首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic prediction has emerged as a powerful genomic tool to assist breeding of complex traits. In this study, we employed a population of 647 triticale doubled haploid lines derived from four families to assess the potential of this approach for triticale breeding. All lines were phenotyped for grain yield, thousand‐kernel weight, biomass yield, plant height, frost tolerance and Fusarium head blight resistance. The obtained prediction accuracies were moderate to high and consisted to varying degrees of within‐ and among‐family variance, in line with the different degrees of phenotypic differences between family means. The prediction accuracy within individual families also varied with the genetic complexity of the traits and was generally highest based on effect estimation with lines from the respective family, whereas the prediction accuracy decreased with decreasing relatedness among the families. Taken together, our results illustrate the potential of genomic prediction to increase selection gain in triticale breeding, but the composition of the training set is of utmost importance, and consequently, the implementation of this approach in applied breeding programmes is not straightforward.  相似文献   

2.
Maize (Zea mays L.) is an important staple food crop in West and Central Africa (WCA). However, its production is constrained by drought. Knowledge and understanding of the genetics of hybrid performance under drought is invaluable in designing breeding strategies for improving maize yield. One hundred and fifty hybrids obtained by crossing 30 inbreds in sets using the North Carolina Design II plus six checks were evaluated under drought and well‐watered conditions for 2 years at three locations in Nigeria. The objectives of the studies were to (i) determine the mode of gene action controlling grain yield and other important agronomic traits of selected early inbred lines, (ii) examine the relationship between per se performance of inbreds and their hybrids and (iii) identify appropriate testers for maize breeding programmes in WCA. General combining ability (GCA) and specific combining ability (SCA) mean squares were significant (P < 0.01) for grain yield and other traits under the research environments. The GCA accounted for 64.5 % and 62.3 % of the total variation for grain yield under drought and well‐watered conditions, indicating that additive gene action largely controlled the inheritance of grain yield of the hybrids. Narrow‐sense heritability was 67 % for grain yield under drought and 49 % under well‐watered conditions. The correlations between traits of early‐maturing parental lines and their hybrids were significant (P < 0.01) under drought, well‐watered and across environments. Mid‐parent and better‐parent heterosis for grain yield were 45.3 % and 18.4 % under drought stress and 111.9 % and 102.6 % under well‐watered conditions. Inbreds TZEI 31, TZEI 17, TZEI 129 and TZEI 157 were identified as the best testers. Drought‐tolerant hybrids with superior performance under stress and non‐stress conditions could be obtained through the accumulation of favourable alleles for drought tolerance in both parental lines.  相似文献   

3.
Grain yield and its component trait thousand kernel weight are important traits in triticale breeding programmes. Here, we used a large mapping population of 647 doubled haploid lines derived from four families to dissect the genetic architecture underlying grain yield and thousand kernel weight by multiple‐line cross QTL mapping. We identified 3 QTL for grain yield and 13 for thousand kernel weight which cross‐validated explained 5.2% and 48.2% of the genotypic variance, respectively. Both traits showed a positive phenotypic correlation, and we found two QTL overlapping between them. Full two‐dimensional epistasis scans revealed epistatic QTL for both traits, suggesting that epistatic interactions contribute to their genetic architecture. Based on QTL identified in our results, we conclude that the potential for marker‐assisted selection is limited for grain yield but more promising for thousand kernel weight.  相似文献   

4.
This study was aimed to determine gene action for grain yield and yield‐related traits of newly developed tef populations under drought‐stressed and nonstressed conditions to improve drought tolerance. Ten crosses, along with the parents, were evaluated in the F2 generation under drought‐stressed conditions at Hastebo and Adigdad sites in 2015 and Dura site in 2016 and under nonstressed conditions at Dura site in 2016. Additive gene action predominantly controlled the inheritance of the grain yield and majority of the yield‐related traits under drought‐stressed and nonstressed conditions. Under both test conditions, the genotypes DZ‐Cr‐387 and 9415 were the best general combiners for increased grain yield and morphological traits. Conversely, genotype 222076 was the best general combiner for reduced maturity period only. The selected parents are novel genetic materials for tef breeding programmes to improve grain yield and morphological traits with reduced days to maturity for drought tolerance breeding. The family of the cross DZ‐Cr‐387 × 222076 was selected for high grain yield and early maturity in both the drought‐stressed and nonstressed environments.  相似文献   

