首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The fate of fenpropimorph and its metabolite fenpropimorphic acid was investigated in a silty sand soil and in a clayey silt soil. In laboratory and field experiments fenpropimorph disappeared without a lag phase. A few days after application fenpropimorphic acid was detected. Additional laboratory experiments with [14C]fenpropimorph emphasized the significance of mineralization and the formation of non-extractable residues. The determination of soil/water distribution coefficients of parent compound and metabolite yielded a higher leaching potential for fenpropimorphic acid due to its higher polarity. This was confirmed by performing a laboratory column test under worst-case conditions. Under field conditions, however, fenpropimorphic acid was detected only in the superficial soil layers (0–5 cm) of both investigation sites at very low concentrations.  相似文献   

2.
Chlortoluron hadàhalf-tire in soil of 4–6 weeks. The only metabolite identified was monomethyl chlortoluron, half-life 8 weeks. 3-Chloro-4-methylphenylurea hadàsimilar half-life but was not detected in soils treated with chlortoluron or monomethyl chlortoluron suggesting that 3-chloro-4-methylaniline was formed directly from monomethyl chlortoluron. This aniline hadàhalf-life of 1–2 days in soil, initial concentrations above 5 ppm yielding dimers and trimers predominantly C — N linked. Neither the aniline nor polymeric products were detected in chlortoluron treated soils, presumably because slow formation of the aniline was followed by rapid degradation which kept concentration low.  相似文献   

3.
The effects of soil temperature and soil moisture content on the rate of degradation of propyzamide in five soils were examined under controlled laboratory conditions. Half-lives in soils incubated at field capacity varied from 23 to 42 days at 25°C and from 63 to 112 days at 15°C. The variation in half-life at 25°C and 50% of field capacity was from 56 to 94 days. When the laboratory data were used in conjunction with the relevant meteorological records and soil properties in a computer simulation program, predicted degradation curves for propyzamide in four of the soils in micro-plots were in close agreement with those observed. Use of the program to predict residues of propyzamide in the fifth soil at crop maturity in a series of field experiments concerned with continuity of lettuce production gave values fairly close to those observed when appropriate corrections were made for initial recoveries.  相似文献   

4.
The degradation and formation of major chlorinated metabolites of terbuthylazine and atrazine in three soils (loamy clay, calcareous clay and high clay) were studied in laboratory experiments using molecules labelled with 14C on the s-triazine ring. Soil microcosms were treated with the equivalent of 1 kg ha-1 of herbicide and incubated in the dark for 45 days at 20(±1)°C. The quantity of [14C]carbon dioxide evolved in the soils treated with atrazine was negligible and could not be attributed to mineralization of the parent molecule. The mineralization of terbuthylazine accounted for 0·9–1·2% of the initial radioactivity. In the soils studied, the extrapolated half-lives varied from 88 to 116 days for terbuthylazine and 66 to 105 days for atrazine, with no significant differences for the three soils and the two molecules. The deethyl metabolites of the two s-triazines and the deisopropyl-atrazine metabolite appeared during the incubation in the three soils. The completely dealkylated metabolite was not detected in any of the soils. After 45 days of incubation, the non-extractable soil residues for the high clay, loamy clay and calcareous clay soils represented for terbuthylazine, 33·5, 38·3 and 43·1% and for atrazine, 19·8, 20·8 and 22·3% of the initial radioactivity. © 1997 SCI.  相似文献   

5.
咪鲜胺及其代谢物在水稻中的残留检测方法及残留动态   总被引:8,自引:0,他引:8  
采用气相色谱电子捕获检测(GC-ECD)研究了杀菌剂咪鲜胺及其代谢物在水稻中的总残留量检测方法。经简单净化后将咪鲜胺及其代谢物在高温下与吡啶盐酸盐反应,转化为2,4,6-三氯苯酚进行测定。咪鲜胺在各样品中的添加回收率为72.9% ~103.4%,变异系数在1.46% ~9.38%之间。残留动态研究表明,咪鲜胺在水稻苗中消解较快,半衰期仅为3.4 d;到水稻收获时,在用166.6 mg/L浸种处理后的稻米和稻秆中分别检出了0.025和0.056 mg/kg的残留量,其他样本中均未检出咪鲜胺的残留。  相似文献   

