首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Highly sensitive enzyme assays developed to differentiate skeletal muscle fibers allow the recognition of three main fiber types: slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), and fast-twitch glycolytic (FG). Myosin, the predominant contractile protein in mammalian skeletal muscle, can be separated based on the electrophoretic mobility under nondissociating conditions into SM2, SM1, IM, FM3, and FM2 isoforms, or under dissociating conditions into myosin heavy chain (MHC) I, IIb, IIx/d, and IIa. The purpose of the present study was to determine whether the histochemical method of differentiation of fiber types is consistent with the electrophoretically identified isomyosin and MHC isoforms. These comparisons were made using serratus ventralis (SV), gluteus medius (GM), and longissimus muscles (LM) from 13 pigs. Two calculation methods for the histochemical assessed fiber type distribution were adopted. The first method incorporated the number of fibers counted for each fiber type and calculated a percentage of the total fiber number (fiber number percentage: FNP). The second method expressed the cross-sectional area of each fiber type as a percentage of the total fiber area measured per muscle (fiber area percentage: FAP). Independent of the calculation methods, correlation analyses revealed in all muscles a strong relation between SO fibers, the slow isomyosin (SM1 and SM2), and MHCI, as well as between the FG fibers, the fast isomyosin (FM3 and FM2), and MHCIIx/b content (P<.05). There were no correlations between FOG fiber population assessed by histochemical analysis and intermediate isoform (IM) or MHCIIa content. The present results did not provide conclusive evidence as to which of the calculation methods (FNP or FAP) was more closely related to myosin composition of skeletal muscles. Despite some incompatibility between the methods, the present study shows that histochemical as well as electrophoretic analyses yielded important information about the composition of porcine skeletal muscle. The combination of the two methods may be essential to accurately characterize porcine skeletal muscles.  相似文献   

2.
The gluteus medius muscles were removed from a four-year-old female Welsh pony and her nine-month-old fetus. The muscles were divided into sections which were histochemically examined to determine the variation in the distribution of fast-twitch-glycolytic (FG), fast-twitch oxidative glycolytic (FOG), and slow-twitch oxidative (SO) muscle fibers throughout the entire cross-section of the muscle. The fetal muscle had a larger percent of FOG fibers and smaller percent of SO fibers than the same muscle from the mare. Variation in the distribution of muscle fiber type within the fetal gluteus medius was found. This is the first study of fiber type variation in fetal equine muscle.  相似文献   

3.
4.
The distribution of muscle fiber types in rostral and caudal portions of the musculus digastricus (digastric muscle) was studied in 6 dogs. Staining procedures which stain specifically for type IIM fibers, a fiber type found in other muscles supplied by the trigeminal nerve, were used. Rostral and caudal portions of the muscle were compared because the rostral portion is innervated by the trigeminal nerve, and the caudal portion is innervated by the facial nerve. The musculus triceps brachii (triceps muscle), which contains fiber types I and IIA, and the musculus masseter (masseter muscle), which contains type IIM, were used as controls. Mean fiber diameters were calculated for each of the muscles. Both portions of the digastric muscle exhibited the same histochemical behavior, possessing types I and IIA myofibers. Neither portion contained type IIM fibers. Type I fibers in the masseter muscle were histochemically different from type I fibers in the other muscles studied. Type II fibers predominated in all 3 muscles, but there were significantly (P less than 0.001) more type I fibers in the triceps muscle than in either portion of the digastric muscle or in the masseter muscle. Type II fibers were significantly larger than type I fibers in the caudal digastric (P less than 0.01) and masseter (P less than 0.05) muscles. There was no difference in the size of type I or type II fibers between any of the muscles studied (P greater than 0.20).  相似文献   

