首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
A range of insecticides was applied at recommended application rates against populations of Myzus persicae (Sulzer) carrying various combinations of three insecticide resistance mechanisms (carboxylesterase-based metabolic resistance and two target-site mechanisms, known as MACE and kdr), supported on either Chinese cabbage or potatoes in field simulator cages. Patterns of response were similar on both host species. MACE conferred extreme resistance to pirimicarb and triazamate (dimethylcarbamate insecticides). The kdr mechanism was associated with resistance to lambda-cyhalothrin, cypermethrin and deltamethrin (pyrethroid insecticides). A mixture of pirimicarb plus lambda-cyhalothrin was only effective against M persicae not carrying kdr or carrying kdr and low carboxylesterase-based resistance. None of the insecticides tested was effective against M persicae carrying both MACE and kdr resistance. The implications of these findings for the formulation of control strategies, based on regular monitoring of resistance genotype frequencies, are discussed.  相似文献   

2.
In this paper we analysed the basis of insecticide resistance in 59 Italian strains of the peach potato aphid Myzus persicae using both molecular and biochemical assays. Our data as a whole clearly indicate that most M. persicae strains (76.3%) have high or extremely high production of an esterase enzyme which sequester and detoxify insecticides with esteric group. Kdr genotypes conferring resistance towards pyrethoids are present in 57.7% of the analysed populations. Moreover, 26.5% of the kdr positive strains possess also the M918T mutation conferring super-kdr phenotype. Strains with modified AChE (MACE) are not so numerous (27.1%), although they can be found almost everywhere in Italy. Considering all the strains analysed, both MACE and kdr phenotypes are associated with high levels of esterase activity. In Central–Southern regions, kdr and MACE resistance mechanisms resulted in linkage disequilibrium. Bioassays performed in order to evaluate the efficacy of a pyrethroid insecticide against a strain possessing a F979S mutation within its para-type sodium channel gene suggests that this amino acid substitution could affect the sodium channel responsivity to pyrethroids.  相似文献   

3.
Advances in understanding insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer), at the genotypic, biochemical and molecular levels have led to rapid and precise methods for the detection of several resistance mechanisms (elevated carboxylesterase, modified acetylcholinesterase or MACE, and knockdown resistance or kdr) in individual insects, and for monitoring their frequencies over space and time. This paper summarises the results of two long-term surveys of resistance dynamics in M persicae in England, based on samples collected directly from field and glasshouse crops or from four 12.2-m suction traps. The study showed marked fluctuations in resistance frequencies that probably reflect the counteracting forces of selection imposed by insecticides for aphids possessing more copies of esterase resistance genes, and selection against these forms when insecticide use is relaxed. There is growing evidence that several different resistance mechanisms in M persicae have associated fitness costs. In the case of esterase and MACE, these costs are apparently strong enough to effect a decline in resistance frequency over winter, and a more prolonged decline over successive cropping seasons when aphid numbers are insufficient to trigger intensive chemical applications. Changes in the overall frequency of resistance genotypes may also be influenced by the predominance of year-round parthenogenesis in M persicae in the UK, leading to non-random associations between mechanisms and selection operating on clonal lineages rather than individual genotypes.  相似文献   

