rat membrane binding. Assuming that there is a slight topological difference between series 1 and 2 compounds in terms of the mode of binding with the housefly receptor site, the insecticidal activity was analysable with a single equation for the combined set of compounds, but the rat membrane binding was not. The sterically and electrostatically favourable regions surrounding the molecular series indicated by CoMFA were roughly located at positions so as to interact with the binding subsites on the receptors proposed previously. © of SCI.  相似文献   

10.
Insecticidal δ‐endotoxin proteins, degraded from parasporal crystals by protease, were recovered by a simple procedure using heat treatment, solubilization, and ultrafiltration of a fermentation broth of Bacillus thuringiensis subsp kurstaki HD‐1. A 68 kDa insecticidal protein was obtained and characterized by SDS‐PAGE. The procedure described gave a nearly quantitative recovery of toxicity. Furthermore, bioassay results on larvae of the diamondback moth (Plutella xylostella) showed that the 68 kDa δ‐endotoxin fraction (P1) was the principal insecticidal component to this target insect. A similar molecular mass polypeptide P2 (65 kDa) which was solubilized together with P1 from the parasporal crystals, gave relatively low mortality. © 2000 Society of Chemical Industry  相似文献   

11.
Variously substituted benzyl derivatives of chloronicotinyl insecticides were synthesized with a wide range of substituents including halogens, NO2, CN, CF3 and small alkyl and alkoxy groups at the ortho, meta and para positions, as well as multiple‐substituted benzyl analogues. Their binding activity to the α‐bungarotoxin binding site in housefly (Musca domestica) head membrane preparations was measured. Among the compounds tested, the activity of the meta‐CN derivative was the highest, being 20–100 times higher than those of imidacloprid, acetamiprid and nitenpyram. The synergized insecticidal activity against houseflies was also measured for selected compounds with the metabolic inhibitor, NIA16388 (propargyl propyl phenylphosphonate). For the nitromethylene analogues, including both benzyl and pyridylmethyl analogues, higher binding activity usually resulted in higher insecticidal activity. © 2000 Society of Chemical Industry  相似文献   

12.
Examination of agonist interactions of imidacloprid on recombinant chicken α4β2 and Drosophila SAD/Chicken β2 hybrid receptors, expressed in Xenopus oocytes by nuclear injection of the cDNAs, indicates that imidacloprid is a partial agonist. Replacement of the α4 subunit for the Drosophila SAD subunit lowered the imidacloprid EC50 37-fold, whereas EC50s for other agonists increased 4-50 fold, suggesting that the α subunit contributes to the high affinity of insect nicotonic receptors for imidacloprid. ©1999 Society of Chemical Industry  相似文献   

13.
14.
15.
16.
17.
Fifteen 5-substituted 1-(6-chloro-3-pyridylmethyl)-2-nitromethylene-1,3- diazacyclohexanes and three other related compounds having a five- or seven-membered ring were synthesized and their biological activities were measured in vivo and in vitro. The insecticidal (in vivo) activity was evaluated against houseflies Musca domestica L under synergistic conditions with propargyl propyl phenyl phosphonate and piperonyl butoxide. The binding activity of each compound to nicotinic acetylcholine receptor in vitro was measured using [125I] alpha-bungarotoxin. The insecticidal activities of the unsubstituted diazacyclohexane analogues were slightly higher than those of the imidazolidine analogues, but the enlargement of ring size to diazacycloheptane lowered the activity. Substitution of 1,3-diazacyclohexane or imidazolidine rings was not generally favourable for the activity, but the unsubstituted 1,3-diazacyclohexane analogue showed the highest binding activity. Ring substitutions and ring enlargement decreased the activity 100-30,000-fold.  相似文献   

18.
Monoterpenoids and their derivatives from plant essential oils showed good insecticidal activities in previous studies, but the mechanisms of their action as natural insecticides are not known yet. In the present work, we evaluated the pharmacological action of five monoterpenoids (α-terpineol, carvacrol, linalool, pulegone, and thymol) on native insect GABA receptors from house flies and American cockroaches using radiotracer methods. In the [3H]-TBOB binding assay, carvacrol, pulegone, and thymol all enhanced the [3H]-TBOB binding to membrane preparation of house fly heads with EC50 values of 48 μM, 432 μM, and 6 mM, respectively. Moreover, these three monoterpenoids at concentrations of 500 μM and 1 mM also significantly increased the 36Cl uptake induced by GABA in membrane microsacs prepared from American cockroach ventral nerve cords. These results revealed that carvacrol, pulegone, and thymol are all positive allosteric modulators at insect GABA receptors. The other two monoterpenoids that were tested, α-terpineol and linalool, showed little or no effect in both the [3H]-TBOB binding and 36Cl uptake assays.  相似文献   

19.
Late blight caused by Phytophthora infestans is one of the most devastating diseases of the potato crop. Resistance breeding and current fungicides are unable to control the rapidly evolving P. infestans and new control strategies are urgently needed. This study examined mechanisms of dl ‐β‐aminobutyric acid (BABA)‐induced resistance (IR) in the potato–P. infestans system. Leaves from two cultivars that differ in their degree of resistance, Bintje and Ovatio, were analysed after foliar treatment with BABA. Rapid activation of various defence responses and a significant reduction in P. infestans growth were observed in leaves treated with BABA. In the more resistant cultivar, Ovatio, the activation was both faster and stronger than in Bintje. Microscopic analysis of leaves treated with BABA revealed induction of small hypersensitive response (HR)‐like lesions surrounded by callose, as well as production of hydrogen peroxide (H2O2). Molecular and chemical analyses revealed soluble phenols such as arbutin and chlorogenic acid and activation of PR‐1. These results show a direct activation of defence responses in potato, rather than priming as reported for other plant species. They also show that the efficiency of BABA‐IR differs between cultivars, which highlights the importance of taking all aspects into consideration when establishing new methods for disease management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号