5.
1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.  相似文献   

6.
神经肌亚体内肌纤维型的生后发育   总被引:3,自引:0,他引:3  
将生后2天、2周、4周、8周、12周、16周、20周、24周的家兔胫骨前肌分成前、后亚体,分别得到腓得神经主要肌分支的支配,腓深神经分支的神经分布型式随年龄增长而递降.每个肌亚体组织化学特征经由乙酰胆碱碘溶液孵育后的运动终板而确定.肌纤维可分成SO、FG、FOG和FO型.除外生后2天龄之外,前、后亚体内SO、FG、FOG肌纤维在生后2周龄、4周龄、8周龄分别约占30%左右,生后12周龄以后,在前亚体内的SO型与FOG型纤维比率下降和FG型纤维升高要超过后亚体.全部肌纤维型在生后2周龄、4周龄、8周龄、12周龄的每个肌亚体的深、中、浅部都是均匀性分布.然而,不同部位的肌纤维类型差别明显,深部以氧化型为主,而浅部则以糖酵解型为主.这种差别在生后16、20、24周龄是最典型的.两个亚体生后发育期间的每条肌纤维毛细血管数(NCF)表明SO>FO>FOG>FG型纤维和毛细血管数与肌纤维横切面积比(CCA)显示FO>SO>FOG>FG型纤维,由此指出氧供较大需求的获得是通过减小肌纤维的面积而不仅仅是依赖于增加毛细血管数量.  相似文献   

7.
The characteristic myopathic features revealed by histological observations included strong proliferation of connective and fatty tissue, perivascular infiltrations and necrosis of muscle fibers with phagocytosis to the lesser extent. In the myopathic muscle, as well as in giant fibers, histochemical techniques showed a reduction in succinate dehydrogenase and lactate dehydrogenase activity in type beta R (slow-twitch, oxidative) and alpha R (fast-twitch, oxidative and glycolytic). Magnesium-activated adenosine triphosphatase reaction ranged from diffuse to negative in beta R, alpha R and alpha W (fast-twitch, glycolytic) fiber types. Diffuse reaction for acid phosphatase and total loss of glycogen content were observed. The micrographs of the myopathic muscle indicated enlarged mitochondria with atrophy or complete destruction of cristae. Many myofibrils were hypercontracted. Giant fibers possessed mitochondria enlarged to an even greater extent and many of the myofibrils had loss of continuity, were narrow, depleted and were also hypercontracted. Significant differences between myopathic and normal groups were found in number of beta R fibers (lower in the myopathic group), number of alpha R fibers and percent of alpha R and alpha W fibers (higher in the myopathic group). Differences (P less than .01) existed between meat pH1 value in the myopathic group (mean value of 5.95) and the normal group (mean value of 6.29). Meat from the myopathic group of pigs also had a lower (P less than .01) pH24 value and reduced water-holding capacity (P less than .01) relative to the meat of the normal pigs. The lack of difference of fattening and slaughter traits between the groups suggested that the White Zlotnicka pigs is of particular value because it is possible to improve the production traits without increasing the incidence of these syndromes within the breed. Negative correlations (P less than .05) between number of giant fibers and percent of alpha W fibers, and between percent of giant fibers and percent of alpha W fibers indicate that alpha W fibers can undergo degeneration and be transformed into giant fibers. Therefore, it it suggested that giant fibers should be treated as muscular, pathological results of past stresses and not as an additional type of normal muscle cells.  相似文献   

8.
9.
Differentiation of fiber types in developing canine skeletal muscle was studied, using morphologic, morphometric, and histochemical techniques. Sample collections were made from 6 muscles from the pectoral and pelvic limbs of 16 healthy pups between 1 day and 12 weeks of age. In newborn pups, 90% to 95% of the fibers in the 6 muscles were classified as undifferentiated or type IIC; the remaining fibers were classified either normal or large-size type I. Large-size type I fibers usually accounted for 2% to 4% of the total population and were considered analogous with the B fiber of Wohlfart. These fibers were larger than all other fiber types and disappeared after pups reached 4 to 5 weeks of age. After 2 to 4 weeks, the number of undifferentiated fibers decreased with the appearance of, and the concomitant numerical increases of, normal size type I and type IIA fibers. The percentages of type I and IIA fibers approached proportions of the adult dog by 12 weeks, at which time a type IIA fiber predominance was present in biceps femoris, lateral head of the gastrocnemius, cranial tibial, and long head of the triceps. Type I fibers predominated in medial head of the triceps and superficial digital flexor after 4 to 5 weeks. The mean fiber diameters of type I and IIA fibers were similar to any given muscle throughout the postnatal development. All fiber types stained uniformly with the oxidative stain nicotinamide adeninedinucleotide-tetrazolium reductase during the first 12 weeks of life, whereas a distinction between type I and II fibers was evident after 3 to 4 weeks with the periodic acid-Schiff stain reaction.  相似文献   

