首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By means of standardized procedures, the metabolism of [ring-2,6-14C]-parathion was investigated in carrot (Daucus carota L.), purple foxglove (Digitalis purpurea L.), soybean (Glycine max Merrill cv. ?Mandarin’?, and Glycine max Merrill cv. ?Harosoy 63’? cultivated on B5 and Miller media, respectively), thorn apple (Datura stramonium L.), and wheat (Triticum aestivum L.) cell suspension cultures. In the wheat and soybean (Mandarin) cells only 2.9 and 8.9%, respectively, of the applied parthion remained unmetabolized after 48 h of incubation, while 51.2, 57.9, 60.3, and 62.4% of the unchanged parent were detected in the D. purpurea, D. Stramonium, carrot and soybean (Harosoy) cultures, respectively. In all suspensions, paraoxon and 4-nitrophenol were found as phase I metabolites, thus demonstrating that plant tissues can catalyse oxidative desulfuration and dearylation of parathion. 4-Nitrophenol was also glycosylated with glucose and possibly galactose. Further, as yet unidentified, metabolites indicated that bio-transformations had also occurred at the aromatic moiety. Large amounts of non-extractable residues were detected in the wheat suspension (38.3%), while the other cultures showed a lower incorporation of 14C into insoluble cell material (0.9-9.4%). For a prospective ecotoxicological evaluation of the metabolic fate of pesticides and xenobiotics in plants in general, the differential metabolic capacity of plant cell cultures and plants should be taken into account.  相似文献   

2.
The mineralization and formation of metabolites and nonextractable residues of the herbicide [14C]bromoxyniloctanoate ([14C]3,5-dibromo-4-octanoylbenzonitrile) and the corresponding agent substance [14C]bromoxynil ([14C]3,5-dibromo-4-hydroxybenzonitrile) was investigated in a soil from an agricultural site in a model experiment. The mineralization of maize cell wall bound bromoxynil residues was also investigated in the agricultural soil material. The mineralization of [14C]bromoxynil and [14C]bromoxyniloctanoate in soil within 60 days amounted up to 42 and 49%, respectively. After the experiments, 52% of the originally applied [14C]bromoxynil and 44% of the [14C]bromoxyniloctanoate formed nonextractable residues in soil. Plant cell wall bound [14C]bromoxynil residues were also mineralized to an extent of about 21% within 70 days; the main portion of 76% persisted as nonextractable residues in the soil. In bacterial enrichment cultures and in soil two polar metabolites were observed; one of it could be identified as 3,5-dibromo-4-hydroxybenzoate and the other could be described tentatively as 3,5-dibromo-4-hydroxybenzamide.  相似文献   

3.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

4.
Metabolism of the substituted diphenylether herbicide, acifluorfen [sodium 5-(2-chloro-4-trifluoromethylphenoxy)-2-nitrobenzoate], was studied in excised leaf tissues of soybean [Glycine max (L.) Merr. ‘Evans’]. Studies with [chlorophenyl-14C]- and [nitrophenyl-14C]acifluorfen showed that the diphenylether bond was rapidly cleaved. From 85 to 95% of the absorbed [14C]acifluorfen was metabolized in less than 24 hr. Major polar metabolites were isolated and purified by solvent partitioning, adsorption, thin layer, and high-performance liquid chromatography. The major [chlorophenyl-14C]-labeled metabolite was identified as a malonyl-β- -glucoside (I) of 2-chloro-4-trifluoromethylphenol. Major [nitrophenyl-14C]-labeled metabolites were identified as a homoglutathione conjugate [S-(3-carboxy-4-nitrophenyl) γ-glutamyl-cysteinyl-β-alanine] (II), and a cysteine conjugate [S-(3-carboxy-4-nitrophenyl)cysteine] (III).  相似文献   

5.
The β-D -glucoside conjugate of [14C]‘hydroxymonolinuron’, [phenyl-14C]-3-(4- chlorophenyl)-1-(hydroxymethyl)-1-methoxyurea-β-D -glucoside (HM-β-G) and its soil-bound residues, prepared as described, were used to estimate its bioavailability to earthworms and ryegrass plants. The results demonstrate that these bound residues were available to both earthworms and ryegrass. The concentration in the earthworms, expressed on a dry weight basis after 42 days of exposure, was equal to the surrounding soil. The earth worms were found to be more efficient in remobilising and absorbing soil-bound residues than ryegrass plants after 59 days of cultivation. Fractionation of the soil-bound residues showed that 29% of the radiocarbon was associated with fulvic acid, 20% with humic acid and 9% with the humin fraction. 4-Chlorophenylurea, a metabolite of HM-β-G proved to be a key compound in the formation of soil-bound residues. The amount of radioactivity (bound residues), recovered from soil through solubilisation by means of 0.5M -acid and alkali, seems to be a criterion for predicting the bioavailability of bound phenylurea residues. The half-life of soil-bound residues was estimated to be about 4.6 years.  相似文献   

