首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-resistance potential of fipronil in Musca domestica   总被引:4,自引:0,他引:4  
The toxicity of fipronil to insecticide-susceptible houseflies and the cross-resistance potential of fipronil were determined for six insecticide-resistant laboratory housefly strains by topical application and feeding bioassay. The insecticide-resistant strains represented different levels and patterns of resistance to pyrethroids, organophosphates, carbamates and organochlorines. Five strains were almost susceptible to fipronil in feeding bioassay with resistance factors at LC50 between 0.36 and 3.0. Four of these strains were almost susceptible to topically applied fipronil (resistance factors at LD50 were 0.55, 0.83, 3.3 and 2.5, respectively), whereas one strain was 13-fold resistant to topically applied fipronil. A highly gamma-HCH-resistant strain, 17e, was 430-fold resistant to fipronil in topical application bioassay and 23-fold resistant in feeding bioassay at LD50/LC50. We also tested the toxicity of fipronil in a feeding bioassay and gamma-HCH in topical application bioassay on thirteen housefly field populations. Eleven of the field populations had resistance factors for fipronil ranging from 0.98 to 2.4 at LC50, whereas two populations were 4.0- and 4.6-fold resistant to fipronil. The resistance level to gamma-HCH at LD50 in the field populations ranged from 1.8- to 8.1-fold. The two strains showing fipronil resistance were 3.4- and 8.1-fold resistant to gamma-HCH. Fipronil and gamma-HCH toxicities were positively correlated in the field populations. Biochemical assays of esterase, glutathione S-transferase and cytochrome P450 monooxygenase indicated that the low fipronil resistance observed in laboratory and field strains could be caused by elevated detoxification or be due to a target-site resistance mechanism with cross-resistance to gamma-HCH.  相似文献   

2.
3.
The toxicity of spinosad, a new insecticide derived from the bacterium Saccharopolyspora spinosa, was evaluated against susceptible and resistant strains of house fly (Musca domestica L.). Spinosad was highly toxic to house flies based on 72-h LD50 values and the symptoms of poisoning were consistent with a neurotoxic mechanism of action. Spinosad was relatively slow acting, with the maximum toxicity noted at 72 h. Piperonyl butoxide and S,S,S,-tribu-tylphosphorotrithioate synergized the toxicity of spinosad by 3·0- and 1·8-fold, respectively, while diethyl maleate had no significant effect. These results suggest that there is a small degree of monooxygenase-mediated spinosad detoxification in house flies, while hydrolases may be only minimally important and glutathione transferases may have no role. There were no substantial levels of cross-resistance detected, except in the LPR strain where a low 4·3-fold cross-resistance was observed. The cyclodiene-resistant OCR strain was 2·7-fold more sensitive to spinosad than the susceptible strain (CS). These results suggest that cross-resistance may not be a limiting factor for the use of spinosad against house flies. © 1998 Society of Chemical Industry  相似文献   

4.
The house fly, Musca domestica L., is a widespread pest of intensively reared livestock, where its presence negatively affects growth and productivity through the irritation their activity causes. Furthermore, adult flies mechanically vector a wide range of animal and human pathogens and, as such, pose a health risk to both livestock and people. The development of resistance in M. domestica populations to most of the insecticides used against them, coupled with diminishing product availability in many regions, means that new fly control methods and materials are constantly required. In the present study, a formulation of allicin, a compound derived from garlic cloves, was evaluated against the eggs, larvae and adults of Musca domestica L.. An in-diet LD50 of 134 ppm against larvae was achieved, whilst marked ovicidal activity was also recorded. Adults were similarly affected when exposed directly and indirectly to surface residues of the compound. The results indicate that allicin exhibits potential to be used against filth flies through incorporation into their developmental substrates and, potentially, for the control of other economically important dipteran pests.  相似文献   