10.
A staining procedure used for simultaneously determining three different fibre types in single sections bovine, porcine or ovine skeletal muscle was modified for use with ostrich skeletal muscle. The muscle fibres of gastrocnemius pars externa, tibialis cranialis caput tibiale, tibialis cranialis caput femorale and fibularis longus tendo caudalis were studied. The histochemical results revealed the presence of three types of fibre only in the gastrocnemius pars externa muscle: fast-twitch glycolytic fibres (FG), fast-twitch oxidative glycolytic fibres (FOG) and slow-twitch oxidative fibres (SO), while in the other muscles the FG fibres were absent. The percentage distribution of fibres types showed a higher incidence of SO fibres compared to FOG fibres in tibialis cranialis caput femorale and tibialis cranialis caput tibiale muscles, while it was opposite in the case of the fibularis longus tendo caudalis muscle. In the gastrocnemius pars externa muscle the FG fibres outnumber the other fibres, followed by the SO and FOG fibres. The results of the analysis of variance show significant interaction between muscle x fibre type for every morphometric parameter evaluated. Differences about value of fibres area exists between tibialis cranialis caput femorale and fibularis longus tendo caudalis muscles. Both fibre types in tibialis cranialis caput tibiale muscle have mean values of transversal section area smaller than tibialis cranialis caput femorale. The other morphometric parameters show a similar trend. The gastrocnemius pars externa muscle presents similar dimensions of muscle fibres for the FG and FOG types, and significantly smaller for the SO type.  相似文献   

11.
A skeletal myopathy is found in approximately 100% of rasH2 mice. To confirm detailed features of the rasH2 skeletal myopathy, the biceps femoris, diaphragm, triceps brachii, gastrocnemial (types I and II fiber-mixed muscles) and soleus muscle (type I fiber-dominant muscle) obtained from male rasH2 and non-transgenic littermates aged 10-13 and 34 weeks were examined. Variations in the muscle fiber size, early-scattered degeneration/necrosis and regeneration of muscle fibers were detected in 10-13-week-old rasH2 mice. The severity of the above muscular lesions was more prominent in older rasH2 mice. These lesions were noted in the type II myofiber dominant muscles (biceps femoris, triceps brachii and gastrocnemial). NADH-TR stain clearly demonstrated a disorganized intermyofibrillar network and necrotic change in muscle fibers. No specific morphological changes, like rod structure or tubular aggregation seen in some types of myopathy, were noted in Gomori trichrome and NADH-TR stains in the rasH2 mouse like in many types of muscular dystrophy. Electronmicroscopically, occasional muscle fiber degeneration/regeneration, invaded phagocytic cells, indistinct Z-band suggesting excessive contraction and dilatation of the sarcoplasmic reticulum were observed. In summary, the skeletal myopathy occurring in rasH2 mice is consistent with muscular dystrophy characterized morphologically by progressive degeneration and regeneration of myofibers. The myopathy is confined to the type II myofiber predominant muscles and is not associated with any pathognomonic lesions. These characteristics will provide us with a useful model for research in muscular dystrophy of diverse myofibers.  相似文献   

12.
OBJECTIVE: To determine the growth-related changes in metabolic and anatomic properties in equine muscle fiber type, including hybrid fibers identified with immunohistochemical analysis. ANIMALS: 24 2-, 6-, 12-, and 24-month-old female Thoroughbreds. PROCEDURE: Samples were obtained from the gluteus medius muscle of all horses. Expression of myosin heavy chain (MHC) isoforms MHC-I, -IIa, -IIb, and -IIx in each muscle fiber was detected by use of 4 primary monoclonal antibodies: BA-D5, SC-71, BF-F3, and BF-35, respectively. Five muscle fiber types (types I, I/IIA, IIA, IIA/IIX, and IIX) were immunohistochemically identified. The area and activity of succinic dehydrogenase (SDH) in each fiber type were determined by use of quantitative histochemical staining and image analysis. RESULTS: Although the proportion of type I and IIX fibers did not change with age, the proportion of type IIA and IIA/IIX fibers significantly increased and decreased, respectively, from 2 months to 24 months of age. The increase in proportion of type IIA fibers with growth may have been attributable to muscle fiber-type transition from type IIA/IIX fibers but not from type IIX fibers. Values for SDH activity and fiber area in hybrid fiber types were intermediate to those for their respective pure phenotypes. CONCLUSIONS AND CLINICAL RELEVANCE: Hybrid fibers have an important role for determining the proportion of muscle fiber type in horses < 24 months old, and the metabolic and anatomic properties of the hybrid fibers are well coordinated, as in mature horses.  相似文献   