6.
Cell suspension cultures of wheat and soybean were incubated with [14C]-1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT), [14C]-1,1-dichloro-2,2-bis-(4-chlorophenyl)ethene (DDE), and [14C]-2,2-bis-(4-chlorophenyl)acetic acid (DDA) under standardized conditions. Polar metabolites were formed in yields of 1–2.5% in the cases of DDT and DDE, and of 56% in the case of DDA. A nonpolar metabolite was only observed in the case of DDT in soybean. This metabolite was identified as DDE on the basis of cochromatography and mass spectroscopy. By the same methods DDA was identified as a major polar DDT metabolite of both soybean and wheat. The further conversion of DDA to hexose esters was demonstrated by chromatographic and mass spectroscopic comparison with synthetic DDA-β-d-glucopyranosyl tetraacetate. These studies suggest the metabolic sequence, DDT → DDA → DDA-hexose ester.  相似文献   

7.
The non-extractable residues of the fungicide cyprodinil formed in heterotrophic cell suspension cultures of wheat were studied by application of [2-pyrimidyl-14C] or [2-pyrimidyl-13C]cyprodinil. The main objective was to examine whether solid-state and liquid 13C NMR spectroscopy can be used to examine plant bound residues of pesticides. For 14C experiments, wheat suspensions grown on glucose as carbon source were treated with 10 mg litre(-1) of 14C-cyprodinil. After incubation for 12 days, 20% of applied 14C was detected as non-extractable residues. The cell debris were treated with 0.1 M HCl (reflux), 1.0 M HCl (reflux), buffer, or 2 M NaOH (50 degrees C); Bj?rkman lignin and acidolysis lignin fractions were also prepared from the debris. Radioactivity liberated and solubilized by these procedures was examined by thin-layer chromatography and high-performance liquid chromatography. The results showed that cyprodinil and primary metabolites contributed to the fungicide's bound residues. Most of the residues (12% of applied 14C) remained associated with polar or polymeric/oligomeric endogenous cell materials in a stable manner. For the study with 13C-cyprodinil, wheat suspensions were cultivated on 13C-depleted glucose for four growth cycles, resulting in maximum 13C depletion of the natural cell components to about 0.10%. During the fourth cycle, 13C-labelled cyprodinil was applied, and cells were incubated (12 days). Cell debris was prepared and examined by solid-state 13C NMR spectroscopy. Debris was then treated as described above in the 14C experiment. Solubilized fractions were analyzed by liquid 13C NMR spectroscopy. However, none of the 13C NMR spectra recorded gave utilizable or unambiguous results, and all exhibited large inconsistencies, especially concerning the data from the conventional 14C experiment.  相似文献   

8.
The dependence of the behaviour of metsulfuron-methyl on soil pH was confirmed during incubations under controlled laboratory conditions with two French soils used for wheat cropping. The fate of [14C] residues from [triazine-14C]metsulfuron-methyl was studied by combining different experimen-tal conditions: soil pH (8·1 and 5·2), temperature (28 and 10°C), soil moisture (90 and 50% of soil water holding capacity) and microbial activity (sterile and non-sterile conditions). Metsulfuron-methyl degradation was mainly influenced by soil pH and temperature. The metsulfuron-methyl half-life varied from five days in the acidic soil to 69 days in the alkaline soil. Under sterile conditions, the half-life increased in alkaline soil to 139 days but was not changed in the acidic soil. Metsulfuron-methyl degradation mainly resulted in the formation of the amino-triazine. In the acidic soil, degradation was characterised by rapid hydrolysis giving two specific unidentified metabolites, not detected during incubations in the alkaline soil. Bound residues formation and metsulfuron-methyl mineralisation were highly correlated. The extent of bound residue formation increased when soil water content decreased and was maximal [48 (±4)% of the applied metsulfuron-methyl after 98 incubation days] in the acidic soil at 50% of the water holding capacity and 28°C. Otherwise, bound residues represented between 13 and 32% of the initial radioactivity. © 1998 SCI  相似文献   

