首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Soil quality of tillage systems receives much attention worldwide, although few studies attempt to link soil quality to yield. Partial least‐squares regression analysis is a suitable method to construct predictive models around plural, highly collinear factors, such as soil quality and its effects on yield. This study aimed at identifying the soil quality properties which best model pasture herbage yield by relating soil quality indicators with variations in yield as a result of soil disturbance caused by tillage. The study was conducted on kikuyu (Pennisetum clandestinum) over‐sown with annual ryegrass (Lolium multiflorum) using different tillage methods. Tillage methods involved over‐sowing kikuyu with ryegrass using a minimum‐tillage seed drill, eradication of kikuyu with herbicide and ryegrass sown with a minimum‐tillage planter, shallow and deep disturbance, and a control. Most changes in soil quality indicators as a result of soil tillage were observed shortly after tillage and occurred mostly at the 0–100 mm soil layer. Few of these effects were still visible 420 d after tillage. Microbiological indicators changed most in response to the treatments, but unlike the chemical and physical indicators, microbiological indicators have no causal link to pasture production. The contribution of individual soil quality indicators to variance in pasture productivity could not be isolated and should thus be seen as complex processes which affect yield. Although mechanisms of how some soil quality indicators affect yield is clear, more research is required to determine mechanisms of how a combination of multiple soil quality indicators affects yield.  相似文献   

5.
Since 1964, replicated rotation plots in Presque Isle, Maine have continually been planted and evaluated to determine the effect of various rotation crops on tuber appearance, quality, and yield. In 1974 and 1975, the saprophytic activity ofRhizoctonia solani in the soils of each rotation combination was determined, and the tubers harvested were scored forRhizoctonia damage. Soils with a two-year rotation of oat-potato had the lowest amount of saprophytic activity byRhizoctonia and provided the lowest incidence of disease on the stems, roots, and tubers of the cultivars Kennebec and Katahdin. With the cultivar Russet Burbank, the three-year rotations generally provided the lowest incidence of disease; however, this cultivar is more susceptible to the pathogen. The plots of potatoes that were not rotated had the highest pathogen activity and the greatest disease incidence.  相似文献   

6.
Cropping systems in farmland areas of Iran are characterized by continuous cultivation of crops with consumption of chemical fertilizers leading to serious soil erosion and fertility decline. Information regarding the simultaneous evaluation of crop rotation and fertilization on the canola is lacking. Hence, field experiments were conducted during 2007-2010 using split-split plot design. Three crop rotations: chickpea, sunflower, wheat, and canola (R1); green manure, chickpea, green manure, wheat, green manure and canola (R2); canola, wheat, and canola (R3) were used as main plots. Sub plots were consisted of six methods of fertilization including (N1): farmyard manure (FYM); (N2): compost; (N3): chemical fertilizers; (N4): FYM + compost and (N5): FYM + compost + chemical fertilizers; and control (N6). Four levels of biofertilizers consisted of (B1): phosphate solubilizing bacteria (PSB); (B2): Trichoderma harzianum; (B3): PSB + T. harzianum; and (B4): without biofertilizers were arranged in the sub-sub plots. Results showed that green manure application in canola rotation (R2) increased grain yield and nutrient uptake. Combined application of FYM, compost and chemical fertilizers (N5) elevated the nitrogen uptake rate and grain oil yield. Simultaneous use of PSB and T. harzianum (B3) resulted in the increase of nitrogen and sulfur contents of grain. R2 rotation with regard to its biological and environmental efficiencies accompanied with FYM + compost and B3 (PSB + T. harzianum) is suggested as a low input system to obtain a more sustainable and productive farming in canola.  相似文献   