4.
BACKGROUND: The accuracy of predicting the survival of insecticide‐resistant aphids following the application of commonly used insecticides from the carbamate, the pyrethroid, a mix of the two or the neonicotinoid chemical classes was evaluated in a potato field in Scotland. Equal proportions of five genotypes of the peach‐potato aphid, Myzus persicae (Sulzer), with none, resistance to dimethyl‐carbamates, resistance to pyrethroids or combinations conferring resistance to both chemical classes were released into potato field plots. The insecticides were sprayed separately onto these plots, the aphid populations were analysed after 6–8 days and the process repeated. RESULTS: For each assessment after the three separate spray events, plots treated with the carbamate had 48, 147 and 28%, those treated with pyrethroid 53, 210 and 89%, those treated with carbamate/pyrethroid 28, 108 and 64% and those treated with neonicotinoid 43, 55 and 11% of the numbers of M. persicae by comparison with untreated controls. Only the proportions of surviving aphids from the genotype containing no insecticide resistance traits and the genotype containing elevated carboxylesterases matched ratios predicted from the selective advantage afforded by the resistance traits alone. Survival of aphids from the other three genotypes that carried 1–3 of the insecticide resistance traits differed from expectations in all cases, possibly owing to physiological differences, including their vulnerability to predators and hymenopterous parasitoids present at the site and/or their carrying unknown insecticide resistance mechanisms. CONCLUSION: Control strategies based on knowledge of the genetically determined insecticide resistance profile of an M. persicae population alone are insufficient. Hence, other important factors contributing to aphid survival under insecticide pressure need to be considered. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Parthenogenetic clones of the green peach aphid, Myzus persicae (Sulzer), and the cotton aphid, Aphis gossypii Glover, were tested with the anthranilic diamide insecticide cyantraniliprole (i.e. DuPont? Cyazypyr?) in systemic‐uptake bioassays to investigate potential for cross‐resistance conferred by mechanisms of insecticide resistance to organophosphates, carbamates and pyrethroids and, in the case of M. persicae, reduced sensitivity to neonicotinoids. These data were compared with the response of field samples of M. persicae and A. gossypii collected from around Europe. RESULTS: Cyantraniliprole was not cross‐resisted by any of the known insecticide resistance mechanisms present in M. persicae or A. gossypii. The compound was equally active against resistant and susceptible aphid strains. The responses of the M. persicae field samples were very consistent with a maximum response ratio of 2.9 compared with a standard laboratory clone. The responses of the A. gossypii field samples were more variable, although a majority of the responses were not statistically different. CONCLUSION: Cyantraniliprole is currently the only anthranilic diamide (IRAC MoA 28) insecticide targeting aphid species such as M. persicae and A. gossypii. There is no evidence to suggest that the performance of this compound is affected by commonly occurring mechanisms that confer resistance to other insecticide chemistries. Cyantraniliprole is therefore a valuable tool for managing insecticide resistance in these globally important pests. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
Laboratory bioassays applying the neonicotinoid insecticides imidacloprid, acetamiprid and nitenpyram against clones of the peach-potato aphid Myzus persicae (Sulzer) demonstrated that these compounds effectively circumvent the known carboxylesterase, modified acetylcholinesterase (MACE) and knock-down (kdr) insecticide resistance mechanisms in this species. However, some clones showed cross-tolerance (up to 18-fold) of these compounds relative to susceptible standards. A survey assessing the frequency of neonicotinoid tolerance in M persicae in the UK, based on samples collected from the field and glasshouses between 1997 and 2000, showed that such tolerance is still rare. Experiments on neonicotinoid-susceptible and -tolerant populations of M persicae under simulated field conditions in the laboratory showed that, although the latter were well controlled by imidacloprid applied at recommended application rates, they were more likely to survive and reproduce when this compound was applied at lower concentrations. Such conditions are probably periodically present in imidacloprid-treated field and glasshouse crops. Selection favouring tolerant forms of M persicae could lead to increases in their frequency and the evolution of more potent resistance to neonicotinoids.  相似文献   

7.
Following the failure of insecticides to control Myzus persicae on sugar beet, populations from the field were examined for susceptibility to dimethoate. Topical application of discriminating doses of dimethoate showed a 30-fold variation in susceptibility between different populations. After this preliminary screening, clones were established from some populations and their resistance determined by both topical application and a systemic bioassay. This confirmed resistance to dimethoate and demonstrated resistance to demeton-S-methyl. There was no resistance to some other compounds tested. In all populations tested, resistance was associated with increased carboxylesterase activity.  相似文献   

8.
The peach-potato aphid Myzus persicae (Sulzer) has developed a number of insecticide resistance mechanisms owing to the high selective pressure produced by world-wide insecticide treatments. Knowledge of the geographical distribution and the temporal evolution of these resistant phenotypes helps to develop suitable pest-management programs. Current understanding of the major mechanisms of resistance at the molecular level makes it possible to diagnose the presence of modified acetylcholinesterase (MACE) or knockdown resistance (kdr). This paper describes a rapid method for the identification of both resistance mechanisms in a single molecular assay by using restriction fragment length polymorphism of PCR products (RFLP-PCR) in individual as well as pooled aphids.  相似文献   