9.
The metabolism of the pyrethroid insecticide fenvalerate [(RS)-α-cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate] ( I ), and of its most insecticidal (αS,2S) isomer ( II ), has been examined in cabbage plants grown and treated under laboratory conditions with [14C]chlorophenyl- and [ring-14C]benzyllabelled preparations of the two compounds. Both insecticides disappeared from the treated leaves with similar half-lives of approximately 12–14 days; they underwent ester cleavage to a significant extent, together with some hydroxylation at the 2- or 4-position of the phenoxy ring, and hydrolysis of the nitrile group to amide and carboxyl groups. Most of the carboxylic acids and phenols thus produced occurred as glycoside conjugates. In separate experiments, the uptake and metabolism of 2-(4-chlorophenyl)-3-methylbutyric acid ( X ), the acidic half of the molecule, were examined in the laboratory, using abscised leaves of kidney bean, cabbage, cotton, cucumber and tomato plants. The acid X was found to be readily converted, mainly into glucose and 6-O-malonylglucose esters in kidney bean, cabbage and cucumber plants, into glucosylxylose, sophorose and gentiobiose esters in cotton, and into two types of triglucose esters with differing isomerism in tomato. One of the acetyl derivatives of the trisaccharide conjugates was identical with the synthetic deca-acetyl derivative of the [1 → 6]-triglucose ester.  相似文献   

10.
The fate of 4-chlorophenylurea in soils was studied with two preparations: one labelled with 14C in the phenyl ring and the other in the carbonyl group. The initial dose of 1 mg kg?1 decreased to 50% in about 5 weeks in aerobic sandy clay and in about 16 weeks in anaerobic hydrosoil. Soil treatment with each of the preparations resulted in the release of [14C]carbon dioxide, pointing to decarbonylation and ring opening. The fraction of non-extractable (soil-bound) radioactivity increased during incubation. Quantities of ring-14C-labelled and carbonyl-14C-labelled bound residues differed strongly in the aerobic soil but only slightly in the anaerobic hydrosoil. It is assumed that two sorts of bound residues are formed from 4-chlorophenylurea: one is fairly stable and might consist of bound 4-chloroaniline or its transformation products, whereas the other is presumed to be a degradable derivative of 4-chlorophenylurea.  相似文献   

11.
The metabolism of cis- and trans-1,3-dichloropropene (1,3-D) was studied in soybean plants grown in soil treated 24 days prior to planting with [U-14C]E- and Z-1,3-dichloropropene at 380 liters ha?1. Isolation and identification of the 14C residue from soybean plants at 84 days (forage) and 176 days (mature) after application showed that no 1,3-dichloropropene or its putative metabolites, 3-chloroallyl alcohol and 3-chloroacrylic acid, could be detected in any of the tissues. The components of the 14C residue included major plant constituents (i.e. fatty acids, protein, pigments, organic acids, sucrose and other carbohydrates, and lignin).  相似文献   

12.
The metabolism of [ 14 C]-4-nitrophenol and [ 14 C]-3,4-dichloroaniline (the xenobiotics are degradation products of parathion and propanil, respectively) was studied in cell suspension cultures of carrot (Daucus carota L.). 4-Nitrophenol was transformed almost quantitatively to water-soluble conjugates with minor amounts of non-extractable residues. The conjugates identified were 1-(O-β-D-glucopyranosyl)-4-nitrobenzene and 1-(6′-O-malonyl-O-β-D-glucopyranosyl)-4-nitrobenzene. In addition, two unidentified metabolites were observed, possibly a disaccharide and another malonylated glycoside of 4-nitrophenol. Time-course studies demonstrated that 4-nitrophenol was rapidly taken up and conjugated; all metabolites remained associated with the cells rather than nutrient medium. 3,4-Dichloroaniline was transformed quantitatively to water-soluble conjugates and bound residues (3.6%). The water-soluble metabolites were identified as 6′-O-malonyl-N-(β-D-glucopyranosyl)-3,4-dichloroaniline, N-(β-D-glucopyranosyl)-3,4-dichloroaniline and N-malonyl-3,4-dichloroaniline. A time-course study showed that the glucosides were formed initially, then decreased, possibly due to hydrolysis. This decrease was paralleled by an increase of the main metabolite, N-malonyl-3,4-dichloroaniline, which was predominantly recovered from the medium.  相似文献   