6.
采用液相色谱-质谱联用仪和气相色谱法分别测定了咪鲜胺及其代谢产物2,4,6-三氯苯酚在蘑菇及土壤中的残留消解动态。结果表明,咪鲜胺在蘑菇及土壤中的消解动态均符合负指数方程,半衰期分别为3.5 d和20.3 d;2,4,6-三氯苯酚在蘑菇中的残留量随时间的变化呈现先增后减的趋势,而其在土壤中的残留量则仅表现出增长的趋势。  相似文献   

7.
Five soil samples were taken from each of five fields with different crop management histories. Three of the fields were in an arable rotation, the fourth field was temporary grassland, and the final field was under permanent grass. Of the three arable fields, two had been cropped with winter wheat in three of the preceding 6 years, and the third had last been cropped with winter wheat once only, 6 years previously. With one exception, the winter wheat had been sprayed with the herbicide isoproturon. The rate of isoproturon degradation in laboratory incubations was strongly related to the previous management practices. In the five soils from the field that had been treated most regularly with isoproturon in recent years, <2.5% of the initial dose remained after 14 days, indicating considerable enhancement of degradation. In the soils from the field with two applications of the herbicide in the past 6 years, residues after 27 days varied from 5% to 37% of the amount applied. In soils from the other three sites, residue levels were less variable, and were inversely related to microbial biomass. In studies with selected soils from the field that had received three applications of isoproturon in the previous 6 years, kinetics of degradation were not first‐order but were indicative of microbial adaptation, and the average time to 50% loss of the herbicide (DT50) was 7.5 days. In selected soils from the field that had received just one application of isoproturon, degradation followed first‐order kinetics, indicative of cometabolism. Pre‐incubation of isoproturon in soil from the five fields led to significant enhancement of degradation only in the samples from the two fields that had a recent history of isoproturon application.  相似文献   

8.
BACKGROUND: The behavior of the termiticide fipronil in soils was studied to assess its potential to contaminate ground and surface water. This study characterizes (1) adsorption of fipronil in three different soils, (2) transport of fipronil through leaching and runoff under simulated rainfall in these soils and (3) degradation of fipronil to fipronil sulfide and fipronil sulfone in these soils. RESULTS: The adsorption experiments showed a Freundlich isotherm for fipronil with Koc equal to 1184 L kg?1. In the leaching experiments, the concentration of fipronil and its metabolites in leachate and runoff decreased asymptotically with time. The concentration of fipronil in the leachate from the three soils correlated inversely with soil organic carbon content. The degradation experiment showed that the half‐life of fipronil in the soils ranged from 28 to 34 days when soil moisture content was 75% of field capacities, and that 10.7–23.5% of the degraded fipronil was transformed into the two metabolites (fipronil sulfide and fipronil sulfone). CONCLUSION: Fipronil showed large losses through leaching but small losses via runoff owing to low volumes of runoff water generated and/or negligible particle‐facilitated transport of fipronil. The half‐life values of fipronil in all three soils were similar. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
The rate of aerobic evolution of 14CO2 from 14C-glyphosate labelled in the methylphosphonyl carbon, varied 100-fold within a group of five Hawaiian sugarcane soils. The rate depended inversely on the degree of soil binding, probably associated with the phosphonic acid moiety, and to a less certain extent on soil pH and soil organic matter. After an initial rapid degradation, the rate of 14CO2 evolution in three soils reached a constant at 16–21 days which continued to the 60-day termination. The other two soils showed a continually decreasing rate throughout. Two soils released over 50% of the labelled carbon in 60 days, a third released 35%, while the remaining soils released 1.2 and 0.8% respectively. Labelled carbon in the soils after 60 days consisted of glyphosate and one metabolite, aminomethyl-phosphonic acid, with glyphosate predominating in high fixing soils. The 14C could be extracted almost completely with NaOH solution, and remained mainly in solution after acidification.  相似文献   

