首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambrosia artemisüfolia L. (common ragweed) and Digitaria ischaemum Schreb. (smooth crabgrass) are not controlled by nicosulfuron and rimsulfuron at the highest recommended application rates, whereas Panicum miliaceum L. (wild proso millet), Amaranthus retroflexus L. (redroot pigweed) and Avena fatua L. (wild oat) are susceptible. The foliar absorption and translocation of 14C-nicosulfuron and 14C-rimsulf uron were studied in these weed species up to 48 h after treatment (HAT). Differences in herbicide uptake and translocation were not correlated with the species susceptibility. By 48 HAT, more than 50% of both herbicides remained on the treated leaf surface. Foliar absorption of rimsulfuron was greater than that of nicosulfuron in A. retroflexus, P. miliaceum and A. artemisüfolia. Most of the absorbed herbicide remained in the treated leaf of each weed species. Export of 14C–nicosulfuron ranged from 28 to 54% of that absorbed, in contrast to 15 to 39% for 14C–rimsulfuron. The absorption and translocation rates of both herbicides were highest within the initial 6 HAT, and decreased thereafter. Both herbicides showed approximately the same distribution pattern within each weed species.  相似文献   

2.
Investigations were conducted to elucidate the mechanism of selectivity of the auxin herbicide, quinmerac, in cleavers (Galium aparine) and the tolerant crops sugarbeet (Beta vulgaris), oilseed rape (Brassica napus) and wheat (Triticum aestivum). After root treatment with the herbicide, the selectivity has been quantified as approximately 400-fold between oilseed rape and Galium and 1000-fold between sugarbeet or wheat and the weed species. When 1 and 10 μM [14C]quinmerac were applied for 4 h, no significant differences between root absorption and translocation of 14C by Galium and the crop species were found. After 16 h, metabolism of [14C]quinmerac to the biologically inactive hydroxymethyl and dicarboxylic acid derivatives was more rapid in wheat and sugarbeet than in Galium. In oilseed rape, a lower rate of herbicide metabolism was observed. In Galium, accumulations of abscisic acid (ABA), triggered by quinmerac-stimulated ethylene biosynthesis, were found to cause the herbicidal growth inhibition which develops during 24 h of application. Within 1 h of treatment, quinmerac stimulated 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity and ACC concentration specifically in Galium shoot tissue. During the next 4 h, ACC synthase activity was increased up to 50-fold, relative to the control. Within 3 h of exposure to quinmerac, increased ethylene formation followed by higher ABA levels was detected. In sugarbeet, oilseed rape and wheat, quinmerac did not stimulate ACC synthase activity and ACC and ABA levels. It is suggested that (i) the selectivity of quinmerac is primarily based upon the lower sensitivity to the herbicide of the tissue/target in the crop species, (ii) the induction process of the ACC synthase activity in the shoot tissue is the primary target of herbicidal interference. In wheat and sugarbeet, tolerance to quinmerac is additionally increased by a more rapid metabolism. © 1998 SCI.  相似文献   

3.
Studies of the absorption and translocation of 14C-2,4-D in Chenopodium album L., Galinsoga parviflora Cav., Datura stramonium L. and Galium aparine L. in relation to their susceptibility gave the following results: In G aparine (resistant) there was little transport of 2,4-D applied to the leaves, and a probable relationship between resistance and the immediate binding of the 2,4-D in the treated leaf. D. stramonium (relatively resistant) transported 2,4-D in considerable amounts alter uptake through the leaf, while C. album (very susceptible) and G. parviflora (susceptible) were intermediate in respect of 2,4-D translocation. No relationship between susceptibility of these four species and 2,4-D uptake and translocation from the leaves could be established. After application to the root systems of the four species, 2,4-D was taken up and translocated in the shoot to varying extents. In G. aparine much 2,4-D was taken up and translocated. In contrast to leaf application, the herbicide was not immediately converted into a strongly-held immobile form. In C. album, G. parviflora and D. stramonium, however, no 2,4-D was translocated in the shoot. There was thus no correlation between susceptibility and shoot transport of 2,4-D in the four species studied. Distribution du 2,4-D marqué au 14C dans des espèces de mauvaises herbes présentant des sensibilités diverses  相似文献   

