首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Studies were conducted to investigate the desorption of diuron and isoproturon adsorbed on undispersed clay loam soil, and the influence of residence time in soil on desorption. The soil was treated at 0·6 or 3 mg kg-1, at 70% moisture content and in the presence of sodium azide to prevent degradation. Measurement of herbicide concentrations in soil solution sampled by means of glass microfibre filters showed that adsorption mainly occurred for one day but long-term sorption proceeded for >two weeks. After a one-day or three-week residence time, soil solution was partly replaced (28%). Measurement of concentrations in solution showed rapid desorption, with equilibria being achieved within 1 h (diuron) or a few hours (isoproturon). After 16 successive desorptions done at 30-min or 12-h intervals, equilibration times tended to be longer. For the short residence time, desorption and long-term sorption could occur simultaneously and equilibration might be faster. Residence time had no significant effect on desorption kinetics nor on the small hysteresis observed for diuron. The aging effect, involving long-term sorption only, decreased the proportion of diuron removed from the soil by successive desorptions but, for isoproturon, desorption frequency and desorption kinetics were more important. © 1997 SCI  相似文献   

3.
The herbicide isoproturon [3‐(4‐isopropylphenyl)‐1,1‐dimethylurea] was incorporated in alginate‐based granules to obtain controlled‐release (CR) properties. The basic formulation (sodium alginate (1.87%)–isoproturon (0.67%) in water) was modified by addition of different sorbents. The effect on isoproturon release rate, modified by the incorporation of natural and acid‐treated bentonite in alginate formulation, was studied by immersion of the granules in water while shaking. The release of isoproturon was diffusion‐controlled. The time taken for 50% of the active ingredient to be released into water, T50, was longer for those formulations containing added bentonite (5.98 and 7.43 days, for natural and acid‐treated (1 M H2SO4) bentonite, respectively) than for the preparation without bentonite (3.78 days). The mobilities of non‐formulated technical grade (98%) and formulated isoproturon were compared using soil columns. The use of alginate‐based CR formulations containing bentonite reduced isoproturon movement compared with the technical product. Sorption capacity of the soil for isoproturon was measured using batch experiments (0.29 litre kg−1) and the results obtained here in agreement with those obtained under dynamic conditions. © 2000 Society of Chemical Industry  相似文献   

4.
5.
The effect of the monooxygenase inhibitor, 1-aminobenzotriazole (ABT) on isoproturon phytotoxicity and metabolism was studied in resistant (R) and susceptible (S) biotypes of Phalaris minor and in wheat (Triticum aestivum). Addition of ABT (2·5, 5 and 10 mg litre-1) to isoproturon (0·25, 0·5, 1, 2 and 4 mg litre-1) in the nutrient solution significantly enhanced the phytotoxicity of isoproturon against the R biotype. Isoproturon at 0·25 mg litre-1 reduced the dry weight (DW) of the S biotype by 77%, whereas the R biotype required 4·0 mg litre-1 for similar reduction. Addition of 10 mg litre-1 of ABT to the 0·25 mg litre-1 isoproturon caused 71 and 82% reduction in DW of R and S biotypes, respectively. Wheat was more sensitive to the mixture of isoproturon and ABT than the R biotype of P. minor. Reduced concentrations of ABT in the mixture from 10 to 2·5 mg litre-1 increased the DW of the R biotype more than that of the S biotype. The R biotype metabolised [14C]isoproturon at a faster rate than the S biotype. ABT (5 mg litre-1) inhibited the degradation of [14C]isoproturon in both biotypes of P. minor and in wheat. In the presence of ABT, about half of the applied [14C]isoproturon remained as parent herbicide in all the three species after two days. The metabolites were similar in the R and S biotypes and wheat as determined by co-chromatography with reference standards and mass spectroscopy (MS). ABT inhibited the appearance of the hydroxy and monomethyl metabolites and their conjugates in all the test plants. These results suggest that the activity of the enzymes responsible for the degradation of isoproturon is greater in the R than in the S biotype of P. minor, resulting in its rapid detoxification. Incorporation of the monooxygenase inhibitor ABT into the nutrient solution greatly inhibited the degradation of [14C]isoproturon in the R biotype and increased its phytotoxicity. Both hydroxylation and N-dealkylation reactions were found to be sensitive to ABT; inhibition of hydroxylation was greater than that of demethylation. Since ABT could not completely suppress isoproturon degradation, it is possible that more than one monooxygenase is involved. © 1998 SCI  相似文献   