10.
BACKGROUND: In Chile, rice is cultivated under water‐seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non‐flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In field experiments, both herbicides dissipated by 45–55% from the initial applied amounts during the first 6 h after application in all crop seasons; in lysimeter experiments, dissipation amounts were approximately 10% for penoxsulam and 16% for molinate. Penoxsulam field water DT50 values varied from 1.28 to 1.96 days during the three study seasons, and DT90 values from 4.07 to 6.22 days. Molinate field water DT50 values varied from 0.89 to 1.73 days, and DT90 values from 2.82 to 5.48 days. Sediment residues were determined 2 days after herbicide application into the paddy water, and maximum concentrations were found 4–8 days after application. In sediment, DT50 values varied from 20.20 to 27.66 days for penoxsulam and from 15.02 to 29.83 days for molinate. CONCLUSIONS: Results showed that penoxsulam and molinate losses under paddy conditions are dissipated rapidly from the water and then dissipate slowly from the sediment. Penoxsulam and molinate field water dissipation was facilitated by paddy water motion created by the wind. Sediment adsorption and degradation are considered to have a secondary effect on the dissipation of both herbicides in paddy fields. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
A laboratory study was performed to investigate the relationship between chemical (non-biological) and microbial degradation of cyanazine and atrazine in soils ranging in pH from 5.3 to 8.1. Atrazine degradation was dominated by chemical processes in both a moderately acidic and a neutral pH soil, but showed a significant microbial involvement in the neutral pH soil. The primary cyanazine degradative mechanism was dependent on soil properties. Cyanazine was short-lived in neutral to slightly basic soils, due to rapid microbial degradation. Cyanazine amide and cyanazine acid were the major metabolites formed. In a moderately acidic soil, microbial degradation was slowed and chemical processes were the primary means of cyanazine degradation.  相似文献   

12.
In laboratory incubations, the times to 50% loss (DT50) of a first application of napropamide were approximately 25, 45 and 75 days in soil incubated at 25, 15 and 5°C respectively. When treated for a second time, the DT50 values were 4, 7 and 15 days at the same temperatures, irrespective of the temperature of the first incubation. This indicates that enhanced degradation of napropamide in soil can be both induced and expressed at low temperature. A mixed microbial culture able to degrade the herbicide to a single degradation product, identified by HPLC retention time as naphthoxypropionic acid, was obtained from a soil capable of rapid degradation. Addition of a sub-sample of this mixed culture to a previously untreated soil introduced rapid degrading ability. When small amounts of soil capable of rapid degradation were added to previously untreated soil, in both the laboratory and the field, the degradation rate of napropamide increased compared with that in unamended soils.  相似文献   

13.
几种药剂对草莓炭疽病的效果   总被引:4,自引:0,他引:4  
采用菌丝生长速率法测定了48%波尔多液可湿性粉剂、50%咪鲜胺可湿性粉剂、40%福美锌可湿性粉剂和70%代森联干悬浮剂4种药剂对草莓炭疽病菌的室内毒力。结果表明,4种药剂对菌丝生长的EC50的大小顺序为:50%咪鲜胺40%福美锌70%代森联48%波尔多液,50%咪鲜胺的EC50为6.24 mg/L。并选取毒力较好的50%咪鲜胺可湿性粉剂和40%福美锌可湿性粉剂进行了田间药效测定,48%波尔多液可湿性粉剂作为对照。试验发现:50%咪鲜胺可湿性粉剂在田间的效果最好,其800 mg/L处理在田间2次药后7 d的防效达到了80.26%,与对照药剂48%波尔多液可湿性粉剂间存在显著性差异。  相似文献   

14.
F. ROCHA  A. WALKER 《Weed Research》1995,35(3):179-186
The effects of soil temperature and soil moisture content on the rates of degradation of atrazine, were measured in the laboratory in soils from different sites in Portugal. Persistence of atrazine was measured in the same soils in the field during the spring and summer of 1984, 1985, 1986 and 1987. Weather records from the different sites, measured during the periods of the field experi ments, were used in conjunction with appropriate constants derived from the laboratory data in a computer program to simulate persistence in the field. The model generally overestimated the ob served soil residues, particularly during the first 7–14 days after application. The fit from the model was good from day 14 to the end of the experiments.  相似文献   

15.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

16.
We have studied the synergistic action of deltamethrin and prochloraz in bees in laboratory experiments that allowed us to express dosages in terms of field rates (g ha?1). It was established that, used alone, deltamethrin at 0·125 g ha?1 and prochloraz at 25 g ha?1 did not produce mortalities different from that of the control during 96 h of observation. Sprayed as a mixture of these doses, deltamethrin and prochloraz produced 67·5% corrected mortality within 24 h and 74·1% corrected mortality within 50 h. Sequential treatments of deltamethrin and prochloraz spaced by a 0·8-day interval reduced the synergistic action of both molecules. At 50 h, the lethal effects were 27·5% corrected mortality for the treatment of deltamethrin followed by prochloraz and 23·8% corrected mortality for the treatment of prochloraz followed by deltamethrin. Results are discussed in terms of mode of action and sub-lethal effects.  相似文献   