9.
Only a few of the registered insecticides against Cydia pomonella L. are still effective in areas where insecticide resistance has emerged in this pest. Resistance mechanisms are multiple, and their lone or cumulative effects in a single population are not completely understood. A detailed estimation of resistance spectrum is still required to define the suitable insecticides to use against a given population. The efficacy of ten insecticides was therefore investigated together with the resistance mechanisms expressed in four laboratory strains and 47 field populations of C. pomonella from five countries. Bioassays were performed using topical applications of diagnostic concentrations on diapausing larvae, and resistance mechanisms were analysed on adults emerging from control insects. All populations exhibited a reduced susceptibility to at least one insecticide when compared with the susceptible laboratory strain. Cross-resistances were observed between azinphos-methyl or phosalone and more recent compounds such as spinosad and thiacloprid. Resistances to azinphos-methyl, diflubenzuron, spinosad, tebufenozide and thiacloprid were significantly correlated with mixed-function oxidase activity, while increased glutathione-S-transferase and reduced non-specific esterase activities were correlated with resistance to azinphos-methyl and emamectin, respectively. Conversely, resistances to azinphos-methyl, tebufenozide and thiacloprid were negatively correlated with increased esterase activity. None of the observed mechanisms explained the loss of susceptibility of populations to chlorpyrifos-ethyl, and no significant correlation was detected between resistance to deltamethrin and the presence of the kdr mutation. The suitability of such non-target instars to monitor insecticide resistance in field populations is discussed.  相似文献   

10.
Populations of the codling moth, Cydia pomonella L (Lepidoptera, Tortricidae) have developed resistance to several classes of insecticide such as benzoylureas, juvenile hormone analogues, ecdysone agonists and pyrethroids, but the corresponding resistance mechanisms have not been extensively studied. Knockdown resistance (kdr) to pyrethroid insecticides has been associated with point mutations in the para sodium channel gene in a great variety of insect pest species. We have studied two susceptible strains (S and Sv) and two resistant strains (Rt and Rv) of C pomonella that exhibited 4- and 80-fold resistance ratios to deltamethrin, respectively. The region of the voltage-dependent sodium channel gene which includes the position where kdr and super-kdr mutations have been found in Musca domestica L was amplified. The kdr mutation, a leucine-to-phenylalanine replacement at position 1014, was found only in the Rv strain. In contrast, the super-kdr mutation, a methionine-to-threonine replacement at position 918, was not detected in any C pomonella strain. These data allowed us to develop a PCR-based diagnostic test (PASA) to monitor the frequency of the kdr mutation in natural populations of C pomonella in order to define appropriate insecticide treatments in orchards.  相似文献   

11.
Pyrethroid resistance in field populations of Australian Helicoverpa armigera (Hübner) is primarily a consequence of the overproduction of esterase isoenzymes which metabolise and sequester pyrethroid insecticides. Biochemical studies have shown that pyrethroid-resistance-associated esterases in H armigera are inhibited by the insecticide synergist piperonyl butoxide (PBO). Esterase inhibition by PBO did not occur immediately after dosing, but exhibited maximum inhibition 3-4 h after dosage. Esterase activity subsequently recovered until full activity was restored by 24 h. Topical bioassays using a pre-treatment of PBO showed that maximum H armigera mortality was achieved with pre-treatment times corresponding to maximum esterase inhibition. These results demonstrated that, with correct temporal application, PBO can restore pyrethroid efficacy against H armigera. It would also be expected that restoration of efficacy with other conventional insecticides, currently compromised by esterase-based resistance mechanisms, would occur.  相似文献   

12.
The western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is a serious pest on a wide range of crops throughout the world. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance to insecticides. Pesticide resistance can have a negative impact on integrated pest management programmes with chemical control as one of the components. Resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity, and a haplodiploid breeding system. The mechanisms conferring insecticide resistance in insects can be divided into four levels. First, an altered behaviour can aid the insect to avoid coming into contact with the insecticide. Second, a delayed penetration through the integument will reduce the effect of the insecticide at the target site. Third, inside the insect, detoxification enzymes may metabolise and thereby inactivate the insecticide. Fourth, the last level of resistance mechanisms is alterations at the target site for the insecticide. Knowledge of resistance mechanisms can give information and tools to be used in management of the resistance problem. Recently, studies have been carried out to investigate the underlying mechanisms conferring resistance in F. occidentalis. It appears that resistance in F. occidentalis is polyfactorial; different mechanisms can confer resistance in different populations and different mechanisms may coexist in the same population. Possible resistance mechanisms in F. occidentalis include: reduced penetration, detoxification by P450-monooxygenases, esterases and glutathione S-transferases, and alterations of acetylcholinesterase, the target site for organophosphate and carbamate insecticides. Target site resistance to pyrethroids (knockdown resistance) may also be a resistance mechanism in F. occidentalis.  相似文献   