5.
European tofu manufacturers are becoming more and more interested in locally grown soybeans. A prerequisite for the development of European tofu cultivars is to improve our understanding of how the environment and genetics affect soymilk and tofu quality, as well as how quality and agronomic traits are correlated. This study was based on 215 recombinant inbred lines derived from two populations and grown at three locations that were evaluated for tofu traits in a bench‐scale tofu laboratory. The heritabilities of most of the evaluated tofu traits were moderately high with h2 > 0.6. We observed significant genotypic variance components, but an even stronger contribution of the location. The network analysis of the evaluated traits was population‐dependent; however, the tofu traits were not associated with any of the agronomic traits. Collectively, our results indicate the potential to improve tofu‐related traits in European soybean. The bench‐scale tofu production method provides a valuable tool to test soybean lines in breeding programmes; however, the method needs to be further improved and automated to minimize errors due to the laboratory staff.  相似文献   

6.
Triticale (×Triticosecale Wittmack) holds great potential as a source for biomass production for industrial applications in Central Europe and hybrid breeding in particular appears promising owing to the higher vigour of hybrids compared to lines. In this study, a set of 178 winter triticale genotypes, including 91 hybrids, their 10 male and 23 female parental lines, as well as 54 varieties were evaluated for biomass yield and other agronomically relevant traits in 2 years at five locations in Germany. We observed a large variation of dry biomass yield as well as significant genotypic variances and high heritabilities for all traits. For the hybrids, a moderate correlation was observed between biomass and plant height and between biomass and grain yield. Mid‐parent heterosis of biomass yield ranged from ?13.6 to 16.5% with an average of 4.8%, and the maximum commercial heterosis was 9.1%. Taken together, our results illustrate the potential of hybrid breeding of triticale for biomass yield to diversify our portfolio of crops for biomass production.  相似文献   

7.
In CMS (cytoplasmic male sterility)‐based hybrid rye (Secale cereale L.) breeding, effective pollen‐fertility restoration is an essential prerequisite for achieving maximum grain yield on the one hand and for minimizing ergot (Claviceps purpurea) infestation on the other. Restorer genes for the CMS‐inducing ‘Pampa’ cytoplasm derived from landraces collected in Iran and Argentina are used by breeders for achieving this goal. Here, restorer genes from four germplasm sources (‘Altevogt 14160’, ‘IRAN III’, ‘Trenelense’ and ‘Pico Gentario’) were analysed by producing three‐way cross hybrids between an elite CMS single cross and pollinators with and without a given restorer gene. Materials were evaluated on large drilled plots for restorer index (RI), grain yield, plant height and other traits in six environments. In experiment 1, a restorer gene from ‘Altevogt 14160’ was used. Seven pairs of marker‐selected carrier and non‐carrier backcross lines served as pollinators. In experiment 2, the pollinators were 17 backcross line pairs from the other three germplasm sources. These lines were grouped as high (RI > 67%) and low restorers (RI < 30%), respectively, using testcrosses with a highly diagnostic CMS tester. Hybrids carrying an exotic restorer gene suffered from a significant grain yield reduction by 4.4% and 9.4% and were 9.3 and 4.8 cm taller in experiments 1 and 2, respectively. Thousand‐kernel weight was reduced, whereas quality traits were only slightly affected. For all traits, significant genetic variance existed among the testcrosses to the presence vs. absence of a given exotic restorer gene. This offers a chance for the breeder to reduce or ultimately overcome the presently observed performance reductions brought about by exotic restorer genes.  相似文献   

8.
Summary Ten hexaploid winter triticale lines were grown for two cropping periods at three locations in western Switzerland. Averaged across the six environments, the differences between lines were statistically significant (P=0.05) for grain yield, above-ground biomass, N uptake, grain N yield, nitrogen harvest index, grain N concentration and straw N concentration. There were significant line x environment interactions for all traits. Grain yield and grain N concentration were inversely related (r=–0.74**). Diagrams in which grain yields were plotted against grain N concentration were used to identify lines with a consistently unusual combination of grain yield and grain N concentration. Despite comparable grain yields, Line 3 had a high grain N concentration, while that of Line 7 was low. Line 3 was superior to Line 7 in both N uptake and N harvest index. Averaged across environments and lines, the N harvest index was 0.73 which corresponds to N harvest indices reported for bread wheat in the same region. We considered the feasibility of developing triticale lines which would outperform the best recent ones in N uptake and partitioning. However, we doubted that this would bring about a marked increase in grain N concentration, because, in the long run, the expected genetic progress in grain yield will lead to a dilution of grain protein by grain carbohydrate increments.Abbreviations GNC grain N concentration - GNY grain N yield - GY grain yield - HI above-ground dry matter harvest index - NHI nitrogen harvest index - SNC straw N concentration - TB total above-ground biomass - TPN total plant N  相似文献   