6.
Changes in the concentrations of [14C]carbonyl-isoproturon and its degradation products in a clay-loam soil and in soil solution during incubation at 11°C and 18°C for 6 weeks, were measured following solvent extraction and soil solution sampling with glass microfibre filters. During herbicide degradation, 14CO2 was released (up to 20%) and unextractable radioactivity increased (up to 30%). Monomethyl isoproturon was the main metabolite in soil followed by metabolite X5 (possibly hydroxy di-des-methyl isoproturon). Isoproturon and monomethyl isoproturon were mainly adsorbed by soil whereas metabolite X5 was found mainly in the soil solution. Isoproturon concentrations declined in both soil and soil solution, but the percentage of the residual herbicide dissolved in the soil solution decreased from 26 to 15%. At low temperature, herbicide degradation occurred more slowly, and the degradation products were generally less abundant. However metabolite X5 was present at unexpectedly high levels, particularly in the soil solution. Evolution de l'isoproturon et de ses produits dégradation dans le sol et la solution du sol pendant l'incubation de Vherbicide a deux temperatures. L'évolution de l'isoproturon (marqué au 14C sur le carbonyle) et de ses produits de dégradation dans un sol argilo-limoneux et dans la solution du sol est suivie pendant 6 sêmaines d'incubation de l'herbicide à 11 et 18°C. Pour ce faire, la solution du sol est échantillonnée au moyen de filtres en fibres de verre et les composés sont extraits du sol par des solvants. Au cours de la dégradation, du 14CO2 est libéré (jusqu'à 20%) et la radioactivité non extraite s'accroit (jusqu'à 30%). L'isoproturon monométhyle est le principal métabolite dans le sol suivi du metabolite X5 (probablement le dérivé hydroxy didéméthylé). L'isoproturon et son dérivé monométhyle sont surtout adsorbés par le sol alors que le métabolite X5 est surtout en solution. La quantite d'iso-proturon diminue simultanemént dans le sol et la solution du sol mais la fraction dissoute de l'herbicide residuel décroit de 26 à 15%. A basse température, la dégradation de l'herbicide est plus lente et les produits de dégradation sont généralement moins abondants à l'exception notable du métabolite X5 qui est présent a un niveau élevé, en particulier dans la solution du sol. Veränderung der Konzentration von Isoproturon und seiner Abbauprodukte im Boden und in der Bodenlösung bei Inkubation Veränderung der Konzentration von [14C]-Car-bonyl-Isoproturon und seiner Abbauprodukte in einem Lehmboden und in der Bodenlösung wurden nach 6 Wochen Inkubation bei 11 und 18°C und Extraktion bzw. Probennahme durch Glasmikrofaserfilter gemessen. Während des Herbizidabbaus wurden bis zu 20 % der Radioaktivität als 14CO2 freigesetzt, und die nichtextrahierbare Radioaktivität nahm zu (bis zu 30 %). Monomethyl-Isoproturon war der Hauptmetabolit, gefolgt vom Metabolit X5 (möglicherweise Hydroxy-didesmethyl-Isoproturon). Isoproturon und Monomethyl-Isoproturon waren weitgehend an Bodenpartikeln adsorbiert, während der Metabolit X5 vorwiegend in der Bodenlösung gefunden wurde. Die Isoproturon-Konzentrationen nahmen sowohl im Boden als auch in der Bodenlösung ab, aber der Anteil des Herbizidrückstands in der Bodenlösung ging von 26 auf 15 % zurück. Bei der niedrigen Temperatur wurde das Herbizid langsamer abgebaut, und die Menge der Abbauprodukte war allgemein geringer. Der Metabolit X5 lag jedoch in unerwartet hoher Menge vor, besonders in der Bodenlösung.  相似文献   