4.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

5.
Members of the Convolvulaceae family are known to be sensitive to aminocyclopyrachlor, although little is known about the absorption, translocation and metabolism of the herbicide in these species of weed. The aim of this study was to evaluate the absorption, translocation and metabolism of 14C‐aminocyclopyrachlor in young plants of Ipomoea purpurea and Ipomoea triloba. Assessments were performed at 3, 6, 12, 24, 48 and 72 h after treatment (HAT) for the study of absorption and translocation. Metabolism was assessed at three time points (3, 24 and 72 HAT). In terms of absorption, was observed a difference between species at the 3 and 48 HAT time points, where I. purpurea had a higher absorption of 14C‐aminocyclopyrachlor. No differences were observed between species at any other time points. Of the total absorbed herbicide, 90.9% for I. purpurea and 91.8% for I. triloba were detected on the treated leaf. I. purpurea presented higher translocation to the leaf above the treated leaf, while I. triloba showed higher translocation to the lower leaves and roots. No increase in absorption of 14C‐aminocyclopyrachlor was observed above 24 HAT for I. purpurea and above 6 HAT for I. triloba, and translocation was low (<1%) for both species in all plant parts. This suggests that post‐emergence application of aminocyclopyrachlor cannot be effective for the control of I. purpurea and I. triloba and alternative approaches are required. Nevertheless, no 14C‐aminocyclopyrachlor metabolites were observed in the studied plants, which indicated sensitivity in I. purpurea and I. triloba to the herbicide.  相似文献   

6.
The absorption, translocation and metabolism of the selective pre- or early post- emergence herbicide epronaz (N-ethyl-N-propyl-3-propylsulphonyl-1,2,4-triazole-1-carboxamide) were investigated using selected crop and weed species. The pattern of tolerance to epronaz of both germinating seeds and 10-day-old plants grown in nutrient solution, was found to be soybean (Glycine max L.) > maize (Zea mays L.) > cotton (Gossypium hirsutum L.) > rice (Oryza sativa L.) > barnyard grass [Echinochloa crus-galli (L.) Beauv.]. In all species, absorption and translocation of 14C from a nutrient solution containing [14C]epronaz (0.02 μCi ml?1) increased with time. Autoradiographic and liquid scintillation analysis indicated the presence of radioactivity in the apical regions of all species after 4 h. Interspecies variation in uptake and distribution did not appear to be a major factor explaining selectivity, although the resistance of cotton may be partly due to compartmentalisation of 14C in the lysigenous glands in stem and leaves. Analysis of extracts from plants treated with [14C]epronaz indicated the presence of epronaz, its major degradation product [3-propylsulphonyl-l,2,4-triazole (BTS 28 768)] and certain unknown radio-labelled compounds. The major metabolite (Unknown I) was believed to be a conjugate of certain plant components with either epronaz or BTS 28 768. The rate of formation of Unknown I corresponded to the relative resistance and susceptibility to epronaz of soybean, rice and barnyardgrass. The level of the herbicide remained much higher in cotton than in the other species, possibly reflecting compartmentalisation and inactivation of epronaz in the lysigenous glands. For maize, high levels of uptake, exudation and degradation in the nutrient solution were recorded.  相似文献   

7.
‘Sylgard® 309’ organosilicone surfactant is a very effective adjuvant for broadleaf weed control with a number of herbicides. It is also effective in providing rainfastness lo these post-emergence herbicide applications. To elucidate the basis for herbicide activity enhancement and rainfastness, the absorption of [14C]acifluorfen, [14C]bentazone and [14C]‘Sylgard 309’ were studied. Non-ionic surfactants and crop oil concentrates were used as adjuvants with [14C]acifluorfen and [14C]bentazone, respectively, for purposes of comparison. Maximum absorption of [14C]acifluorfen and [14C]bentazone was obtained within 15 min after herbicide application with the organosilicone, versus ≥ 24 h with the convenlional adjuvants. [14C]-Organosilicone absorption closely paralleled that of the [14C]-herbicides. The organosilicone appears to exert its action by increasing greatly herbicide absorption. The enhancement effect did not appear to be a function of reduced surface tension. Rainfastness appeared to be a result of greatly accelerated herbicide penetration through the leaf cuticle in the presence of the organosilicone.  相似文献   