9.
Hybrid breeding is a widely discussed alternative for triticale. Heterosis as well as general (GCA) and specific combining ability (SCA) effects were estimated for eight agronomic traits. The experiment comprised 24 F1 hybrids, produced by a chemical hybridizing agent, together with their six female and four male parents, grown in drilled plots in two locations. In comparison with the mid‐parent values, hybrids averaged a 6.4 dt/ha (10.1%) higher grain yield, 8.4% more kernels per spike, a 6.8% higher 1000‐kernel weight, 9.7% lower falling number (FN) and 4.4% greater plant height. SCA effects for grain yield were significant and ranged from 4.5 to 6.9 dt/ha for grain yield. Together with GCA x location interactions, they explained most of the variation. For 1000‐kernel weight, GCA effects were predominant. SCA and interactions with location accounted for most of the variation in FN, whereas interactions were negligible for plant height. Correlations between mid‐parent and hybrid performance and between GCA and per se performance of parents were tight for all traits except grain yield, which allows for pre‐selection of parental lines. Although the amount of heterosis in triticale at present is closer to wheat than to rye, by selecting parents for combining ability and identifying heterotic patterns, grain yield heterosis of up to 20% appears sufficiently encouraging to embark on hybrid breeding.  相似文献   

10.
Hexaploid triticale contains valuable genes from both tetraploid wheat and rye and plays an important role in wheat breeding programmes. In order to explore the potential of hexaploid triticale ‘Certa’ in wheat improvement, two crosses were made using ‘Certa’ as female parent, and common wheat cultivars ‘Jinmai47’ (JM47) and ‘Xinong389’ (XN389) as male parents. The karyotyping of BCF4:5 lines from Certa/JM47//JM47 and F5:6 lines from Certa/XN389 was investigated using sequential fluorescence in situ hybridization (FISH). One 1B(1R) substitution line and five 1BL.1RS whole‐arm translocation lines were identified, one of which was found lacking ω‐secalin locus. Many structural alterations on wheat chromosomes were detected in the progeny. Great morphologic differences resulting from genetic variations were observed, among which the photosynthetic capability was increased while grain quality was slightly improved. Compared with both parents, the stripe rust resistance at adult stage was increased in lines derived from Certa/JM47//JM47, while it was decreased in lines derived from Certa/XN389. These newly developed lines might have the potential to be utilized in wheat improvement programmes.  相似文献   

11.
Heterosis is a phenomenon whereby hybrids of inbred lines produce favourable phenotypes that exceed those of their parents. Traits of interest are higher yield and stronger stress tolerance. The two‐line super‐hybrid rice ‘Liangyoupei9’ (LYP9) shows superiority to both its elite inbred line ‘93‐11’ and ‘Pei'ai64s’ (‘PA64s’) parents and conventional hybrids. However, the genetic basis of its hybrid vigour, especially yield determination, remains elusive. In the present study, a set of 156 chromosome segment substitution lines (CSSLs) carrying overlapping segments from ‘PA64s’ in a genetic background of ‘93‐11’ were constructed and planted in six environments. Three major agronomic traits, viz. panicle length (PL), heading date (HD) and plant height (PH), and five yield‐related traits, viz. grain weight per panicle (GWP), number of grains per panicle (GPP), 1000‐grain weight (TGW), seed set (SS) and number of panicles of per plant (PPP), were evaluated over 3 years. Quantitative trait loci (QTL) analysis was conducted using a likelihood ratio test based on stepwise regression. Forty‐six putative QTL distributed on 11 chromosomes were detected in more than one year. Remarkably, GWP of four CSSLs carrying positive yield QTL outperformed the recurrent parent ‘93‐11’ by more than 15%, in at least two environments. These results indicate that CSSLs are effective in identifying yield‐associated traits, and lines harbouring such QTL will be rich in resources for future molecular breeding programmes.  相似文献   

12.
The aim of this study was to investigate long-term genetic trends and the genetic architecture of grain yield, seed characteristics and correlated agronomic traits in triticale. Therefore, a panel of 846 diverse triticale genotypes was assessed for three agronomic and three seed shape- and size-related traits. We observed a high genotypic variation and a high heritability for all traits. Analysing the development of these traits during the last decades revealed a continuous increase for grain yield and thousand-kernel weight, and a slight increase in seed width. The seed characteristics and thousand-kernel weight formed a complex of highly positive correlated traits. Genome-wide association mapping revealed many small-effect QTL and a few moderate-effect QTL. The allele frequencies of the moderate-effect QTL followed the same temporal trends as observed for the phenotype. In line with the phenotypic correlations, we identified several pleiotropic QTL for grain yield, thousand-kernel weight, seed width and seed area. Our results illustrate the continuous progress achieved in triticale breeding and suggest that triticale seeds have been selected to be more spherical in modern cultivars.  相似文献   

