首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of resistance to herbicides in weeds has become a great challenge for global agricultural production. Weeds have evolved resistance to herbicides through many different physiological mechanisms. Some weed species are known to secrete herbicide molecules from roots into the rhizosphere upon being treated. However, root exudation of herbicides as a mechanism of resistance has only recently been identified in two weed species. Root exudation pathways have been investigated in Arabidopsis, and this work suggested that ATP‐binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporters play a role in the secretion of primary and secondary plant products from roots. We hypothesize that the mechanisms involved in root exudation of herbicides that result in resistance are mediated by overactive or overexpressed transporters, probably similar to those found for the exudation of primary and secondary compounds from roots. Elucidating the molecular and physiological basis of root exudation in herbicide‐resistant weeds would improve our understanding of the pathways involved in herbicide root secretion mediated by transporters in plants. © 2020 Society of Chemical Industry  相似文献   

2.
建立了表面活性剂辅助-凝固-漂浮分散液-液微萃取-高效液相色谱(SA-DLLME-SFO-HPLC)法检测葡萄酒中西玛津、莠去津、特丁津和扑草净4种三嗪类除草剂残留的分析方法。考察了萃取剂的类型、萃取剂和表面活性剂的体积、萃取时间和盐效应等对萃取效率的影响,确定最佳萃取条件为:20 μL十一醇作为萃取剂,2 μL 0.25 g/L的Tween-20水溶液作为分散剂,萃取时间10 min,氯化钠的质量浓度为250 g/L。结果表明:西玛津、莠去津、特丁津和扑草净的线性范围为0.008~5 mg/L,检出限分别为2.4、1.8、2.0和2.8 μg/L,富集倍数在24.5~32.4之间。在0.008、0.08和2.4 mg/L添加水平下,西玛津、莠去津、特丁津和扑草净在葡萄酒中的回收率在84%~102%之间,相对标准偏差(n=5)在2.1%~6.9%之间。该方法可用于葡萄酒中西玛津、莠去津、特丁津和扑草净残留量的测定。  相似文献   

3.
In Italy suitable standard scenarios for pesticide risk assessment based on computer models are lacking. In this paper we examine the use of the VARLEACH model to assess the potential danger of ground‐water pollution by six herbicides (alachlor, atrazine, cyanazine, linuron, simazine and terbuthylazine) which are used to protect irrigated (maize) and non‐irrigated (sorghum) crops in the Po Plain, one of the most important agricultural lands in Italy. Two extreme scenarios are taken: real worst case (sandy soil) and real best case (clay loam soil). The simulation suggests that cyanazine, linuron and terbuthylazine can be safely used in clay loam soil in both non‐irrigated and irrigated crops, while alachlor, atrazine and simazine can be safely used only in non‐irrigated crops. On the other hand, the application of all the herbicides tested should be avoided in sandy soil, with the exception of linuron in non‐irrigated crops. © 2000 Society of Chemical Industry  相似文献   

4.
5.
The plant cuticle is a highly complex membrane which forms the outer surface of the aerial portion of plants. The nature of the plant cuticle is reviewed with particular regard to its action as a potential barrier to the penetration of pesticide molecules; the role of the cuticular waxes is highlighted. The physicochemical properties of the cuticle influence the behaviour of spray droplets and, in turn, may affect the rate and efficiency of cuticle penetration. The permeation of active ingredients is influenced by their solubility characteristics as indicated by octanol/water (log Kow) and cuticle/water (Kcw) partition coefficients. Penetration of hydrophilic compounds (low log Kow) may be enhanced by hydration of the cuticle, while transcuticular transport of non-polar solutes (high log Kow) is increased by factors which reduce wax viscosity. The use of in-vitro models involving isolated cuticle membranes, isolated cuticle waxes, or isolated leaves has helped to focus on the activities of the cuticle in the absence of other physiological factors. Using these systems, the role of the waxes as a transport-limiting barrier has been identified and the factors influencing sorption, permeance and desorption examined. The action of surfactants, in vitro and in vivo, has been briefly addressed in regard to their role in facilitating cuticle penetration; other steps involving surfactant/solute/cuticle are complex, and synergy appears to depend on a number of factors including test species, concentration of active ingredient, surfactant type and concentration. Adjuvants may greatly influence the surface properties of the droplet, predispose the cuticle to solute transport, and enhance pesticide activity. The nature of these complex inter-relationships is discussed. © 1999 Society of Chemical Industry  相似文献   