13.
Dengue is one of the most important vector-borne diseases worldwide and is a public health problem in Mexico. Most programs in dengue endemic countries rely on insecticides for Aedes control. In Mexico, pyrethroid insecticides (mainly permethrin and deltamethrin) have been extensively used over a decade as adulticides and represented a strong selection for insecticide resistance for dengue vectors in several parts of the country. We studied the type, frequency and distribution of insecticide resistance mechanisms in Aedes aegypti from six municipalities in the state of Guerrero selected on the basis of historically intense chemical control and a high risk for dengue transmission. Ae. aegypti eggs were collected from October 2009 to January 2010 using ovitraps. F1 adults, emerged from these collections, were exposed to permethrin, deltamethrin and DDT in WHO diagnostic tests and showed high resistance levels to both pyrethroids and DDT. This was consistent with the presence of increased metabolic enzyme activities and target site insensitivity due to kdr mutations. Biochemical assays showed elevated esterase and glutathione S-transferase activities in the six municipalities. The V1016I kdr mutation on the IIS6 domain of the sodium channel gene was present in an overall frequency of 0.80. A second mutation, F1534C on the IIIS6 domain of the same gene was also detected, being the first report of this mutation in Guerrero. The multiple resistance mechanisms present in Ae. aegypti from Guerrero state represent a warning for the efficacy of the pyrethroid usage and consequently for the success of the dengue control program.  相似文献   

14.
The prolonged use of dimethoate, introduced into Denmark to control houseflies (Musca domestica L.) that had become resistant to parathion and diazinon, resulted ultimately in dimethoate resistance. Selection with dimethoate led to the disappearance of the hydrolytic phosphatase, a major mechanism of resistance to parathion and diazinon, and its replacement by the acetylcholinesterase AChER with somewhat decreased sensitivity to inhibition by organophosphorus (OP) insecticides. The hydrolytic phosphatase probably disappeared because low substrate turn-over made it ineffective against dimethoxon (O, O-dimethyl S-methylcarbamoylmethyl phosphorothioate, also known as omethoate). which accumulates at higher concentrations than paraoxon (diethyl4-nitrophenyl phosphate) in the haemolymph. Dimethoate selected AChER preferentially because it improved the chances of houseflies surviving against the relatively poor AChE inhibitor dimethoxon, whereas its relatively small insensitivity to OP insecticides, unimportant against good inhibitors such as paraoxon, prevented its selection by parathion.  相似文献   

15.
辛氰和乐氰混剂对甘蓝桃蚜抗性演化的影响   总被引:8,自引:0,他引:8  
用辛硫磷与氰戊菊酯,乐果与氰戊菊酯的最佳配比及其相应单剂对甘蓝桃蚜进行抗性选育,汰洗20代时桃蚜对两种混剂的抗性,分别为4.20和2.68倍,比相应单剂的抗性发展速度慢,尤其比氰戊菊酯单剂(289倍)更慢,表明上述两种混剂都可延缓桃蚜的抗性发展。用酶抑制剂进行增效应用测定结果表明:K1和TPP对辛硫磷和乐果都有增效作用,尤以K1的增效作用更显著,其增效比分中辊为1053和38,说明桃蚜对辛硫磷和乐  相似文献   

16.
Experiments were done on commercial potato crops in the UK to investigate the effect of different insecticide sequences on the control and insecticide resistance status of Myzus persicae (Sulzer). The work was done to provide field validation of similar laboratory studies done in 'field simulators'. To ensure adequate aphid populations and to influence the initial resistance status of the aphid population, cultured M. persicae from a clone of known resistance status (esterase R1, kdr heterozygote, non-MACE (modified acetylcholinesterase)) were inoculated into both experiments. Two-spray programmes starting with lambda-cyhalothrin (a pyrethroid insecticide) gave poor control in comparison with programmes starting with pirimicarb (a carbamate insecticide) or pirimicarb-containing mixtures. This concurred closely with the results obtained from single applications in field simulator studies. Treatment sequences containing pymetrozine (a pyridine azomethine insecticide) were also effective, though slower-acting. This again concurs with field simulator studies. The proportions of aphids carrying different resistance mechanisms were largely unaffected by treatment in these experiments. The implications of these results for field control strategies are discussed.  相似文献   