13.
肌纤维的分类建立在它们所含有的不同肌球蛋白重链(MHC)异构体基础上,对大鼠和家兔生后发育各年龄阶段趾浅屈肌采用标准的肌动球蛋白ATP酶和琥珀酸脱氢酶组织化学染色。在生后2周龄至24周龄的大鼠和家兔,I型和ⅡⅩ型肌纤维百分比例趋于减少,而ⅡA型和ⅡB型纤维百分比例则增加。进行大量单肌纤维的组织化学特征的比较和肌纤维间相关性探讨,结果表明,动物平均体重与趾浅屈肌的平均湿重随着生后发育逐渐增加。Ⅰ,ⅡⅩ,ⅡA型和ⅡB型纤维均在生后各年龄组的全部肌肉内被发现,但生后2日龄组是个例外。在生后发育期间,雄性大鼠和家兔ⅡB型纤维的平均肌纤维型构成要大于雌性大鼠和家兔,而雄性大鼠和家兔Ⅰ,ⅡⅩ型和ⅡA型3种氧化组织化学分类的肌纤维型构成均小于雌性大鼠和家兔。大鼠Ⅰ,ⅡⅩ,ⅡA型和ⅡB型纤维的平均横切面积明显小于家兔的同类型肌纤维,在大鼠和家兔可见明显的性别差异。在大鼠和家兔的ⅡⅩ型纤维横切面积是最小的,Ⅰ型和ⅡA型纤维呈中等大小横切面积,ⅡB型纤维横切面积最大。此研究有助于我们尝试研究啮齿类动物快肌纤维生理特征的适应性。  相似文献   

14.
The total amount of collagen, the relative distributions of types I and III collagens in perimysium and endomysium, and the collagen fiber architecture were compared among the pectoralis (PT), iliotibialis lateralis (ITL) and puboischiofemoralis (PIF) muscles in Silky cocks. All of the myofibers in the PT muscle were type IIB, the myofibers in the ITL muscle were divided into type IIA, 41.7% and IIB, 58.3%, and the PIF muscle was composed of type I, 24.6%; IIA, 64.6%; and transitional, 10.8%. The total amount of collagen differed significantly among the PT (2.92 mg/g), PIF (4.20 mg/g) and ITL (8.06 mg/g) material, where only the PIF was a whole muscle with epimysium. On the image analysis of the immunohistochemical preparations, the percentage area of perimysial collagen to the total area in each type differed significantly among the PIF, PT and ITL muscles, where it was 26.8, 50.0 and 74.4% for the type I collagen and 27.4, 32.9 and 61.7% for the type III collagen, respectively. In the scanning electron micrography of the perimysium in macerated preparations, thick bundles of collagen fibers were observed in the ITL muscle, thinner but broad platelets in the PT muscle, and a coarse tissue of thinner collagen fibers in the PIF muscle. However, the endomysial fabric of collagen fibrils was similar among the muscles. Small, transverse collagen fibers, which branched off from the thicker perimysia, occupied narrow interendomysial spaces and separated the primary myofiber fasciculi. The results indicate that the ITL muscle, localized in the distorted and overextended part of the leg and subject to strong external forces, had highly developed perimysial collagen fiber bundles, but the ITL endomysial collagen architecture was similar to that of the PT and PIF muscles.  相似文献   