5.
BACKGROUND: Bait-formulated spinosad is currently being introduced for housefly (Musca domestica L.) control around the world. Spinosad resistance was evaluated in a multiresistant field population and strains derived from this by selection with insecticides. Constitutive and spinosad-induced expression levels of three cytochrome P450 genes, CYP6A1, CYP6D1 and CYP6D3, previously reported to be involved in insecticide resistance, were examined. RESULTS: In 2004 a baseline for spinosad toxicity of Danish houseflies where all field populations were considered to be susceptible was established. In the present study, females of a multiresistant field population 791a were, however, 27-fold spinosad resistant at LC50, whereas 791a male houseflies were susceptible. Strain 791a was selected with spinosad, thiamethoxam, fipronil and imidacloprid, resulting in four strains with individual characteristics. Selection of 791a with spinosad did not alter spinosad resistance in either males or females, but counterselected against resistance to the insecticides thiamethoxam and imidacloprid targeting nicotinic acetylcholine receptors. A synergist study with piperonyl butoxide, as well as gene expression studies of CYP6A1, CYP6D1 and CYP6D3, indicated a partial involvement of cytochrome P450 genes in spinosad resistance. CONCLUSION: This study reports female-linked spinosad resistance in Danish houseflies. Negative cross-resistance was observed between spinosad and neonicotinoids in one multiresistant housefly strain. Spinosad resistance involved alterations of cytochrome P450 gene expression. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
Genetic studies of glutathione-dependent reactions were conducted with a diazinon-resistant house fly strain in which resistance is controlled primarily by genes on chromsome II. The resistant strain was crossed with a susceptible strain which had mutant markers on chromosomes II, III, and V, and the F1 was backcrossed to the susceptible strain. Glutathione transferase activities of the resultant eight phenotypes were measured using 3,4-dichloronitrobenzene, methyl iodide, and γ-benzene hexachloride as substrates. High levels of all these activities are controlled by gene(s) on chromosome II. Further analysis was made by introducing diazinon resistance into a susceptible strain via genetic crossing-over. Intermediate activity levels for 3,4-dichloronitrobenzene and methyl iodide conjugations were introduced along with intermediate levels of resistance. Assays of individual flies of the synthesized strain revealed they were heterogeneous for glutathione-dependent activities, consisting of individuals with low, intermediate, and high transferase activity. Based on these results, high levels of the glutathione-dependent enzymes are not a major biochemical mechanism responsible for diazinon resistance. It was also demonstrated that glutathione S-aryltransferase and S-alkyltransferase in the house fly, as measured with 3,4-dichloronitrobenzene and methyl iodide, are inseparable genetically and may, therefore, be the same enzyme.  相似文献   

7.
8.
The toxicity of a promising new insecticide, imidacloprid, was evaluated against several susceptible and resistant strains of German cockroach and house fly. Imidacloprid rapidly immobilized German cockroaches followed by a period of about 72 h during which some cockroaches recovered. After 72 h there was no further recovery. Imidacloprid-treated houseflies were immobilized more slowly than treated cockroaches, with the maximum effect observed after 72 h, and there was no recovery. Based upon 72-h LD50 values imidacloprid was moderately toxic to German cockroaches (LD50 values were 6–8 ng mg-1) and had only low toxicity to house flies (LD50 140 ng mg-1). Piperonyl butoxide (PBO) blocked the observed recovery in German cockroaches. PBO also greatly enhanced the 72-h LD50 of imidacloprid from 43- to 59-fold in cockroaches and 86-fold in house flies. Two strains of German cockroach (Baygon-R and Pyr-R) showed >4-fold cross-resistance to imidacloprid. This cross-resistance could not be suppressed by PBO, suggesting that P450 monooxygenase-mediated detoxication is not responsible for this cross-resistance. Variation in the level of synergism observed with PBO (between strains) suggests the ‘basal’ level of monooxygenase-mediated detoxication of imidacloprid is quite variable between strains of German cockroach. The AVER and LPR strains of house fly showed significant cross-resistance to imidacloprid. PBO reduced the level of cross-resistance in AVER from >4·2-fold to 0·5-fold (i.e. the AVER strain LD50 was half that of the susceptible strain when both were treated with PBO), but PBO did not suppress the cross-resistance in LPR. These data suggest monooxygenases are the mechanism responsible for cross-resistance to imidacloprid in AVER, but not in the LPR strain. © of SCI.  相似文献   

9.
10.
After feeding 2,4-D or atrazine in a diet to southern armyworm (Spodoptera eridania Cram.) larvae for three days, the effect on total content and activities of cytochrome P450 and on insecticide toxicity were determined. Both 2,4-D and atrazine induced cytochrome P450-catalyzed aldrin epoxidation (AE) and methoxyresorufin O-demethylatin (MROD). The 2,4-D was a more potent inducer for total cytochrome P450 content, whereas atrazine disproportionately increased AE. Both compounds increased MROD significantly. The apparent kinetic characteristics of AE indicates that 2,4-D and atrazine induced similar P450 isozymes (Km 8.78 and 7.80 μM, respectively), which may differ from the constitutive isozyme (Km 3.14 μM). The 2,4-D-induced cytochrome P450 contributed to decreased carbaryl and permethrin toxicity, whereas the atrazine-induced cytochrome P450 caused decreased parathion and permethrin toxicity. The carbaryl toxicity correlated directly with 2,4-D-induced total P450 content and activities but not with atrazine-induced changes. The 2,4-D and atrazine also induced nonspecific esterase activity which may contribute to permethrin detoxification.  相似文献   