7.
To meet the global demand for animal protein, sustainable intensification of existing livestock systems may be possible, especially through integration of livestock with crops or forestry. Thus, our objective was to compare forage production and animal performance in grass monoculture and integrated systems in the Brazilian Amazon biome. The four systems were (a) livestock (L) with Marandu palisadegrass {Brachiaria brizantha (Hochst. ex A. Rich.) R. D. Webster} as monoculture, (b) palisadegrass pastures integrated with eucalyptus trees (Eucalyptus urograndis; hybrid of Eucalyptus grandis W. Hill ex Maiden and Eucalyptus urophylla S. T. Blake) arranged in three‐row groves with groves spaced 30 m apart (livestock–forestry; LF), (c) palisadegrass after two years of crops (crop–livestock; CL) and (d) palisadegrass after two years of crops with single rows of eucalyptus trees spaced 37 m apart (crop–livestock–forestry; CLF). From July 2016 to July 2017, all experimental units were continuously stocked using a variable stocking rate. Greater herbage accumulation (HA) occurred in CL and CLF in comparison with L and LF (21,310, 24,050, 19,500 and 18,890 kg DM/ha respectively). The gain per hectare of L, LF and CL (average of 932 kg ha–1) was less than CLF (1,190 kg ha–1). Average daily gain was similar among systems (0.69 kg/day). We conclude that integrated systems can support similar (LF or CL) or greater (CLF) levels of animal production than palisadegrass monocultures while increasing diversity of outputs, thereby providing a greater range of viable systems for livestock production in the Brazilian Amazon biome.  相似文献   

8.
Canola is widely grown in Australia to provide diversity within winter crop rotations. Its production is heavily reliant on triazine tolerant varieties but Clearfield® and conventional varieties are also significant components of the industry. Glyphosate tolerant varieties have been introduced, thereby providing an alternative technology to be incorporated into the farming systems. To evaluate the potential impact of the relative herbicide technologies, a comparison of herbicide tolerant canola weed management systems was undertaken at Wagga Wagga, Australia over a 5-year rotation. Near isogenic lines of conventional, glyphosate tolerant and triazine tolerant varieties were evaluated for their abilities to control annual ryegrass (Lolium rigidum), the most challenging weed of temperate crops in Australia. Glyphosate tolerant and triazine tolerant canola achieved high levels of ryegrass control and attained higher yields than the conventional system. Glyphosate tolerant canola provided extra control of broadleaf weeds and also achieved better seed oil levels when compared with the other canola systems. There were positive flow-on weed management benefits for the remainder of the crop sequence from the weed control achieved in the initial crop, particularly following glyphosate tolerant canola. Subsequent control of volunteer canola in all treatments was readily achieved by using paraquat/diquat. The glyphosate tolerant weed management system was more profitable than the triazine tolerant system, although no allowance was made for technology costs as they were not known at the time of study. These outcomes demonstrate the potential value of herbicide tolerant canola to Australian farmers.  相似文献   

9.
Field burning of residue is a traditional management tool for irrigated wheat (Triticum aestivum L.) production in the Inland Pacific Northwest of the United States (PNW) that can result in reduced air quality. A 6-year no-till field experiment to evaluate two complete cycles of a 3-year irrigated crop rotation of winter wheat–spring barley (Hordeum vulgare L.)–winter canola (Brassica napus L.) was sown (i) directly into standing residue of the previous crop, (ii) after mechanical removal of residue and, (iii) after burning of residue. The traditional practice of continuous annual winter wheat sown after burning residue and inverting the topsoil with a moldboard plow was included as a check treatment. Over-winter precipitation storage efficiency (PSE) was markedly improved when residue was not burned or burned and plowed after grain harvest. Grain yield of winter wheat trended higher in all no-till residue management treatments compared to the check treatment. Average grain yields of spring barley and canola were not significantly different among the no-till residue management treatments. Winter canola failed in 5 of 6 years due to a combination of a newly identified Rhizoctonia damping-off disease caused by Rhizoctonia solani AG-2-1 and cold temperatures that necessitated replanting to spring canola. Six-year average net returns over total costs were statistically equal over all four systems. All systems lost from $358 to $396 ha?1. Soil organic carbon (SOC) increased linearly each year with no-till at the 0–5 cm depth and accumulated at a slower rate at the 5–10 cm depth. Take-all of wheat caused by Gaeumannomyces graminis var. tritici was most severe in continuous annual winter wheat. The incidence and severity of Rhizoctonia on roots of wheat and inoculum of R. solani AG-8, was highest in the no-till treatments, but there was no grain yield loss due to this disease in any treatment. Residue management method had no consistent effect on Rhizoctonia root rot on barley. The annual winter grass downy brome (Bromus tectorum L.) was problematic for winter wheat in the standing and mechanically removed residue treatments, but was controlled in the no-till residue burned and the burn and plow check. Another winter annual grass weed, rattail fescue (Vulpia myuros L.), infested all no-till treatments. This was the first comprehensive and multidisciplinary no-till irrigated crop rotation study conducted in the Pacific Northwest.  相似文献   