17.
BACKGROUND: The objectives of these laboratory experiments were: (1) to assess bromoxynil sorption, mineralization, bound residue formation and extractable residue persistence in a Dundee silt loam collected from 0–2 cm and 2–10 cm depths under continuous conventional tillage and no‐tillage; (2) to assess the effects of autoclaving on bromoxynil mineralization and bound residue formation; (3) to determine the partitioning of non‐extractable residues; and (4) to ascertain the effects of bromoxynil concentration on extractable and bound residues and metabolite formation. RESULTS: Bromoxynil Kd values ranged from 0.7 to 1.4 L kg?1 and were positively correlated with soil organic carbon. Cumulative mineralization (38.5% ± 1.5), bound residue formation (46.5% ± 0.5) and persistence of extractable residues (T1/2 < 1 day) in non‐autoclaved soils were independent of tillage and depth. Autoclaving decreased mineralization and bound residue formation 257‐fold and 6.0‐fold respectively. Bromoxynil persistence in soil was rate independent (T1/2 < 1 day), and the majority of non‐extractable residues (87%) were associated with the humic acid fraction of soil organic matter. CONCLUSIONS: Irrespective of tillage or depth, bromoxynil half‐life in native soil is less than 1 day owing to rapid incorporation of the herbicide into non‐extractable residues. Bound residue formation is governed principally by biochemical metabolite formation and primarily associated with soil humic acids that are moderately bioavailable for mineralization. These data indicate that the risk of off‐site transport of bromoxynil residues is low owing to rapid incorporation into non‐extractable residues. Published 2009 by John Wiley & Sons, Ltd  相似文献   

18.
The effects of soil temperature and soil moisture content on the rate of simazine degradation were measured in the laboratory in soils from sixteen sites located in several different countries. First-order half-lives under standard incubation conditions were significantly correlated with clay content, organic carbon content and soil pH in a multiple linear regression. The temperature dependence of degradation was similar in the different soils whereas the moisture dependence showed considerable variation between soils. Persistence of simazine was also measured in the same soils in the field and at live additional sites. Weather records from the different sites for the periods of the Held experiments were used in conjunction with constants derived from the laboratory data in a computer program to simulate persistence in the field. In general, the model overestimated residues in the field. About half of the calculated residues were within 25% of those observed, an accuracy sufficient for practical purposes, but on several occasions the discrepancies between calculated and observed residues were greater than 50%. Possible reasons for the discrepancies and requirements for further experiments are discussed.  相似文献   

19.
In field and laboratory experiments, enhanced degradation of the dicarboximide fungicides, iprodione and vinclozolin, was stimulated by only one application of the fungicides in a soil with no previous history of any pesticide input. Field and laboratory studies demonstrated the ease of stimulation by pre-treatment with even very low concentrations of the fungicides (0·5 μg g−1 soil) and at a range of temperatures and soil moisture conditions. Soils that had acquired full enhanced degradation could rapidly degrade fungicide applied at 30 times the recommended field rate. Cross-enhancement of degradation was noted with both fungicides, but not with their common metabolite, 3,5-dichloroaniline. Application of the antibiotics chloramphenicol or rifampicin to soil reduced enhanced degradation to control levels; cycloheximide had no effect. This, together with the inhibitory action of azide, mercuric chloride and repetitive microwaving, indicated that the agent(s) of enhanced degradation was probably bacterial.  相似文献   

20.
Adsorption and degradation of thiazopyr on two unamended soils and a soil amended annually during 8 years with compost were studied under laboratory conditions and compared with the results obtained on soils amended with fresh sewage sludge compost. The adsorption isotherms fitted the Freundlich equation well and a marked sorption increase was found in amended soils. Degradation data followed first‐order kinetics and thiazopyr had a half‐life of about 75 days at 25 °C and 60% water‐holding capacity of soil. The addition of fresh compost markedly decreased the rate of thiazopyr degradation, whereas the compost mineralised in the field after annual additions had only a small influence. Incubation studies with sterile soils showed a very significant decrease of the degradation rate, indicating that degradation by micro‐organisms was the main pathway of thiazopyr degradation in the soils studied. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号