15.
Histochemical and Morphometric Aspects of some Extraocular Muscles of the Dog
This investigation was carried out on retractor bulbi, lateral and medial rectus muscles of six adult dogs. Tissues were collected from near the center of individual muscle bellies. These were stained for m-ATPase at varying pHs during preincubation, NADH-TR, Alpha-GPDH, Modified Mason trichrome and Hematoxyline and Eosin. Muscle fibers were classified as type I and type II, based on their reaction for m-ATPase. The retractor bulbi muscle was composed entirely of type II, oxidative, muscle fibers, with no glycolytic fibers. The rectus muscles presented a stratified composition, with superficial muscle fiber bundles containing a mixture of type II fibers oxidative and glycolytic, and central bundles of type I, mixed with type II. It was observed that there was less interstitial tissue in the center of the muscle bellies. Large diameter nerve fibers were also observed in the central layers.  相似文献   

16.
Eight Hampshire x Rambouillet crossbred wethers expressing the callipyge phenotype and eight Hampshire x Rambouillet half-sibling wethers with a normal phenotype were slaughtered when they reached 59 kg. The supraspinatus (SPM), longissimus (LM), and semitendinosus (STM) muscles were analyzed to determine callipyge effects on calpain and calpastatin activities, sarcomere length, percentage of muscle fiber types, and muscle fiber areas. After 14 d of aging, chops were frozen until analyses for trained sensory panel evaluations, Warner-Bratzler shear force values, and consumer perceptions of tenderness, flavor, juiciness, and overall satisfaction of chops were conducted. Calpastatin activity was 57% greater (P < 0.05) and m-calpain activity was 33% greater (P < 0.05) in muscles from carcasses of callipyge than normal sheep. Sarcomeres were shorter (P < 0.001) in the LM than the SPM or STM, regardless of phenotype. Muscle fiber area was 76% larger (P < 0.05) in the LM of callipyge than normal sheep, but muscle fiber area was not affected (P > 0.05) by phenotype in the SPM or STM. Phenotype had no effect (P = 0.12) on the percentage of slow-twitch, oxidative fiber types in any of the three muscles. In STM and LM from callipyge lambs, the percentage of fast-twitch, oxidative/glycolytic fibers was lower (P < 0.05) and that of fast-twitch-glycolytic fibers was higher (P < 0.05) than in their normal counterparts. Phenotype did not affect (P = 0.90) the fiber type percentage in the SPM. Callipyge LM were less tender and normal LM were more tender than other chops (P < 0.05). Callipyge loin chops had higher Warner-Bratzler shear force values than other chops (P < 0.001). Consumers rated fewer (P < 0.05) callipyge loin and shoulder chops acceptable in juiciness, tenderness, and overall acceptability than normal chops, but phenotype did not affect (P > 0.05) consumer acceptability of leg chops. These results indicate that LM from Hampshire x Rambouillet sheep displaying the callipyge phenotype had higher calpastatin activity and were less tender than the LM from normal sheep. In addition, consumer perceptions indicated that only one in 10 leg chops, one in five shoulder chops, and one in four loin chops from callipyge sheep were unacceptable.  相似文献   

17.
Mammalian skeletal muscle expresses splice variants of neuronal nitric oxide synthase (nNOS). Skeletal muscles have a metabolically heterogeneous population of myofibers, and fiber composition in equine skeletal muscle is correlated with athletic ability in endurance events. In this study, we investigated whether nNOS expression in equine skeletal muscle is related to fiber type and endurance training. Biopsy samples obtained from the gluteus medius of sedentary- (SH) and endurance-trained (TH) horses were examined for the electrophoretic mobility of myosin heavy chain (MHC) and NOS activity. Serial tissue cross-sections were stained for myosin ATPase and nicotinamide adenine dinucleotide (NADH) reductase, and also immunostained for nNOS. The gluteus medius of TH had higher levels of nNOS expression and activity when compared to muscle from SH. In SH, nNOS was restricted to the subsarcolemmal area while in TH nNOS was also present at cytoplasmic sites. A splice variant of nNOS was heterogeneously distributed among the different myofibers, its expression being higher in fast-oxidative-glycolytic type IIA fibers than in fast-glycolytic type IIX fibers and absent in slow-twitch type I fibers. Trained horses had a significantly higher relative content of type IIA fibers, a greater oxidative capacity, and a lower percentage of type IIX fibers when compared with SH. The differences in muscle fiber typing between the 2 groups of horses reflected alterations that probably resulted from the endurance-training program. Overall, these results show that nNOS is differentially expressed and localized in the gluteus medius according to the fiber type and the athletic conditioning of the horses.  相似文献   