13.
S. H. Tams    E. Bauer    G. Oettler    A. E. Melchinger    C.-C. Schön 《Plant Breeding》2006,125(4):331-336
Significant relative midparent heterosis (MPH%) for grain yield in triticale (×Triticosecale Wittm.) has generated interest in the development of hybrid cultivars. The objectives of this study were to (i) examine the association between parental genetic distance (GD) and specific combining ability (SCA), (ii) investigate the existence of genetically distant heterotic groups in elite germplasm, and (iii) draw conclusions for future hybrid breeding in winter triticale. Genetic distance between 61 lines was estimated, based on 93 polymorphic simple sequence repeat (SSR) marker loci and 10 AFLP (amplified fragment length polymorphism) primer‐enzyme combinations (PEC). Agronomic data of 206 F1 crosses and their 61 parental lines grown in six German environments were published recently in a companion study. Correlations were made between SCA for grain yield, number of spikes/m2, 1000‐kernel weight and number of kernels per spike with GD estimates of the 56 female and five male parents (testers). Principal co‐ordinate analyses (PCoA) based on SSR data revealed no distinct subgroups in the germplasm. Correlations between GD and SCA were low for all traits (|r| ≤ 0.31), which hampers the prediction of SCA from molecular data. A multi‐stage procedure is recommended for future hybrid breeding in triticale by applying a pragmatic approach for the grouping of germplasm following the early history of hybrid breeding of maize.  相似文献   

14.
Hybrid breeding is a promising approach to increase the yield potential in wheat (Triticum aestivum L.). The profitability of wheat hybrids highly depends on a cost‐efficient system for hybrid seed production for which an adequate outcrossing in the male pool is of utmost importance. Employing a set of 51 elite winter wheat lines, we developed and evaluated phenotyping methods for floral and flowering traits with relevance for improved cross‐pollination. We observed significant genotypic variances and high heritabilities for most traits, including important traits like pollen mass and anther extrusion. Our results suggest the utility of the developed phenotyping approaches for applied plant breeding and the potential of the traits to assist in the design of the male ideotype for increased cross‐fertilization.  相似文献   

15.
Improving maize starch content is of great importance for both forage and grain yield. In this study, 13 starch degradability traits were analysed including percentage of the seedling area, floury endosperm, hard endosperm of total grain area, percentage of the floury endosperm surface and vitreousness ratio surface hard: floury endosperm surface, etc. We mapped quantitative trait loci (QTL) in a biparental population of 309 doubled haploid lines based on field phenotyping at two locations. A genetic linkage map was constructed using 168 SSR (simple sequence repeat) markers, which covered 1508 cM of the maize genome, with an average distance of 9.0 cM. Close phenotypic and genotypic correlations were found for all traits, and were all statistically significant (p = 0.01) at two locations. Major QTL for more than two traits were detected, especially in two regions in bins 4.05–4.06 and 7.04–7.05, associated with 13 and 9 traits, respectively. This study contributes to marker‐assisted breeding and also to fine mapping candidate genes associated with maize starch degradability.  相似文献   

16.
Fusarium head blight (FHB) is a cereal disease of major importance responsible for yield losses and mycotoxin contaminations in grains. Here, we introduce a new measurement approach to quantify FHB severity on grains based on the evaluation of the whitened kernel surface (WKS) using digital image analysis. The applicability of WKS was assessed on two bread wheat and one triticale grain sample sets (265 samples). Pearson correlation coefficients between Fusarium‐damaged kernels (FDK) and WKS range from r = 0.77 to r = 0.81 and from r = 0.61 to r = 0.86 for the correlation between deoxynivalenol (DON) content and WKS. This new scoring method facilitates fast and reliable assessment of the resistance to kernel infection and shows significant correlation with mycotoxin content. WKS can be automated and does not suffer from the “human factor” inherent to visual scorings. As a low‐cost and fast approach, this method appears particularly attractive for breeding and genetic analysis of FHB resistance where typically large numbers of experimental lines need to be evaluated, and for which WKS is suggested as an alternative to visual FDK scorings.  相似文献   