8.
Interactions between the weeds Bromussterilis L., Galium aparine L. and Papaver rhoeas L. were investigated over 3 years of continuous winter wheat (Triticum aestivum L.) across a factorial combination of organic and conventional fertilizer, and ploughing and hand-roguing contrasted with minimum tillage and herbicide. The species were sown separately and together at 50 seeds m?2 per species at the start of the experiment in October 1989. In addition, there were weed-free and background-weed controls. Weed densities were monitored at roughly monthly intervals and crop yield recorded for three seasons. B. sterilis populations increased 10-fold under minimum tillage, but declined under ploughing. Densities of P. rhoeas remained largely low. G. aparine increased on the organically fertilized minimum-tillage plots, except where B. sterilis was present; the high densities of B. sterilis reduced the population size of G. aparine. Crop yield was influenced most strongly by the fertilizer treatment in the first season, but later the density of B. sterilis was by far the most important factor; the evidence of interactive effects of the different weed species on crop yield was weak at best. Interactive effects of arable weed species can be observed, but only at very high densities, and so are unlikely to be of widespread economic importance.  相似文献   

9.
The effects of a range of herbicide doses on crop–multiple weed competition were investigated. Competitivity of Galium aparine was approximately six times greater than that of Matricaria perforata with no herbicide treatment. Competitivities of both weeds decreased with increasing herbicide dose, being well described by the standard dose–response curve with the competitivity of M. perforata being more sensitive than that of G. aparine to a herbicide mixture, metsulfuron‐methyl and fluroxypyr. A combined model was then developed by incorporating the standard dose–response curve into the multivariate rectangular hyperbola competition model to describe the effects of multiple infestation of G. aparine and M. perforata and the herbicide mixture on crop yield. The model developed in this study was used to predict crop yield and to estimate the herbicide dose required to restrict crop yield loss caused by weeds to an acceptable level. At the acceptable yield loss of 5% and the weed combination of 120 M. perforata plants m?2 and 20 G. aparine plants m?2, the model recommends a mixture of 1.2 g a.i. ha?1 of metsulfuron‐methyl and 120 g a.i. ha?1 of fluroxypyr.  相似文献   

10.
Glyphosate has been associated with control failures for Spermacoce verticillata in some Brazilian States. The objective of this work was to evaluate and determine the possible causes of this and propose alternative herbicides to use. Glyphosate was applied at three plant stages of development (2–4 leaves, 4–6 leaves and full bloom) where foliar absorption and translocation of glyphosate to various plants parts and time were analysed using the 14C technique. Data were submitted to nonlinear regressions and analysis of variance, where means were compared by a Tukey test at 5% probability. Plant control by the application of different herbicides (19) in the same three stages of development of weed was evaluated. Twenty‐one days after herbicide application, control was visually evaluated and data analysed and means were compared. Due to absorption and/or translocation problems, S. verticillata plants were not controlled by glyphosate. Plants with 4–6 leaves showed lower absorption and translocation of the herbicide to the leaf/root regions compared with plants at the beginning of their development. Plants at full bloom showed lower translocation of the herbicide to the root. In addition to the application of glyphosate at early stages of development, the application of paraquat, flumioxazin and mixtures of glyphosate with flumioxazin or cloransulam is recommended. Late applications could result in poor control, principally if glyphosate is used. Therefore, early applications are strongly recommended for control of this species.  相似文献   