18.
19.
The histologic and histochemical staining characteristics of the triceps brachii (long head), extensor carpi radialis, gluteus medius, vastus lateralis, biceps femoris, semimembranosus, semitendinosus, and extensor digitorum longus muscles of 8 Thoroughbreds, 2 Quarter Horses, 1 Arabian, 1 Paso Fino, and 1 Shetland Pony are described. Muscle fiber morphology, staining distribution and intensity, amount of IM connective tissue, number of IM blood vessels and IM nerves, calcium-activated adenosine triphosphatase activity (CaATPase), percentage of fibertype population, percentage of relative fibertype area, mean fiber diameter, nonspecific esterase activity, alkaline phosphatase activity, and acid phosphatase activity were evaluated, using 10 common histochemical and histologic stains. Two fiber types (I, II) and 3 subtypes (IIA, IIB, IIC) were observed, using CaATPase-, nicotinamide-adenine dinucleotide-tetrazolium reductase-, periodic acid-Schiff hematoxylin-, and nonspecific esterase-stained frozen serial muscle sections. Type I muscle fibers in general had low CaATPase activity, high oxidative capacity, low glycogen capacity, and low esterase activity. Type IIA muscle fibers had high CaATPase activity, intermediate oxidative capacity, high glycogen concentration, and high esterase activity. Type IIB fibers had high CaATPase activity, low oxidative capacity, high glycogen concentration, and a high esterase activity. Type IIC muscle fibers had high CaATPase activity, high oxidative capacity, variable glycogen concentration, and high esterase activity. Type II (IIA and IIB) muscle fibers predominated in the muscles. The percentage of muscle fiber population, mean minimal muscle fiber diameter, and percentage of relative muscle fiber area were determined for each sampled muscle. Type IIA and IIB muscle fibers predominated in the percentage of muscle fiber population and percentage of relative muscle fiber area. Type IIB muscle fibers had the greatest minimal fiber diameter, type IIA muscle fibers had intermediate minimal fiber diameter, and type I muscle fibers had the smallest minimal fiber diameter. The percentage of relative muscle fiber area was less variable (P less than or equal to 0.05) than the percentage of muscle fiber population. Mean muscle fiber diameter did not significantly differ between breeds. Alkaline and acid phosphatase activities were at low levels in all muscles biopsied and were limited to the IM connective tissue fibrocytes, macrophages, and capillaries.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
To establish normal histologic and histochemical data and to determine reference values for fiber type proportions (percentages, mean fiber diameters, atrophy and hypertrophy factors, and variability coefficients), a histochemical study was carried out on intrinsic muscles of the larynx (cricothyroid, cricoarytenoid lateralis, cricoarytenoid dorsalis, and thyroarytenoid muscles) of clinically normal dogs. Using myosin adenosine triphosphatase stain under acidic preincubation (pH 4.3) conditions, 3 histochemical fiber types--1, 2A, and 2C--were recognized. The percentage of type-2C fibers varied from 1 to 2% in thyroarytenoid muscles to approximately 10% in cricoarytenoid lateralis muscles. There was no significant difference in mean diameter between left- and right-side specimens of each muscle for type 1 vs type 2. The largest fibers (mean +/- SD) of both types were observed in the cricothyroid muscles (type 1, 38.19 +/- 7.76 microns; type 2, 43.25 +/- 8.66 microns), and the smallest fibers were found in the thyroarytenoid muscles (type 1, 29.38 +/- 5.12 microns; type 2, 33.84 +/- 6.20 microns). Respective mean diameters of fiber types from cricoarytenoid dorsalis (type 1, 32.05 +/- 5.69 microns; type 2, 38.95 +/- 7.75 microns) and cricoarytenoid lateralis (type 1, 33.75 +/- 5.98 microns; type 2, 37.09 +/- 7.01 microns) muscles were similar. The histographic distribution of fiber type diameters was unimodal in all muscles. In each muscle, the mean fiber diameter of type-2 fibers was greater than that of type-1 fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号