7.
Sorption–desorption of the fungicide triadimefon in field‐moist silt loam and sandy loam soils were determined using low‐density supercritical fluid extraction (SFE). The selectivity of SFE enables extraction of triadimefon from the soil water phase only, thus allowing calculation of sorption coefficients (Kd) at field‐moist or unsaturated conditions. Triadimefon sorption was influenced by factors such as soil moisture content and temperature; sorption increased with increased moisture content up to saturation, and decreased with increased temperature. For instance, Kd values for triadimefon on the silt loam and the sandy loam soils at 40 °C and 10% water content were 1.9 and 2.5 ml g−1, respectively, and at 18% water content, 3.3 and 6.4 ml g−1, respectively. Isosteric heats of sorption (ΔHi) were −42 and −7 kJ mol−1 for the silt loam and sandy loam soils, respectively. Sorption–desorption was also determined using an automated accelerated solvent extraction system (ASE), in which triadimefon was extracted from silt loam soil by 0.01 M CaCl2. Using the ASE system, which is basically a fast alternative to the batch equilibration system, gave a similar ΔHi value (−29 kJ mol−1) for the silt loam soil (Kf = 27 µg1 − 1/n ml1/n g−1). In order to predict transport of pesticides through the soil profile more accurately on the basis of these data, information is needed on sorption as a function of soil water content. © 2000 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Sorption coefficients (the linear KD or the non‐linear KF and NF) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 KD and 55 KF) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. RESULTS: The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon KD. The pedotransfer function is KD = 1.7822 + 0.0162 OC1.5 ? 0.1958 pH (KD in L kg?1 and OC in g kg?1). For low‐OC soils (OC < 6.15 g kg?1), clay and pH are most influential. The pedotransfer function is then KD = 0.9980 + 0.0002 clay ? 0.0990 pH (clay in g kg?1). Benchmarking KD estimations showed that functions calibrated on more specific subsets of the data perform better on these subsets than functions calibrated on larger subsets. CONCLUSION: Predicting isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site‐ or soil‐specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) KOC values calculated on a large dataset or (d) KOC values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Degradation if isoproturon and availability of residues in soil The availability and degradation of 14C-ring-labelled isoproturon in soil was investigated over 140 days under controlled laboratory conditions. Degradation of the active ingredient followed and 65 days later only a minor fraction (0.6%) of the parent molecule remained extractable. A demethylated-isoproturon metabolite was detectable in soil from day 15 (2.6%). The amount of 14CO2 derived from the 14C benzene ring label and liberated over time indicated that a total of 13.6% isoproturon was mineralized during the incubation period. In parallel, the amount of 14C residue extracted from the soil by water followed by methanol or remaining within the soil—analysed by combustion—was also determined at intervals. After 140 days, 72% of the radiolabel added remained in the soil as non-extractable residue. The degradation half-life of extractable isoproturon was an estimated 14 days.  相似文献   

10.
Long-term sorption of diuron and isoproturon by a clay loam soil was investigated for nine weeks at two herbicide doses (0·6 or 3 mg kg−1) and two soil moisture contents (35 or 62% w/w, i.e. 3·16 or 1 kPa) by measuring changes in herbicide concentrations in the soil solution sampled by means of glass microfibre filters in presence of sodium azide (200 mg litre−1) which inhibited biodegradation for more than four weeks. After the first day equilibration period, where adsorption mainly occurred (>70% adsorbed), herbicide concentrations in the soil solution decreased (about 50% for diuron; up to 38% for isoproturon) for two weeks but equilibration required about one month. Small amounts of herbicides were sorbed during this process (<10% of the initial (24-h) adsorption). These were similar for both herbicides, although diuron was initially more adsorbed. Values of the partition coefficients of herbicides between soil and soil solution were increased (75–125% for diuron; 29–67% for isoproturon). High soil moisture enhanced sorption speed for both herbicides and increased final sorption only for diuron. Sodium azide inhibited long-term sorption of the more stable diuron and this effect was reversed by low temperature only at the low soil moisture. Sodium azide action might be complex (competition, effect on soil micro-organisms) and was not elucidated.  相似文献   

11.
Isoxaflutole is a new pre-emergence corn herbicide which controls both grass and broadleaf weeds. Experiments were performed in the laboratory to study the sorption of isoxaflutole in five different soils (Moorhead, MN; East Monroe, CO; Ellendale, MN; South Deerfield, MA; and Chelsea, MI) using the batch equilibration technique. Total initial isoxaflutole solution concentrations for each soil were 0.05, 0.15, 0.3. 0.8, 1.5, 2.0 and 4.0 mg litre−1. Analysis of [ring-14C] isoxaflutole was performed using liquid scintillation counting, and sorption data were fitted with the Freundlich model. Isotherms of isoxaflutole in all the soils were non-linear as depicted by the exponent (n < 1.0), indicating differential distribution of sorption site energies in various soils. Since the isotherms were non-linear the data fit Freundlich's isotherm well, as was indicated by high values of the regression coefficient (r2). The Freundlich sorption coefficient ranged from 0.555 to 50.0 (litre nmg lnkg−1). Multiple regression of the sorption constant, KF against selected soil properties indicated that organic matter content was the best single predictor of isoxaflutole sorption (r2 = 0.999) followed by soil pH (r2 = 0.954). Clay content of the soils did not have a high correlation with KF values (r2 = 0.453), while the sorption of isoxaflutole was not influenced by the Ca2+ concentration in the soil solution. Isoxaflutole sorption increased with an increase in organic matter content of soils. Sorption of isoxaflutole decreased as the soil pH increased from 4.5 to 8.5, which was depicted by the reduction of KF values. Sorption of isoxaflutole to the soils varied with differences in binding energies. At a particular net energy value (E*), the corresponding site energy distribution [F(E*)] values followed the order, Chelsea, MI > Moorhead, MN > East Monroe, CO > South Deerfield, MA > Ellendale, MN. The negative magnitude of Gibbs free energy of sorption (ΔG x) indicates the spontaneity of the given sorption process in the soils from Moorhead, MN; East Monroe, CO and Chelsea, MI. © 1999 Society of Chemical Industry  相似文献   