11.
The uptake and translocation of [14C]asulam (methyl 4-aminophenyl-sulphonylcarbamate), [14C]aminotriazole (1-H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail), a weed of mainly horticultural situations. Under controlled-environment conditions, 21°C day/18°C night and 70% r. h., the test herbicides were applied to 2-month-old and 2-year-old plants. Seven days following the application of 0.07-0.09 °Ci (1.14mg) of the test herbicides to young E. arvense, the accumulation of 14C-label (as percentage of applied radioactivity) in the treated shoots, untreated apical and basal shoots was as follows: [14C]asulam, 13.2, 0.18 and 1.02%; [14C] aminotriazole, 67.2, 3.65 and 1-91%; [14C]glyphosate, 35.9, 0.06 and 0.11%. The equivalent mean values for the accumulation of 14C-label in 2-year-old E. arvense were [14C]asulam, 12.0, 1-15 and 1.74%; [14C]aminotriazole, 58.6, 9.44 and 4.12%; [14C]glyphosate, 33.1, 0.79 and 2.32%. In the latter experiment, test plants received 0.25-0.30 °Ci (4mg) of herbicide, they were assessed after a 14-day period and the experiment was carried out at 3-week intervals between 2 June and 25 August on outdoor-grown plants. Irrespective of test herbicide or time of application, very low levels of 14C-label accumulated in the rhizome system. Only 0.2% of the applied radioactivity was recovered in 2-year-old plants and 0.4% in 2-month-old plants. In the young plants [14C]asulam accumulated greater amounts and concentrations of 14C-label in the rhizome apices and nodes than [14C]aminotriazole or [14C]glyphosate treatments. Inadequate control of E. arvense under field conditions may be due to limited basipetal translocation and accumulation of the test herbicides in the rhizome apices and nodes.  相似文献   

12.
Experiments were conducted to examine the up take, translocation and metabolism by S. vulgaris of two distinctly different herbicides: 2,4-D, a phenoxyalkanoic acid with growth regulator activity to which this species exhibits complete tolerance, and chlorsulfuron, a sul-fonylurea to which S. vulgaris is highly sensitive. Despite their structural dissimilarities 2,4-D and chlorsulfuron was readily absorbed by S. vulgaris with 65 and 69%, respectively, of the applied dosage being absorbed within 72 hours after treatment. Approximately 35% of the 2,4-D and 10% of the chlorsulfuron label was translocated out of the treated leaf after 72 hours. Neither herbicide accumulated in the terminal bud. Seventy-two hours after treatment 63% of the recovered 14C remained as unaltered 2,4-D in S. vulgaris, while in tomato, a 2,4-D sensitive species, 65% of the recovered 14C remained as intact herbicide. In S. vulgaris approximately 86% of the radioactivity remained as intact chlorsulfuron 72 hours after treatment compared to 12% in the tolerant wheat. The tolerance of S. vulgaris to 2,4-D could not be accounted for by limited absorption, translocation nor metabolic degradation of the herbicide. The sensitivity of S. vulgaris to chlorsulfuron would appear to be related to the inability of this species to metabolize the herbicide molecule.  相似文献   

13.
Effects of density and period of competition by Solanum nigrum L. on direct seeded tomatoes in relation to weed control The effects of density and period of competition from Solanum nigrum L. were measured in direct seeded tomatoes given weed control treatments currently used in south-east France. S. nigrum emerging after a diquat treatment at the 2–3 leaf stage of the crop and thinned to low densities (<12.8 plants ha?1) at the 5–6 leaf stage of the crop caused significant yield loss if left to compete with the crop until harvest. Yield reduction was smaller if the same weed densities were present only until the onset of flowering. The regression curves of yield on weed density differed as annual climatic variations affected sowing date and plant growth; a comparison between years was made using the relation ‘crop yield × weed biomass/crop biomass’. Significant interactions between weed density and period of competition were found with yield of both green and red fruit. For late sown crops with low densities of S. nigrum two weed control treatments at the 5–6 leaf stage and at the onset of flowering were sufficient to prevent yield loss.  相似文献   