10.
Beef cattle producers seldom use fertilizers for their pastures in tropical regions of Brazil. Slowly, this is changing but because of the need for repeated applications, N fertilizer is rarely applied. The introduction of a forage legume is an appropriate solution for this problem, but until recently adoption has been very low as the legumes generally have not persisted in the sward. We report research on how grazing management can affect the persistence of stoloniferous legumes in pastures of Brachiaria spp. and the problems of establishing and maintaining crown-forming legumes such as Stylosanthes spp. With suitable management, milk or bovine carcass yields can be equal or greater from mixed than from grass-alone pastures fertilized with 120 or 150 kg Nha-1 year−1. In addition to savings in CO2 emissions from fossil fuels for the production and distribution of N fertilizers, nitrous oxide emissions from cattle excreta and legume residues are lower than those from N-fertilized brachiaria grass monocultures. Other studies indicate that enteric methane emissions from cattle may be mitigated when forage legumes are included in their diet. The use of forage legumes in mixed pastures for tropical regions is emerging as a feasible strategy to keep meat and milk production at acceptable levels with reduced greenhouse gas emission rates.  相似文献   

11.
Despite several experiments on row spacings and seeding rates of grain soybeans, limited information is available on the most suitable row spacing and seeding rate for tall and robust forage type soybeans grown for seed. The objectives of this study were to investigate seed yield, oil and protein content, and several morphological traits as affected by row spacing (20, 40, 60 and 80 cm) and seeding rate (330,000, 660,000, 990,000 and 1,320,000 seeds ha−1) in tall and robust forage type soybeans in three irrigated Mediterranean environments in Turkey in a randomized split plot design with three replications in 2004 and 2005. Row spacings had no significant effect on plant height but tall and profusely branched plants developed in wide row spacing and light seeding conditions. Seed yield responded positively and linearly to row spacing up to 60 cm and then decreased slightly in all locations. Seed yield was the highest at 990,000 seeds ha−1 seeding rate in all three locations (3072.5 kg ha−1 in Bursa LSD = 214.7 kg ha−1, 3295.1 kg ha−1 in Mustafakemalpasa LSD = 298.6 kg ha−1 and 3311.3 kg ha−1 in Samsun LSD = 321.1 kg ha−1). Averaged across years, locations, row spacings, and seeding rates the mean seed yield was an impressive 3013.4 kg ha−1 compare with 3500.0 kg ha−1 average seed yield of grain types. Crude protein and oil content of forage type soybean were not significantly affected by row spacings and seeding rates. It was concluded that forage type soybeans can be grown for multiple purposes at the 990,000 seeds ha−1 seeding rate and 60 cm row spacings in Mediterranean environments.  相似文献   

12.
Crop rotation and tillage systems have important implications for weed infestation and crop productivity. In this study, five tillage systems viz. zero tillage (ZT), conventional tillage (CT), deep tillage (DT), bed sowing (60/30 cm with four rows; BS1) and bed sowing (90/45 cm with six rows; BS2) were evaluated in five different crop rotations viz. fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW) for their effect on weed infestation and productivity of bread wheat. Interaction between different tillage practices and cropping systems had significant effect on density and dry biomass of total, broadleaved and grass weeds, agronomic and yield-related traits, and grain yield of bread wheat. The un-disturbed soils (ZT) under fallow-wheat or mungbean-wheat rotations favoured the weed prevalence (a total weed dry biomass of 72.4–109.6 and 105.6–112.1 g m−2 in first and second year, respectively). Contrary to this, the disturbed soils (CT, DT, BS1 and BS2) had less weed infestation with either of the rotations (a total weed biomass of 0.4–7.1 and 1.1–5.4 g m−2 in first and second year, respectively). Sorghum-wheat rotation had strong suppressive effect on weed infestation in all tillage systems. The impact of crop rotation was more visible during second year of experimentation. Bed sown wheat (BS1 and BS2) in mungbean-wheat rotation had the highest wheat grain yield (6.30–6.47 t ha−1) compared to other tillage systems in different crop rotation combinations.  相似文献   