13.
The degradation of the wild oat herbicide flamprop-methyl [methyl DL -N-benzoyl-N-(3-chloro-4-fluorophenyl)alaninate] in four soils has been studied under laboratory conditions using 14C-1abelled samples. The flamprop-methyl underwent degradation more rapidly than its analogue flamprop-isopropyl. However, similar degradation products were formed, namely the corresponding carboxylic acid and 3-chloro-4-fluoroaniline. The latter compound occurred mainly as ‘bound’ forms although evidence was obtained of limited ring-opening to give [14C]carbon dioxide. The time for depletion of 50% of the applied herbicide was approximately 1-2 weeks in sandy loam, clay and medium loam soils and 2-3 weeks in a peat soil.  相似文献   

14.
The degradation of the wild-oat herbicide flamprop-isopropyl, [isopropyl (±)-N-benzoyl-N-(3-chloro-4-fluorophenyl)alaninate], in four soils has been examined under laboratory conditions with sampling times of up to 45 weeks after treatment. The major degradation product of [14C]flamprop-isopropyl in all soils at up to 10 weeks after treatment was the carboxylic acid (±)-N-benzoyl-N-(3-chloro-4-fluorophenyl)alanine. This compound in turn underwent degradation by loss of the benzoyl group and the propionic acid moiety, with evolution of [14C]carbon dioxide to form 3-chloro-4-fluoroaniline (CFA). The CFA was formed slowly in soil and occurred mainly as a bound form. There was evidence to show that the CFA was subsequently converted into other polar products. The time for depletion of 50% of the applied herbicide was approximately 10 weeks in sandy loam and medium loam soils, 11 weeks in a clay loam soil and 23 weeks in a peat soil.  相似文献   

15.
The effects of the herbicide isouron and of its plant degradation products designated as metabolite l {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-N-methylurea} and metabolite 2 {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-urea} on the metabolism of enzymatically isolated leaf cells of soybean [Glycine max (L.) Merr., cv. Essex] were compared under laboratory conditions. Photosynthesis, protein synthesis, ribonucleic acid synthesis, and lipid synthesis were assayed by the incorporation of NaH14CO3, [14C]-leucine, [14C]-uracil, and [14C]-acetate, respectively, into the isolated cells. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10 and 100 μM of the three herbicides. The urea derivative of isouron (metabolite 2) was the least active of the three compounds. The activity of the mono-methylated derivative of isouron (metabolite 1) was comparable to that of isouron and the sensitivity of the four processes to both chemicals decreased in the order: photosynthesis > ribonucleic acid synthesis > lipid synthesis > protein synthesis. The concentration of isouron that caused a 50% inhibition of photosynthesis of the isolated soybean leaf cells was calculated at 0.51 μM. The effects of isouron and metabolite 1 on photosynthesis, lipid and RNA synthesis appeared to be independent of incubation lime as maximal inhibition occurred within 30 min. Inhibition of protein synthesis by both chemicals was time-dependent, increasing in magnitude with concomitant increases in incubation time.  相似文献   

16.
Significant radioactivity detected in mature fruits, harvested from apple trees (Malus domestica Borkh., cv. ‘Golden Delicious’ and ‘Gloster’) that were soiltreated with [3,5-14C]amitrole, remained in the insoluble plant material after exhaustive extraction. These bound residues were solubilized with a mixture of pectinases and cellulases. Thus, separation and characterization of carbohydrates and xenobiotic moieties released during this procedure became possible. A part of the radiolabel was incorporated into natural products, indicating degradation of the applied amitrole and reassimilation of [14C] carbon dioxide.  相似文献   

17.
[14C]Flamprop-methyl administered orally to rats (3-4 mg kg?1 body weight) was excreted mostly via the faeces (78.7 and 61.6% in males and females, respectively). Elimination was rapid and 90% of the dose of 14C was excreted in faeces and urine 0-48 h after dosing. The distribution of 14C between faeces and urine was different in males and females. No expired [14C]carbon dioxide was detected and less than 2% of the dose remained in the animals 4 days after dosing. The predominant metabolic pathway was hydrolysis of the ester bond to afford the carboxylic acid which was excreted unchanged and as its glucuronide conjugate. Aromatic hydroxylation occurred at the para- and meta-positions of the N-benzoyl ring. N-(3)-Chloro- 4-fluorophenyl-N-(3,4-dihydroxybenzoyl)-DL -alaninate was also formed. This hydroxylated form of flamprop-methyl was partially O-methylated at the 3-hydroxy group. Flamprop-methyl was also metabolised and eliminated rapidly by dogs, mice and rabbits. The last of these three species afforded very little aromatic hydroxylation and also differed from the others in that the metabolites were eliminated mostly in the urine. Aromatic hydroxylation lay in the order: male rat = female rat > dog= mouse>rabbit (female).  相似文献   