14.
The effect of non-ionic nonylphenol (NP) surfactants containing 4–14 ethylene oxide (EO) molecules on the distribution of asulam and diflufenican was investigated in Pteridium aquilinum L. Kuhn and Avena fatua L. The distribution of the herbicides was dependent on the EO content and concentration of surfactant and differed between plant species and herbicide. The surface properties of contact angle, droplet diameter and surface tension were examined. For solutions of asulam, the greatest reductions in contact angle, surface tension and greatest droplet diameter were obtained with surfactants of EO 6.5–10 (at 0.001–0.1%). For solutions of diflufenican, these responses were greatest when applied with surfactant of EO 4. Surfactants of EO 6.5–10 increased the uptake and translocation of [14C]asulam in P. aquilinum, particularly at surfactant concentrations of 0.01 % and 0.1 %. All surfactants increased uptake of [14C]asulam in A. fatua with no significant effects of surfactant EO number or concentration. For both species, there was a positive correlation between the optimum surface characteristics of the herbicide droplets and the uptake of asulam. With diflufenican, greatest uptake and translocation by mature frond tissue of P. aquilinum occurred at the highest concentration of surfactant EO 4; in A. fatua, however, uptake and translocation were not significantly affected by any of the surfactants.  相似文献   

15.
The influence of four different wetting agents on the foliar retention, uptake and herbicidal activity of the glutamine synthetase inhibitor, glufosinate, was examined in growth-chamber experiments on barley (Hordeum vulgare L. cv Roland) and barnyard grass (Echinochloa crus-galli (L.) P.B.) as test species. The non-formulated monoammomum salt, glufosinate-ammonium, was applied as a spray, either alone or mixed with a wetting agent. The dose rates of herbicide and wetting agent were 0.5 g a.i. litre?1 and 2.0 g litre?1, respectively, on barnyard grass, and 2.0 g a.i. litre?1 and 60 g litre?1, respectively, on barley. Herbicide damage, rated 10 days after spraying, was greatest when glufosinate was used with a sodium C12/C14-alcohol-diglycolether sulfate (FAEO-sulfate) and least with polyoxyethylene (POE)(8) tridecyl ether; intermediate effectiveness was obtained with a combination of herbicide and a POE(15) tridecyl ether or POE(15)-tallow amine. The activity of the target enzyme, glutamine synthetase, measured 2 h after spraying, was reduced most when FAEO-sulfate was present and least with POE(8) tridecyl ether. The behaviour of the glufosinate wetting agent solutions on plant foliage was analysed by measurements of spray retention, droplet contact angles and foliar uptake of [14C]glufosinate. The results led, for both grass species, to the conclusion that differential ability of the wetting agents to enhance the permeation of glufosinate from the leaf surface deposit into the leaf tissue was the main factor responsible for the differences in herbicidal effectiveness of the glufosinate/wetting agent combinations used in this study.  相似文献   

16.
The metabolism of cyanazine (2-chloro-4-(1-cyano-1-methyl-ethylamino)-6-ethylamino- 1,3,5-triazine) by corn (Zea mays, L.), fall panicum (Panicum dichotomiflorum Michx.), and green foxtail (Setaria viridis L.) was compared. Cyanazine metabolism by plants at the four-leaf stage was examined by thin-layer chromatography following foliar or root treatments with 14C-cyanazine. Five days following foliar 14C-cyanazine applicalion, fall panicum and green foxtail contained a larger number of water- and chloroform-soluble metabolites than corn, whereas, following root treatment, the opposite was true. Corn rapidly hydrolysed the nitrile group and hydroxylated the two-position on the triazine ring. Accumulation of the dealkylated cyanazine was evident in green foxtail, the most susceptible of the species studied. Metabolism of cyanazine supplied to the roots appeared to differ from foliar treatments in the weed species as more unchanged cyanazine was recovered. Rapid metabolism of cyanazine by corn roots provided evidence for an active cyanazine detoxication mechanism in the roots.  相似文献   