13.
Forages could be used to diversify reduced and no-till dryland cropping systems from the traditional wheat (Triticum aestivum L.)-fallow system in the semiarid central Great Plains. Forages present an attractive alternative to grain and seed crops because of greater water use efficiency and less susceptibility to potentially devastating yield reductions due to severe water stress during critical growth stages. However, farmers need a simple tool to evaluate forage productivity under widely varying precipitation conditions. The objectives of this study were to (1) quantify the relationship between crop water use and dry matter (DM) yield for soybean (Glycine max L. Merrill), (2) evaluate changes in forage quality that occur as harvest date is delayed, and (3) determine the range and distribution of expected DM yields in the central Great Plains based on historical precipitation records. Forage soybean was grown under a line-source gradient irrigation system to impose a range of water availability conditions at Akron, CO. Dry matter production was linearly correlated with water use resulting in a production function slope of 21.2 kg ha−1 mm−1. The slope was much lower than previously reported for forage production functions for triticale (X Triticosecale Wittmack) and millet (Setaria italic L. Beauv.), and only slightly lower than slopes previously reported for corn (Zea mays L.) and pea (Pisum sativa L.) forage. Forage quality was relatively stable during the last four weeks of growth, with small declines in crude protein (CP) concentration. Values of CP concentration and relative feed value indicated that forage soybean was of sufficient quality to be used for dairy feed. A standard seed variety of maturity group VII was found to be similar (in both productivity and quality) to a variety designated as a forage type. The probability of obtaining a break-even yield of at least 4256 kg ha−1 was 90% as determined from long-term precipitation records used with the production function. The average estimated DM yield was 5890 kg ha−1 and ranged from 2437 to 9432 kg ha−1. Regional estimates of mean forage soybean DM yield ranged from 4770 kg ha−1 at Fort Morgan, CO to 6911 kg ha−1 at Colby, KS. Forage soybean should be considered a viable alternative crop for dryland cropping systems in the central Great Plains.  相似文献   

14.
Break crop benefits in temperate wheat production   总被引:4,自引:0,他引:4  
Changes in the sequence of crops grown on agricultural land are well known to enhance the yield of grain crops such as wheat. A survey of the literature gathered from around the world show mean yield benefits of up to 20% or more. Much is known about the principal mechanisms responsible for these benefits, including effects on disease control, improved nitrogen nutrition and water supply, although researchers continue to be challenged by inexplicable “rotation effects” that have yet to be documented or fully understood. This review summarizes our current understanding of the ‘better-known’ mechanisms of crop rotation, and discusses other mechanisms (e.g. changes in rhizosphere biology, allelopathy or soil structure) that may help to account fully for the rotation benefits that have been observed by agricultural producers for more than 2000 years. Where possible we emphasise new techniques employed to investigate these less well-understood aspects of the “rotation effect”. At the farm level, the inability to capitalize on the benefits of break crops may owe more to economics, the availability of suitable break crops and the complexity of the crop response. Computer-based decision support tools have been developed to assist growers to apply the information gathered from scientific studies, although efforts to integrate this information at whole-farm scales are embryonic.  相似文献   