11.
12.
13.
Of six juvenile hormone analogs of the alkyl 3,7,11-trimethyl-2,4-dodecadienate type, only the isopropyl ester was strongly morphogenic in the house fly, Musca domestica L. In vitro assays revealed that house fly microsomes contain B-esterases as well as oxidases which metabolize such analogs. However, these esterases did not hydrolyze the isopropyl ester, ZR-515. Enzymes prepared from larvae, pupae, and adults were all active and there was evidence that in the late larval stage the esterase activity was cyclic, showing a minimum in the early third instar and a maximum a few hours later. When microsomes from two susceptible and two resistant house fly strains were compared for metabolic activity against the juvenile hormone analogs, those from the resistant strains were 1.3 to 20 × higher in oxidase activity but there was no difference in esterase activity. The oxidative metabolism of two analogs ZR-515 and 512 was greatly enhanced when the flies were induced with phenobarbital but there was no enhancement in metabolism of three of the remaining analogs and only a slight enhancement of a fourth. It is concluded that the insecticidal action of ZR-515 is largely due to its stability in the presence of the house fly esterases.  相似文献   

14.
BACKGROUND: Spider mites are important crop pests that rapidly develop resistance to acaricides. To investigate whether acaricide resistance is a threat to greenhouse rose culture in the Netherlands, the susceptibility of 15 strains of Tetranychus urticae was tested to several currently used acaricides, and resistance mechanisms were investigated. RESULTS: Although the observed levels of susceptibility differed between strains and acaricides, resistance was detected in most strains. The activity of detoxifying enzymes was significantly increased in most field‐collected strains, and a number of amino acid substitutions known to be involved in resistance were detected. CONCLUSIONS: Resistance levels to traditional acaricides such as bifenthrin and abamectin were prominent, and might result in control failure under field conditions. Resistance to more recently registered compounds was detected in several populations. Resistance levels were generally unstable in the laboratory without selection pressure. The toxicological, biochemical and genetic data in this study will be essential in devising an efficient resistant management for Dutch rose culture. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
于2011年采集北京、山东和湖南三地的烟粉虱,进行B、Q隐种鉴定,并测定4种杀虫剂的抗药性,同时通过荧光定量PCR分析CYP4v2和CYP6CX1两个基因的mRNA水平的表达量。结果表明,北京、湖南和长沙烟粉虱均为Q隐种。抗药性监测表明,北京和湖南种群对阿维菌素敏感,山东种群抗性水平较低,而对烟碱类药剂噻虫嗪出现不同程度的抗药性,其中湖南地区烟粉虱对噻虫嗪的抗药性达到49.08倍的高抗水平,北京和山东地区也达到中抗水平。另外,这3个地区的种群对毒死蜱和联苯菊酯抗性水平都较低。通过qRT-PCR分析三地的CYP4v2和CYP6CX1基因表达量,发现相对于敏感种群CYP4v2基因在北京、山东和湖南3个地理种群中分别过量表达3.85倍、19.57倍和10.78倍,而CYP6CX1基因在北京种群中过量表达20.55倍。结果提示田间烟粉虱的细胞色素P450基因CYP4v2和CYP6CX1过量表达可能会是烟粉虱抗药性的形成机制之一。  相似文献   

16.
17.
Neonicotinoids play an essential role in the control of house flies Musca domestica. The development of neonicotinoid resistance was found in two field populations. 766b was 130- and 140-fold resistant to imidacloprid and 17- and 28-fold resistant to thiamethoxam in males and females, respectively. 791a was 22- and 20-fold resistant to imidacloprid and 9- and 23-fold resistant to thiamethoxam in males and females, respectively. Imidacloprid selection of 791a increased imidacloprid resistance to 75- and 150-fold in males and females, respectively, whereas selection with thiamethoxam had minimum impact. Neonicotinoid resistance was in all cases suppressed by PBO. The cytochrome P450 genes CYP6A1, CYP6D1 and CYP6D3 were constitutively over-expressed in resistant strains and CYP6D1 and CYP6D3 differentially expressed between sexes. The highest level of CYP6A1 expression was observed in both gender of the imidacloprid-selected strain after neonicotinoid exposure. CYP6D1 expression was increased after neonicotinoid exposure in resistant males. CYP6D3 expression was induced in both sexes upon neonicotinoid exposure but significantly higher in females.  相似文献   

18.
19.
20.
A field population of brown planthoppers (Nilaparvata lugens St?l) was collected and selected for imidacloprid resistance in the laboratory. The resistance increased by 11.35 times in 25 generations and the resistance ratio reached 72.83 compared with a laboratory susceptible strain. The selected resistant strain showed obvious cross-resistance to all the acetylcholine receptor targeting insecticides tested (monosultap 1.44-fold, acetamiprid 1.61-fold, imidacloprid homologues JS599 2.46-fold and JS598 3.17-fold), but not to others. Further study demonstrated that TPP and DEM had no synergism on imidacloprid. However, PBO displayed significant synergism in some different strains, and the synergism increased with resistance (S strain 1.20, field population 1.43 and R strain 2.93). PBO synergism to cross-resistant insecticides was also found in the resistant strain (monosultap 1.25, acetamiprid 1.39, JS598 1.94 and JS599 2.02). We concluded that esterase and glutathione S-transferase play little role in imidacloprid detoxification. The increase of the P450-monooxygenases detoxification is an important mechanism for imidacloprid resistance and target resistance may also exist in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号