17.
In 393 field experiments in Baden‐Württemberg region in south‐western Germany, herbicide efficacy, yield loss and crop tolerance of maize (Zea mays) were investigated between 1981 and 2011. The collected data served to determine changes in weed frequencies, in herbicide use, yield loss functions and economic thresholds (ETs). Over 60 weed species were reported. Chenopodium album and Galium aparine were the most frequent broad‐leaved weeds, the former becoming more frequent over time. Species of the genera Lamium, Polygonum, Veronica and Matricaria occurred in about every fifth trial. Alopecurus myosuroides and Echinochloa crus‐galli were the most frequent grass weeds; the former declining in frequency by 1.1% per year, the latter increasing by 1.5%. Results suggest a weed population shift towards thermophilic species. aceto‐lactate‐synthase and 4‐HPPD‐inhibitor herbicides became important in the 1990s. Pendimethalin and bromoxynil have been integral components of weed control since the 1980s. ETs, the point at which weed control operations provide economic returns over input costs, ranged between 3.7% and 5.8% relative weed coverage. Without weed control, no yield increase was found over 24 years. Yield increased by 0.2 t ha ? 1 year ? 1, if weeds were controlled chemically. Despite intensive use of effective herbicides in maize, problematic weed species abundance and yield losses due to weed competition have increased in Baden‐Württemberg over a period of 30 years.  相似文献   

18.
Imazapyr absorption, translocation, root release and metabolism were examined in leafy spurge (Euphorbia esula L.). Leafy spurge plants were propagated from root cuttings and [14C]imazapyr was applied to growth-chambergrown plants in a water + 28% urea ammonium nitrate + nonionic surfactant solution (98.75 + 1 + 0.25 by volume). Plants were harvested two and eight days after herbicide treatment (DAT) and divided into: treated leaf, stem and leaves above treated leaf, stem and leaves below the treated leaf, crown, root, dormant and elongated adventitious shoot buds. Imazapyr absorption increased from 62.5% 2 DAT to 80.0% 8 DAT. Herbicide translocation out of the treated leaf and accumulation in roots and adventitious shoot buds was apparent 2 DAT. By the end of the eight-day translocation period only 14% of applied 14C remained in the treated leaf, while 17% had translocated into the root system. Elongated and dormant adventitious shoot buds accumulated 3.2- and 1.8-fold more 14C, respectively, 8 DAT than did root tissue based on Bq g?1 dry weight. Root release of 14C was evident 2 DAT, and by 8 DAT 19.4% of the 14C reaching the root system was released into the rooting medium. There was no metabolism of imazapyr in crown, root or adventitious shoot buds 2 DAT; however, imazapyr metabolism was evident in the treated leaf 2 and 8 DAT. Imazapyr phytotoxicity to leafy spurge appears to result from high imazapyr absorption, translocation to underground meristematic areas (roots and adventitious shoot buds), and a slow rate of metabolism.  相似文献   