15.
The short life span, irregular forage production and susceptibility to weed colonization of cool‐season grass–legume pastures are serious problems in grazing dairy systems in warm‐temperate regions. The inclusion of warm‐season species has the potential to mitigate these problems. In this study, we evaluated the effect of the inclusion of two warm‐season grasses with different growth habits on seasonal forage biomass, soil cover and weed colonization. Three different pasture mixtures were evaluated under grazing: conventional pasture (CP) [tall fescue (Festuca arundinacea), white clover (Trifolium repens) and birdsfoot trefoil (Lotus corniculatus)], CP with Paspalum dilatatum and CP with Paspalum notatum (CP + Pn). Forage biomass and soil cover were sampled thirteen times during a 3‐year trial, and sampling times were grouped by season for the analyses. The mixtures with Paspalum showed higher soil cover in the autumn, while in the winter CP had higher soil cover than CP + Pn. Competition with tall fescue was similar between mixtures with Paspalum, when considering biomass, but it was higher in CP + Pn when considering soil cover. The inclusion of P. notatum increased biomass during the autumn but decreased the mixture performance during winter by reducing tall fescue soil cover. The addition of a warm‐season grass species with a moderate competing ability like P. dilatatum is likely to avoid a negative impact on the cool‐season component of the pasture.  相似文献   

16.
Root and crown rot is the major soil-borne fungal disease in sugar beet. In Europe, the disease is mainly caused by the anastomosis group (AG) 2-2IIIB of the basidiomycete Rhizoctonia solani (Kühn). No chemical fungicide to control the disease has been registered in Europe. Therefore, agronomic measures must be optimized to keep the disease severity below an economic damage threshold and to minimize white sugar yield losses. R. solani AG 2-2IIIB infects many other crops besides sugar beet, including maize, where it causes root rot. Sugar beet and maize are frequently grown in the same crop rotation. The proportion of cultivated maize in several European sugar beet growing areas is expected to rise due to a projected increase in demand for renewable resources over the next few years. Although the susceptibility to and tolerance of the disease varies among cultivars in both crops, little is known about the effects of cultivar susceptibility in the pre-crop on a subsequent susceptible crop. The cultivation of R. solani-resistant maize genotypes in rotation with resistant sugar beet might therefore be a useful tool in an integrated control strategy against R. solani, eliminating the need to restrict the desired crop rotation for phytosanitary reasons. A crop rotation experiment with artificially inoculated R. solani was conducted in the field to investigate the pre-crop effects of maize cultivars which differed in their susceptibility to R. solani on a susceptible sugar beet cultivar. We hypothesized that the maize genotype would influence the inoculum potential and performance of a susceptible sugar beet genotype grown after a maize pre-crop, and that this would correlate with the susceptibility of the maize genotype. The results demonstrate that the susceptibility of maize genotypes is consistent over a period of years and that cultivated maize genotypes influenced the inoculum potential measured as disease severity in sugar beet. However, disease severity in sugar beet did not correlate with the disease susceptibility of the genotype of the maize pre-crop. Possible reasons for this missing relationship might be differences in the quality of maize residues for the saprophytic survival of the pathogen or a genotype-specific alteration of the antagonistic microbial community. However, our findings showed that in the presence of maize- and sugar beet-pathogenic R. solani, the most favourable maize cultivar for a crop rotation cannot be determined solely on the basis of its resistance level against Rhizoctonia root rot.  相似文献   