17.
Organic spring wheat (Triticum aestivum L.) producers in the northern Great Plains use cultivars which have been bred for conventional management systems or heritage cultivars released before the widespread use of synthetic fertilizers and pesticides. To investigate the feasibility of organic wheat breeding and to determine common genetic parameters for each system, we used a random population of 79 F6-derived recombinant inbred sister lines from a cross between the Canadian hard red spring wheat cultivar AC Barrie and the CIMMYT derived cultivar Attila. The population, including the parents, was grown on conventionally and organically managed land for 3 years. Heritability estimates differed between systems for 6 of the 14 traits measured, including spikes m−2, plant height, test weight, 1,000 kernel weight, grain protein, and days to anthesis. Direct selection in each management system (10% selection intensity) resulted in 50% or fewer lines selected in common for nine traits, including grain yield, grain protein, spikes m−2, and grain fill duration. The results of this study suggest that indirect selection (in conventionally managed trials) of spring wheat destined for organically managed production would not result in the advance of the best possible lines in a breeding program. This implies that breeding spring wheat specific to organic agriculture should be conducted on organically managed land.  相似文献   

18.
This study aimed to identify whether and how sugarcane (Saccharum spp.) breeding in Argentina modified nitrogen‐use efficiency (NUE), water‐use efficiency (WUE) and radiation‐use efficiency (RUE). Thirteen varieties were grown in two consecutive seasons. Trends in different traits were estimated by fitting the data to linear or bilinear regression models. There was a linear increase in NUE and WUE with the year of release throughout the 70‐year span, whereas water use was not modified by sugarcane breeding. There was a positive and strong (r > 0.90; P < 0.01) association between NUE and WUE and between sugar yield and NUE or WUE. Although RUE was not modified by sugarcane breeding, the amount of radiation intercepted by the crop increased with the year of release. Modern varieties had a higher maximum interception and needed fewer days to reach maximum interception than old varieties. This study suggests that applying ecophysiological knowledge would be instrumental in sugarcane breeding programmes in order to develop varieties with high resource‐use efficiency and capable to adapt to global climate change.  相似文献   

19.
Soybean (Glycine max [L.] Merr.) cultivars are generally sensitive to flooding stress. The plant growth is severely affected and grain yield is largely reduced in the flooded field. It is important to develop flood‐tolerant soybean cultivars for grain production in regions of heavy rainfalls worldwide. In this study, a total of 722 soybean genotypes were evaluated for flooding tolerance at R1 stages (first flower at any node) in the 5‐year flooding screening tests. Differential soybean genotypes exhibited diverse responses to flooding stress with that plant foliar damage score (FDS) and plant survival rate (PSR) ranged from 1.9 to 8.8 and 3.4% to 81.7%, respectively (p < .0001). Based on our standard of flooding evaluation, most genotypes were sensitive to flooding with 6.0 of average FDS and 38.7% of PSR. Fifty‐two soybean genotypes showed flooding tolerance and 11 genotypes were with consistent flooding tolerance during 4‐ to 5‐year continual evaluations. In the meantime, six genotypes were identified with consistent high sensitivity to flooding. The group analysis showed that genotypes from different sources had distinguishable responses to flooding stress (p < .0001). The interacting analysis of year and flooding tolerance indicated that FDS and PSR means were significantly different among 5 years due to weather temperature and flooding treatment time influences of each year (p < .0001). Furthermore, five breeding lines with high‐yielding and flood‐tolerant traits were developed using selected consistent flood‐tolerant and high‐yielding genotypes through conventional breeding approach.  相似文献   

20.
Maize is one of China's most important grain crops. We analysed data from breeding trials and experimental reports to assess genetic gains in the single‐cross varieties in terms of grain yield and agronomic traits in Northern China, Southwestern China and Yellow–Huai River Valley. Since the 1960s, the grain yield of single‐cross varieties has increased linearly in all three regions. Plant height, ear rows and 100‐seed weight have increased linearly (P < 0.05) with time, while ear length has decreased (P < 0.05). Planting density has increased (P < 0.05) in Yellow–Huai River Valley and Northern China, but no change in Southwestern China. Ear height and leaf number in Northern China and Southwestern China have increased linearly (P < 0.05) over time, but no change in Yellow–Huai River Valley. The growing period in Yellow–Huai River Valley has increased linearly (P < 0.05), while that of Northern China and Southwestern China has not changed. Our analysis showed that contribution of agronomic traits to grain yield differed between agroecological regions. Future research and breeding strategies should focus on specific agroecological regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号