19.
20.
The antagonism of haloxyfop-ethoxyethyl (HE) by selected phenoxy herbicides was evaluated through studies of the foliar absorption and translocation of 14C]HE in oat (Avena sativa L.). Uptake of [14C]HE, from simultaneous application in mixture with a phenoxy herbicide, was inhibited by the latter in the order MCPB MCPA2,4-D. In mixtures, the foliar absorption of [14C]HE was reduced more by salts of the phenoxy herbicides than by the corresponding butyl esters. 2,4-D-butyl enhanced uptake of [14C]HE. The application rate of phenoxy herbicides (from 0.5 to 1.5 kg a.e. ha?1) did not affect the uptake of [14]HE, but did influence translocation. Movement of [14C]herbicide out of the treated leaf was less than 5% of the total 14C applied; translocation was significantly reduced by all phenoxy herbicides and was antagonized most by 2,4-D-salt and least by MCPB-butyl. Phenoxy salts invariably reduced [14C]HE translocation more than the corresponding butyl esters. Prior application of phenoxy salts reduced uptake of [14C]HE, but this antagonism was reduced as the time interval between spray applications increased. Translocation of 14C out of the treated leaf was antagonized most by prior application of 2,4-D, and by phenoxy salt formulations. When applied up to 2 days after HE, phenoxy salts reduced uptake, but translocation of 14C was generally unaffected. Les effets antagonistes du 2,4-D, du MCPA et du MCPB sur la pénétration et la migration de l'haloxyfop-éthoxyéthyl dans l'avoine (Avena sativa L.) L'effet antagoniste de plusieurs herbicides de type phénoxy à l'égard de l'haloxyfopéthoxyéthyl (HE) a étéétudié dans des études de pénétration foliaire et de migration du [14C]HE chez l'avoine (Avena sativa L.) Lorsqu'il est appliqué en mélange avec un herbicide phénoxy, la pénétration du [14C]HE est inhibée dans l'ordre suivant: MCPB MCPA 2,4-D. La pénétration foliaire du [14C]HE était davantage réduite par les sels d'herbicides phénoxys que par les esters butyles correspondants. Le 2,4-D butyle augmentait la pénétration du [14C]HE. La dose d'herbicides phénoxys (de 0,5 à 1,5 kg m.a. ha?1) n'affectait pas la pénétration de [14C]HE mais modifiait sa migration. La migration d'herbicide 14C hors de la feuille traitée était inférieure à 5 % de la radioactivité appliquée. Elle était significativement réduite par tous les herbicides phénoxys, le plus par le sel de 2,4-D et le moins par le MCPB-butyle. Les phénoxys sous forme de sels diminuaient toujours la migration du [14C]HE davantage que les esters butyles correspondants. Si l'application de phénoxys sous forme de sel précédait celle de [14C]HE, sa pénétration était réduite mais cet antagonisme était réduit lorsque l'intervalle de temps entre les deux applications était augmenté. La migration de 14C hors de la feuille traitée était le plus diminuée par le 2,4-D et par les phénoxys sous forme de sels. Quand ils étaient appliqués jusqu'à deux jours après [14C]HE, les phénoxys sous forme de sel réduisaient sa pénétration, mais la migration de 14C n'était généralement pas affectée. Antagonistische Wirkung von 2,4-D, MCPA und MCPB auf die Aufnahme und Translokation von Haloxyfop-ethoxyethyl in Hafer (Avena sativa L.) Die antagonistische Beeinflussung von Haloxyfop-ethoxyethyl (HE) durch ausgewählte Phenoxy-Herbizide wurde anhand der Blattaufnahme und Translokation von [14C]HE in Hafer (Avena sativa L.) untersucht. Die Aufnahme von [14C]HE bei gleichzeitiger Anwendung in Mischung mit einem Phenoxy-Herbizid wurde durch die letztgenannten Stoffe in der Reihenfolge MCPB MCPA 2,4-D gehemmt, wobei die Salz-Verbindungen stärker wirkten als die entsprechenden Butylester. 2,4-D-butyl förderte die Aufnahme von [14C]HE. Die Aufwandmenge der Phenoxy-Herbizide (0,5 bis 1,5 kg AS ha?1) blieb ohne Einflus auf die Aufnahme von [14C]HE, beeinflußte aber die Translokation. Aus den behandelten Blättern wurde weniger als 5 % der gesamten [14C]Menge transloziert; die Translokation wurde durch alle PhenoxyHerbizide signifikant reduziert, am meisten durch 2,4-D-Salz, am wenigsten durch MCPB-butyl. Die Salz-Verbindungen verminderten die [14C]HE-Translokation mehr als die entsprechenden Butylester. Eine vorausgehende Behandlung mit den Salz-Verbindungen senkte die Aufnahme von [14C]HE, aber mit zunehmender Zeit zwischen den Anwendungen nahm dieser Antagonis mus ab. Hierbei war der Einfluß von 2,4-D und von den Salz-Verbindungen am stärksten. Wurden diese Stoffe bis zu 2 Tagen nach HE ausgebracht, beeinträchtigten sie die Aufnahme, jedoch im allgemeinen nicht die Translokation von 14C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号