17.
The effect of the proportion of Calluna vulgaris cover on diet composition, intake and performance of sheep grazing hill vegetation communities in northern Spain is examined. A total of 591 non‐lactating Gallega ewes grazed for five consecutive grazing seasons (June to September) on replicated plots of hill pastures (1700 m.a.s.l.) composed principally of Festuca, Agrostis, Nardus and Calluna spp. but with different proportions of Calluna vulgaris cover, either 0·3 (C0·3) or 0·7 (C0·7) of the total area. In 1 year, twenty‐eight ewes suckling single lambs also grazed the plots. The mean stocking density over the 5 years was 8·7 ewes ha–1. On treatment C0·3, daily liveweight gains (33 g d–1) of non‐lactating ewes were significantly (P < 0·001) greater than on treatment C0·7 (12 g d–1). Likewise in lactating ewes the difference in mean daily liveweight change was 40 g d–1 (–5 vs. –45 g d–1 for C0·3 and C0·7 treatments respectively; P < 0·001). Liveweight gains of lambs were only 80–100 g d–1 from June to August and lambs only maintained live weight during August and September. The effect of lactational status on liveweight changes was not significant. Liveweight gains of non‐lactating ewes increased significantly (P < 0·001) from the first to the last year of the experiment on both treatments. The composition of the diet was significantly affected by treatment (P < 0·001), with a higher proportion of grass species on the C0·3 treatment and a higher digestibility of the diet in the first half of the grazing season (P < 0·001). The proportion of C. vulgaris in the diet was significantly (P < 0·001) higher on the C0·7 treatment and increased significantly (P < 0·001) from July to September on both treatments. There were no significant differences in the composition of the diet selected by lactating and non‐lactating ewes. The results demonstrate that on hill vegetation communities, in which the grass components (Festuca rubra, Agrostis capillaris, and Nardus stricta) cover at least 0·3 of the area and on which the preferred grass component (Festuca and Agrostis spp.) is maintained at a sward height of at least 2·5 cm, non‐lactating ewes can increase their live weight and body condition, but this increase is influenced by the proportion and quantity of species of grass in the diet, which is affected in turn by the species of grass available and their nutritive quality. However, ewes suckling lambs were not able to maintain their live weight and body condition except when Calluna cover was 0·3 and grass height was more than 3·5 cm. It is concluded that these indigenous vegetation communities can be used in sheep production systems to complement the use of improved pastures at other times of year. In particular, they can be utilized during the non‐lactating period (summer) to increase body condition before the beginning of the mating period in autumn.  相似文献   

18.
19.
A small‐plot field experiment on grazed hill country pastures in the North Island of New Zealand was conducted to examine the productivity and compositional characteristics of swards in response to variation in pasture species diversity. The balanced incomplete factorial design incorporated variation in location, slope, soil fertility and combinations of eight plant functional groups (C4 grasses, annual grasses, annual legumes, perennial C3 grasses, perennial legumes, perennial forbs, ryegrass and browntop). Net herbage accumulation and botanical composition were measured at 18 months (spring) and 24 months (autumn) after oversowing following application of a systemic herbicide. Analysis of variance indicated a significant positive relationship between the number of functional groups sown and herbage accumulation of the sown species in spring, but not with total herbage accumulation. Regression analysis showed that herbage accumulation was also affected by the identity of the functional groups. However, the statistical models indicated that pasture productivity was most strongly influenced by site factors. There was a significant negative relationship between both the number and herbage accumulation of unsown species and the number of functional groups sown, indicating a positive relationship between diversity and resistance to invasion by unsown species. A comparison of the vegetation between the plots before and after oversowing showed that those more diverse prior to sowing returned to their initial composition more rapidly, evidence that diverse vegetation was more resilient in the face of disturbance.  相似文献   

20.
Pasture legumes that persist under challenging agroecological conditions are crucial to ensure high lamb growth rates in dryland pastures. Pasture and lamb production from binary and diverse mixtures (Mix) of tall fescue (TF) with white clover (Whc), balansa clover (Bc), subterranean clover (Sc) and birdsfoot trefoil (Bft) were compared in a summer‐dry hill site in Corvallis, Oregon over a two‐year period. In 2018, all pasture combinations provided similar lamb liveweight gains (LWG, mean 177 g/day) in the first half of spring. Lambs in TF‐Bc and TF‐Mix pastures grew 31 to 41 g/day faster than those grazing TF‐Sc, TF‐Whc and TF‐Bft in the second half of spring (p < .05). Overall, TF‐Bc and TF‐Mix had higher (p < .05) legume contents (32% and 37% respectively) compared to other pasture combinations. In spring 2019, lambs that grazed the TF‐Mix and TF‐Whc pastures had higher LWG than those on other pastures (p < .05). The superior lamb growth rates were associated with the higher legume content and pasture quality maintained into the late spring period. Overall, the legume content of all pastures decreased over the course of the two‐year trial, with the decline being substantial for balansa clover. The present study confirmed that a high legume content of pastures leads to greater lamb growth rates. Total annual yields of pastures that had greater legume contents were superior to others (p < .05). Thus, a combination of self‐regenerating annual clovers with perennial legumes in pasture mixtures may ensure a higher legume content and longer persistence in dryland hill pastures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号