6.
The potential to mineralize 2,4‐dichlorophenoxyacetic acid (2,4‐D), mecoprop, isoproturon and terbuthylazine was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. Laboratory microcosms were incubated for 258 days under aerobic conditions at 10 °C with soil and chalk from 0.15–4.45 m below the surface. The [ring‐U14C]‐labeled herbicides were added to obtain a concentration of 6 µg kg?1 and mineralization was measured as evolved [14C]carbon dioxide. The herbicides were readily mineralized in soil from the plough layer, except for terbuthylazine, which was mineralized only to a limited extent. In the chalk, lag periods of at least 40 days were observed, and a maximum of 51%, 33% and 6% of the added 2,4‐D, mecoprop and isoproturon, respectively, were recovered as [14C]carbon dioxide. Large variations in both rate and extent of mineralization were observed within replicates in chalk. No mineralization of terbuthylazine in chalk was observed. As a measure of the general metabolic activity towards aromatic compounds, [ring‐U14C]‐benzoic acid was included. It was readily mineralized at all depths. © 2000 Society of Chemical Industry  相似文献   

7.
Agrochemicals and plastics represent a burden on natural ecosystems and there is an urgent need to introduce alternative plant protection measures that have fewer negative impacts on the environment. Replacement of plastic mulches and synthetic pesticides with their biodegradable alternatives offers a way to decrease chemical residues. Pyrolysis liquids (PL) have been suggested as easily degradable and residue-free herbicides for agriculture. We tested the efficiency of PL (1%–10% of volume) containing peat mulch (PLM) in weed control under glasshouse and field conditions. We also estimated the length of the withdrawal period needed between PLM spreading and sowing/planting for crops and examined the light permeability and effects of PLM on soil temperature. In the glasshouse, the mulch amended with 5%–10% PL inhibited weed germination entirely. In the agricultural field, the number of weeds remained 44%–60% lower under PLM than under the control mulch. In a study performed in a city park, weed cover around the base of trees remained 64%–85% lower under PLM than without a mulch. However, a 7–21 d withdrawal period, depending on crop plant species, is needed to avoid injuring the crops. PLM inhibited sunlight effectively and the effects on soil heat sum across the growing season remained small. The weed-inhibiting effect of PLM is probably a result of both the PL compounds and the solid cover, formed by the sticky PL and peat fibres, which acts as a mechanical barrier. We conclude that the PLM is a promising alternative to plastic mulches.  相似文献   

8.
The hydrolysis of triasulfuron, metsulfuron‐methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH‐sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2–6.2) than under neutral and moderately alkaline conditions (8.2–9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo‐first‐order kinetics. There were no significant differences (P = 0.05) in the rate constants (k, day−1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the ‘rate constant’ on pH. The hydrolysis involving attack by neutral water was at least 100‐fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O‐demethylation of metsulfuron‐methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural alkaline soils. © 2000 Society of Chemical Industry  相似文献   

9.
Results presented suggest that chloroacetamides, oxyacetamides, tetrazolinones, and possibly cafenstrole, act at the same site, although the precise molecular mode of action is still unknown, despite much research effort.  相似文献   

10.
11.
12.
Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation for four days at 22 °C, yielded a better percentage of diseased plants than a microconidial suspension drench, an injection of a microconidial suspension into the hypocotyl, or a talcum inoculum.Pseudomonas fluorescens strain WCS374 applied in talcum or peat, but not as a suspension drench, induced systemic resistance. A minimal initial bacterial inoculum density of 105 CFU WCS374 root–1 was required to significantly reduce the percentage diseased plants. At least one day was necessary between bacterization of strain WCS374 in talcum on the root tips and inoculation of the pathogen in peat on the root base, for an optimal induction of systemic resistance. Strain WCS374 induced systemic resistance in six radish cultivars differing in their susceptibility toF. oxysporum f. sp.raphani. Significant suppression of disease by bacterial treatments was generally observed when disease incidence in the control treatment, depending on pathogen inoculum density, ranged between approximately 40 to 80%. Strains WCS374 and WCS417 ofPseudomonas fluorescens induced systemic resistance against fusarium wilt, whereasP. putida WCS358 did not. This suggests that the induction of systemic resistance byPseudomonas spp. is dependent on strain-specific traits.Abbreviations CFU colony forming units - IFC immunofluorescence colony-staining - ISR induced systemic resistance - PBS phosphate buffered saline - SAR systemic acquired resistance  相似文献   

13.
Aciculosporium take (Ascomycota; Clavicipitaceae) is a causal agent of witches' broom of bamboo plants. The symptoms of this disease are believed to be induced by plant hormones, particularly auxins. Indole-3-acetic acid (IAA) was identified in cultures of this fungus in an l-tryptophan-supplemented liquid medium. IAA production was confirmed on 30 isolates of A. take from various hosts and locations at levels up to 1 mg/l. The biosynthetic pathway of IAA in A. take culture was examined by analyzing intermediate products and by feeding experiments. The results showed that the indole-3-pyruvic acid pathway (l-tryptophan → indole-3-pyruvic acid → indole acetaldehyde → IAA) was the dominant pathway in A. take. Received: June 3, 2002 / Accepted: July 25, 2002  相似文献   