17.
Of the 23 species of agricultural pest known to resist insecticides in China, 4 are cotton pests, 4 rice pests and 5 are pests of brassicae. In the green rice leafhopper, malathion resistance is caused by increased carboxylesterase (CarE) activity, which plays a more important role in the resistance to dimethoate than the mixed-function oxidases (mfos). The in-vitro and in-vivo results are in agreement with studies of synergism of malathion and dimethoate by TPP and EBP. These synergists delay the development of resistance, and EBP when added to malathion has limited the development of resistance to malathion in the green rice leafhopper. In the cotton aphid, resistance to organophosphates involves several factors: acetylcholinesterase (AChE) insensitivity, high CarE activity, slight (× 2) increase in glutathione S-transferases (GSH-ases), mfo activity as well as reduced penetration. In vitro, the I50 of the insensitive AChE is × 14 that of S aphids, and anaphthyl-acetate CarE hydrolysing activity is 70 times greater in R than in S aphids. Insecticide mixtures, alternation or rotation can delay build-up of resistance; resistance to malathion and trichlorfon was delayed in Culex pipiens pallens when the two insecticides were used together. Used singly each insecticide selected for high resistance within 25 generations. Mosaic rotation of dimethoate and fenvalerate delayed the onset of insecticide resistance in Lipaphis erysimi pseudobrassicae.  相似文献   

18.
采用玻璃管药膜法,建立了以吡虫啉、啶虫脒、噻虫嗪、噻虫胺、烯啶虫胺5种新烟碱类杀虫剂及氟啶虫胺腈对桃蚜室内敏感品系(SN)的LC90值作为区分剂量,测定桃蚜对6种杀虫剂敏感性变化的方法,并与浸叶法测得的抗性水平进行了相关性分析,验证了利用区分剂量快速测定桃蚜田间种群对6种杀虫剂抗性水平的准确性。结果表明:6种杀虫剂对桃蚜室内敏感品系的LC90值分别为150.01、1 170.81、54.19、951.34、245.98及133.60 ng/cm2。在此区分剂量下,河南省驻马店地区桃蚜种群(ZM)的死亡率在82%~96%之间;河北省玉田地区甘蓝桃蚜种群(GL)的死亡率在35%~82%之间,桃树桃蚜种群(TS)死亡率在3%~30%之间。分析表明,在选定的区分剂量下,桃蚜田间种群的死亡率与其对杀虫剂的抗性水平呈负相关,相关系数在0.818 8~0.999 9之间。同时,通过相关性方程计算得到的江苏省南京地区桃蚜种群(NJ)对6种杀虫剂的理论抗性水平与实际检测所得抗性水平结果接近。因此,以玻璃管药膜法确定的吡虫啉、啶虫脒、噻虫嗪、噻虫胺、烯啶虫胺及氟啶虫胺腈对桃蚜室内敏感品系的LC90值作为区分剂量,通过测定桃蚜田间种群的死亡率,可以快速表征田间种群对6种杀虫剂的敏感性变化,从而对其抗性水平进行初步评估。  相似文献   

19.
An attempt was made to achieve low environmental risk control of insect pests using sublethal concentrations of insecticides, enhanced by the effect of high temperatures (>25°C). For each of the insecticides imidacloprid, abamectin, pirimicarb and azadirachtin, the lethal and sublethal concentrations were determined for the green peach aphidMyzus persicae (Sulzer) (Homoptera: Aphididae) and its predator, the lady beetleHarmonia axyridis (Pallas). The lady beetle was more tolerant of all four insecticides, as well as of high temperatures below 40°C, compared with the prey. The joint action of sublethal concentrations of insecticides and high temperatures was investigated to determine the sublethal concentrations and temperatures that would be effective in controlling the aphids, but not detrimental to the beneficial lady beetle. The results suggested a synergistic effect of sublethal insecticide concentrations and high temperatures against the green peach aphid.  相似文献   

20.
草地贪夜蛾Spodoptera frugiperda是一种迁飞性害虫,源自美洲,已入侵非洲和亚洲部分国家并暴发成灾,2019年初入侵我国,严重威胁着我国玉米、小麦等粮食作物。目前草地贪夜蛾的防治主要依赖于化学农药和种植转基因作物。因长期使用农药,草地贪夜蛾已经对氨基甲酸酯类、有机磷酸酯类和拟除虫菊酯类等多种杀虫剂产生了不同程度的抗性。草地贪夜蛾对不同种类杀虫剂表现的抗性机制不同,主要有代谢抗性和靶标抗性2种。本文主要从代谢抗性和靶标抗性2个方面分别综述了草地贪夜蛾对不同种类杀虫剂的抗性机制,分析草地贪夜蛾对不同杀虫剂的抗性作用方式,并对草地贪夜蛾抗药性管理和监测进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号