12.
Alfalfa was root-treated with [14C]propham (isopropyl carbanilate[14C-phenyl(U)]) for 7 days and then harvested and freeze-dried. Rats and sheep were orally given either 14C-labeled alfalfa roots ([14C]root) or 14C-labeled alfalfa shoots ([14C]shoot). When the [14C]root was given, 6.5–11.0% of the 14C was excreted in the urine and 84.6–89.4% was excreted in the feces within 96 h after treatment. Less than 3% of the 14C remained in the carcass (total body—gastrointestinal tract and contents) 96 h after treatment. When [14C]shoot was given, 53.2–55.2% of the 14C was excreted in the urine, 32.1–43.4% was excreted in the feces, and the carcass contained 0.2–1.1% of the 14C 96 h after treatment. When the insoluble fraction (not extracted by a mixture of CHCl3, CH3OH, and H2O) of both alfalfa roots and shoots was fed to rats, more than 86% of the 14C was excreted in the feces and less than 3% remained in the carcass 96 h after treatment. The major radiolabeled metabolites in the urine of the sheep fed 14C shoot were purified by chromatography and identified as the sulfate ester and the glucuronic acid conjugates of isopropyl 4-hydroxycarbanilate. Metabolites in the urine of the sheep treated with [14C]root were tentatively identified as conjugated forms of isopropyl 4-hydroxycarbanilate, isopropyl 2-hydroxycarbanilate, and 4-hydroxyaniline. The combined urine of rats dosed with [14C]shoot and [14C]root contained metabolites tentatively identified as conjugated forms of isopropyl 4-hydroxycarbanilate, isopropyl 2-hydroxycarbanilate, and 4-hydroxyaniline.  相似文献   

13.
The adhesion of conidia of Monilinia fructicola to, and uptake of a biotic elicitor (pea-M. fructicola diffusate preparation) and two abiotic elicitors (actinomycin-D and CuCl2) by endocarp tissue of pea pods has been investigated in relation to the elicitation of pisatin. Conidia were found to rapidly adhere to the endocarp surface and were not readily dislodged by washing. The dynamics of elicitor uptake from the bathing solutions varied with the elicitor treatments. In the case of the biotic elicitor, bioassays of the solutions remaining on the endocarp surface for residual elicitor activity indicated there was a gradual loss of elicitor from the bathing solution. By 10 h, approximately 41% of the original elicitor activity had disappeared from the bathing solution. Direct measurement of actinomycin-D in the bathing solution showed that uptake appeared to begin about 6 h after its application. On the other hand, direct measurement of Cu2+ in the bathing solution showed that approximately 60% of the original concentration of Cu2+ rapidly disappeared from the bathing solution in the first 30 min.The results highlight the need for sustained contact between plant and fungus or elicitor in the bathing fluid of the infection-droplet or of the elicitor solution for the maximum outcome of the pisatin response.  相似文献   

14.
The distribution resulting from the drenching of soil with a suspension concentrate of [14C]metazoxolon was studied in the laboratory and the field. Penetration of soil columns was increased by (a) increasing the drench volume from 1 to 7.8 litres m?2, (b) changing the original soil moisture content from air-dry to field-capacity, and (c) including 1 % of ‘Renex 30’ surfactant in the drench. Penetration was greatest in soils containing large pores and was reduced when aggregates were broken down by sieving. Leaching the column with 1.56 cm of ‘rain’, 15 h after treatment, did not increase the penetration by metazoxolon. In all experiments, the maximum concentration of metazoxolon occurred in the top 2 cm of soil. Equivalent effects were found when metazoxolon was applied to a poorly-structured sandy clay loam in the field.  相似文献   