18.
Ammonium sulphate and urea, but not potassium sulphate, increased the persistence of carbaryl in a flooded laterite soil with a low native nitrogen content (0.04%), but not in an alluvial soil with a higher nitrogen content (0.11%). Thus, NH4+ but not SO42-, contributed to the increased persistence of carbaryl. Likewise, ammonium sulphate increased the persistence of carbofuran in the laterite soil, but not in the alluvial soil. Significant accumulations of 1-naphthol and 2,3-dihydro-2, 2-dimethylbenzofuran-7-ol (‘carbofuran phenol’), in soils treated with carbaryl or carbofuran, suggested hydrolysis as the major pathway of degradation. Treatment of the two soils with ammonium sulphate, urea or potassium sulphate led to a decrease in soil-bound residues and an increase in the respective hydrolysis products, compared with untreated soils. Sorption studies indicated that NH4+ and SO42- compete with carbaryl, 1-naphthol and carbofuran for sorption and exchange sites in the complex soil system. Evolution of [14C]carbon dioxide from ring-14C in carbaryl and carbofuran was negligible. Consequently, after 40 days, more than 50% of the 14C in [14C]carbaryl and [14C]carbofuran remained in the soils as hydrolysis products (1-naphthol or 2,3-dihydro-2,2-dimethylbenzofuran-7-ol) plus soil-bound residues.  相似文献   

19.
Penetration and metabolism of [14C]vernolate in soybean [Glycine max (L.) Merr. var Ransom] pods and seeds were measured 0, 1, 4, 24, 48, or 72 hr after treatment which occurred at 40 days after flowering. Total 14C recovery decreased ca. 50% within 4 hr and the loss of 14C was considered to be a measure of volatility. Total nonpolar extractants decreased in a logarithmic pattern which approached 10% of total 14C recovered within 24–48 hr. Total polar extractants increased in a logarithmic pattern to a maximum of 90% of total 14C recovered within 24 hr. Seed nonpolar extractants never exceeded 2% of the total 14C recovered while pod nonpolar extractants consisted of vernolate plus an unidentified component that did not thin-layer chromatograph (TLC) as the sulfone or sulfoxide. Pod polar extractants increased with time to ca. 75% of the total 14C recovered (24–48 hr) and decreased to ca. 58% at 72 hr after treatment. Seed polar extractants averaged ca. 10% of total 14C recovered for the first 48 hr after treatment and then increased to 30% of total 14C recovered. Thus, [14C]vernolate per se concentration decreased to <1% of applied material within 72 hr through volatilization and degradation of nonpolar extractants to polar products. Polar metabolites showed two major patterns of vernolate detoxification. One detoxification system produced 14C-metabolites whose Rf's were equivalent to that reported in corn (Zea mays L.) [J. P. Hubbell and J. E. Casida, [J. Agric. Food Chem. 25, 404 (1977)] and accounted for <30% of the pod polar extractants. A second detoxification system was most prevalent in soybean pod and seed tissues and resulted in very rapid modification of vernolate with an unidentified product that was 85% of the extracted 14C within 4 hr after treatment and which decreased in concentration with time. Therefore, unexplained vernolate detoxification system(s) exist in soybean pod and seed.  相似文献   

20.
The biomineralization of [14C]glyphosate, both in the free state and as 14C-residues associated with soybean cell-wall material, was studied in soil samples from four different agricultural farming systems. After 26 days, [14C]carbon dioxide production from free glyphosate accounted for 34–51% of the applied radiocarbon, and 45–55% was recovered from plant-associated residues. For three soils, the cumulative [14C]carbon dioxide production from free glyphosate was positively correlated with soil microbial biomass, determined by substrate-induced heat output measurement and by total adenylate content. The fourth soil, originating from a former hop plantation, and containing high concentrations of copper from long-term fungicide applications, did not fit this correlation but showed a significantly higher [14C]carbon dioxide production per unit of microbial biomass. Although the cumulative [14C]carbon dioxide production from plant-associated 14C-residues after 26 days was as high as from the free compound, it was not correlated with the soil microbial biomass. This indicates that the biodegradation of plant-associated herbicide residues, in contrast to that of the free compound, involves different degradation processes. These encompass either additional steps to degrade the plant matrix, presumably performed by different soil organisms, or fewer degradation steps since the plant-associated herbicide residues are likely to consist mainly of easily degradable metabolites. Moreover, the bioavailability of plant-associated pesticide residues seems to be dominated by the type and strength of their fixation in the plant matrix. ©1997 SCI  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号