14.
15.
Molecular and biological characterization of the begomovirus isolate BR:LNS2:Pas:01, obtained from yellow passionfruit plants in Livramento de Nossa Senhora, Bahia state, Brazil, was carried out. Sequence analysis demonstrated that the BR:LNS2:Pas:01 DNA‐A had highest nucleotide sequence identity with Tomato chlorotic mottle virus (77%) and had five ORFs corresponding to the genes cp, rep, trap, ren and ac4. The DNA‐B had highest nucleotide sequence identity with Tomato yellow spot virus (74%) and two ORFs corresponding to the genes mp and nsp. These identity values indicate that this isolate represents a new begomovirus species, for which the name Passionfruit severe leaf distortion virus (PSLDV), is proposed. Phylogenetic analysis clustered the PSLDV DNA‐A and ‐B in a monophyletic branch with Brazilian tomato‐infecting begomoviruses. The isolate’s host range was restricted to species from the Passifloraceae and Solanaceae. PSLDV‐[BR:LNS2:Pas:01] was capable of forming pseudorecombinants with tomato‐infecting begomoviruses, reinforcing its close relationship with these viruses and suggesting a possible common origin. However, the virus was not capable of infecting tomato.  相似文献   

16.
Midrib rot is an emerging disease in greenhouse production of lettuce caused by Pseudomonas cichorii, and probably introduced through contaminated irrigation water. Concentrations of 100 CFU mL?1 are enough to induce the typical midrib rot symptoms. A sensitive real‐time PCR assay was developed, based on a 90‐bp amplicon from the pathogenicity gene cluster hrcRST and a Taqman Minor Groove Binding probe. Specificity of the assay was tested with 39 P. cichorii strains, including the type strain, and 89 strains from 83 other Pseudomonas species. The relationship between detection signals and P. cichorii DNA concentrations was linear over 6‐logs. Detection threshold with excellent reproducibility was 500 fg of DNA or about 70 genome copies. Sample preparation and DNA isolation were optimized to allow detection in 1 L water samples. The assay was first evaluated with greenhouse irrigation water spiked with serial dilutions of P. cichorii. The calculated cell numbers obtained with real‐time PCR were 10‐fold lower than plate counts of actual spiked cells. However, the assay consistently detected 100 CFU per reaction, corresponding to the detection of 1 CFU mL?1 of irrigation water, which is well below the concentration needed for midrib rot infection. Finally, the assay proved to be valuable for detecting infective P. cichorii concentrations in the irrigation water of a commercial lettuce production greenhouse.  相似文献   

17.
18.
An arable field was subdivided and subjected to either deep inversion ploughing or non‐inversion cultivation after viable seeds of Bromus sterilis had been sown into oilseed rape stubble. After sowing in isolated plots distributed within the field, sequences of cropping treatments for the establishment of two successive winter wheat crops were applied. Each subfield was split into an uphill and a downhill direction for soil cultivation. The field had a 10° slope. In the season following seed introduction, 2.6% of the introduced seeds had successfully germinated and established in the non‐inversion cultivation regime, when no effective graminicide was applied. Ploughing eradicated B. sterilis. Using differential global positioning system (DGPS) mapping of the whole field population, emerged plants were observed up to 8.7 m (uphill treatment) and 21.3 m (downhill treatment) of their initial source. The median distance seeds were transported was 2.3 m uphill and 4.8 m downhill. Post‐emergence application of the herbicide propoxycarbazone slightly reduced weed density and seed weight, and almost halved weed seed production. Application of fenoxaprop‐P‐ethyl was followed by higher density of plants, tillers and seeds of B. sterilis. Seed viability was unaffected by herbicide use. Thus, in the second wheat crop following seed rain, the weed population was dispersed more widely in the field, such that 20–30% of seeds were dispersed more than 5 m distance from the first year's foci of infestation. The relevance of soil cultivation to secondary dispersal of B. sterilis is discussed.  相似文献   

19.
MTB-951 is a potential mycoherbicide using a fungal plant pathogen ( Drechslera monoceras ) isolated from native Echinochloa species in Japan. Conidia of this pathogen were used as the active ingredient and its herbicidal performance was examined in a greenhouse. The efficacy of MTB-951 on Echinochloa crus-galli L. was higher in deep water (7–9 cm) than in relatively shallow water (3–5 cm). In a postemergence application, the efficacy decreased as the leaf stage of E. crus-galli proceeded between the 1 and 2.5 leaf stage. For example, the control ratio (%) of E. crus-galli was 95% when applied at the 1 leaf stage, and 72% at the 2.5 leaf stage in 5 cm water. Generally, mycoherbicidal efficacy was less when applied pre-emergence rather than postemergence. Efficacy was also influenced by the duration of submergence in deep water. For example, when water depth was kept at 5 cm for more than 7 days after application and then decreased down to 3 cm, the efficacy was high. However, when the water depth was kept at 5 cm for less than 7 days, the efficacy was low. Efficacy was lower under high temperatures (35°C/25°C, day/night) than under low temperatures (25°C/15°C, day/night). Water management, application timing and temperature are important factors on herbicidal efficacy of MTB-951 to control E. crus-galli .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号