15.
Buffers and leaf discs of mature tobacco (Nicotiana tabacum L.) were utilized to study [14C]-ethylene and 14CO2 evolution from radiolabeled ethephon, (2-chloroethyl)phosphonic acid. Metabolic fate of [14C]ethephon in leaf discs was investigated by use of thin-layer chromatography, high-voltage paper electrophoresis, autoradiography, and liquid scintillation spectroscopy. The evolution of labeled ethylene generally increased with increasing buffer pH, buffer volume, and dosage of [14C]ethephon. [14C]Ethylene was evolved, increasingly with time, from [14C]ethephon either added to the buffer or applied to leaf discs. The rate of [14C]ethylene evolution was maximum during the first day and leveled off on the fourth day. More than 50% of the total [14C]ethylene evolution over a 96-hr period was recovered during the first 24 hr after [14C]ethephon application. No 14CO2 was evolved when [14C]ethephon was degraded in the presence of buffer or leaf discs. Only ethephon itself, and no detectable metabolite thereof, was discovered in the methanolic extract of the leaf disc tissue. An insignificant amount of 14C activity (approximately 2% of the extracted 14C) was detected in the residue. By means of gas chromatography, it was confirmed that in buffers and tobacco leaf tissue ethephon breaks down to release ethylene but not CO2.  相似文献   

16.
The in vivo metabolism of [14CH3S]- and [14CH3O]O,O,S-trimethyl phosphorothioate (OOS) was followed in rats after oral administration of threshold or LD50 toxic doses of 20 or 60 mg/kg. Similar metabolic studies were conducted with coadministration of 1% O,O,O-trimethyl phosphorothionate (OOO), which prevented all signs of delayed toxicity, including weight loss. When administered alone, OOS was metabolized mainly (50–60%) via removal of the CH3S moiety, which was largely converted to expired CO2. Approximately 20% of the compound was O-demethylated, presumably by conjugation with glutathione, and then further metabolized to CO2. Major urinary products were identified as O,O-dimethyl phosphoric acid (50–60%) and O,S-dimethyl phosphorothioic acid (~20%). Coadministration of OOO caused a slight decrease (~5%) in the cleavage of the CH3S moiety, indicated by a reduction in 14CO2 from [14CH3S]OOS and a quantitatively similar increase in the formation of O,S-dimethyl phosphoric acid. Limited pharmacokinetic studies indicated that OOS was rapidly absorbed and distributed throughout the body. Coadministration of 1% OOO caused a slight increase in the blood half-life of parent OOS when administered at 60 mg/kg. It was concluded that a small proportion of the cleavage of the CH3S moiety from OOS is involved in the intoxication process, and that this intoxication reaction is specifically inhibited by OOO.  相似文献   

17.
The potential to mineralize 2,4‐dichlorophenoxyacetic acid (2,4‐D), mecoprop, isoproturon and terbuthylazine was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. Laboratory microcosms were incubated for 258 days under aerobic conditions at 10 °C with soil and chalk from 0.15–4.45 m below the surface. The [ring‐U14C]‐labeled herbicides were added to obtain a concentration of 6 µg kg?1 and mineralization was measured as evolved [14C]carbon dioxide. The herbicides were readily mineralized in soil from the plough layer, except for terbuthylazine, which was mineralized only to a limited extent. In the chalk, lag periods of at least 40 days were observed, and a maximum of 51%, 33% and 6% of the added 2,4‐D, mecoprop and isoproturon, respectively, were recovered as [14C]carbon dioxide. Large variations in both rate and extent of mineralization were observed within replicates in chalk. No mineralization of terbuthylazine in chalk was observed. As a measure of the general metabolic activity towards aromatic compounds, [ring‐U14C]‐benzoic acid was included. It was readily mineralized at all depths. © 2000 Society of Chemical Industry  相似文献   

18.
Adsorption–desorption characteristics of 2,4-dichlorophenoxyacetic acid (2,4-D) on pure montmorillonite and synthetic chlorite-like complexes [Al(OH)x-montmorillonite complexes, obtained by coating montmorillonite surfaces with different amounts of Al(OH)x] were investigated. The equilibrium adsorption of 2,4-D was described by both Langmuir and Freundlich type isotherms. The extent of adsorption as well as the type of interaction between adsorbate and adsorbent was affected by the nature of incubation buffer and the charge characteristics of supports. At pH 5·6 and in acetate buffer, 2,4-D was negatively adsorbed by montmorillonite and herbicide adsorption capacity increased with increasing amounts of Al(OH)x species loaded on montmorillonite surfaces. When adsorption experiments were performed at the same pH but in phosphate buffer, strong reductions of both the amount of adsorbed pesticide and its affinity for the adsorbents were measured. Evidently, phosphate anions competed strongly with 2,4-D anions for the sorption site on chlorite-like complexes. Furthermore, desorption tests revealed that a large amount (about 60%) of the pesticide was firmly bound to the clay and was not removed even after repeated washings or 24 h exposure to desorption solution. Both electrostatic interactions between the negative COO- moieties of 2,4-D and the positive sites on clays, and ligand exchanges of COO- groups with -OH or water at the clay surface were probably involved in the adsorption process. ©1997 SCI  相似文献   

19.
Wheat (cv. WH-147) and five biotypes of Phalaris minor Retz. (KR-1, H-4, K-2, H-2 and J-1) were treated with isoproturon in controlled environmental conditions to assess their level of resistance. Resistance of P. minor to isoproturon was found in the order of KR-1 > H-4 > K-2 > H-2 = J-1. Compared with the susceptible (S) biotype (H-2), the resistant (R) biotypes (KR-1. H-4 and K-2) of P. minor required 13.0, 4.5 and 2.7 times higher doses of isoproturon for a 50% reduction in growth (GR50) and 2.4 times that of the S biotype (H-2) by wheat. The corresponding figures for KR-1, H-4, K-2 biotypes and wheat were 18, 4.1, 2.4 and 4.6 times based on dry weight reduction. The effect of isoproturon on photosynthesis was studied in vitro using five biotypes of P. minor and in viro with wheat. KR-1 (R) and H-2 (S) biotypes of P. minor. Under in vitro treatment conditions isoproturon inhibited the photosynthesis of all five P. minor biotypes, whereas in vivo the recovery was greater in the R biotype than in the wheat and the S biotype. Effects on chlorophyll fluorescence were also measured in wheat and the KR-1 (R) and H-2 (S) biotypes of P. minor. A 4-h treatment of excised leaves incubaled in isoproluron solution (0.025 and 0.05 mm concentration) resulted in a decreased fluorescence coefficient (Fv Fm ratio in which Fv= variable fluorescence (Fm - Fo): Fm= the maximum fluorescence and Fo= initial fiuorescence) in wheat (Triticum aestivum L.) and both biotypes of P. Minor. The recovery was, however, greater in the R biotype than in wheat and it was completely recovered within 24 h. No recovery was recorded in the case of the S biotype of P. minor and a greater recovery time was required for wheat than the R biotype. The higher dose required for growth inhibition in the R biotype and rapid recovery of oxygen evolution and fluorescence coeflicient under in viro conditions together with the absence of selectivity in vitro suggests that the target site was unaffected. It can be conjectured that resistance to isoproturon is most probably because of enhanced metabolism or sequestration of isoproturon, resulting in decreased target site delivery.  相似文献   

20.
BACKGROUND: Sorption largely controls pesticide fate in soils because it influences its availability for biodegradation or transport in the soil water. In this study, variability of sorption and desorption of isoxaflutole (IFT) and its active metabolite diketonitrile (DKN) was investigated under conventional and conservation tillage. RESULTS: According to soil samples, IFT KD values ranged from 1.4 to 3.2 L kg?1 and DKN KD values ranged from 0.02 to 0.17 L kg?1. Positive correlations were found between organic carbon content and IFT and DKN sorption. IFT and DKN sorption was higher under conservation than under conventional tillage owing to higher organic carbon content. Under conservation tillage, measurements on maize and oat residues collected from the soil surface showed a greater sorption of IFT on plant residues than on soil samples, with the highest sorbed quantities measured on maize residues (KD ≈ 45 L kg?1). Desorption of IFT was hysteretic, and, after five consecutive desorptions, between 72 and 89% of the sorbed IFT was desorbed from soil samples. For maize residues, desorption was weak (<50% of the sorbed IFT), but, after two complementary desorptions allowing for IFT hydrolysis, DKN was released from maize residues. CONCLUSION: Owing to an increase in organic carbon in topsoil layers, sorption of IFT and DKN was enhanced under conservation tillage. Greater sorption capacities under conservation tillage could help in decreasing DKN leaching to groundwater. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号