首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is worldwide interest in adult plant resistance (APR) because of greater durability of APR to the cereal rusts. Peruvian bread wheat genotype ‘CPAN (Coordinated Project Accession Number) 1842’ (LM 50–53) has shown leaf rust resistance in disease screening nurseries since its introduction in 1977. However, it is susceptible at the seedling stage to several Puccinia triticina (Pt) pathotypes including the widely prevalent 77‐5 (121R63‐1) that infects bread wheat. Inheritance studies showed that CPAN 1842 carried a dominant gene for APR to pathotype 77‐5, which was different from Lr12, Lr13, Lr22a, Lr34, Lr35, Lr37, Lr46, Lr48, Lr49 and Lr68, based on the tests of allelism; and from Lr67, based on genotyping with the closely linked SSR marker cfd71. This gene should also be different from Lr22b as the latter is totally ineffective against pathotype 77‐5. CPAN 1842 therefore appears to be a new promising source of leaf rust resistance. Also having resistance to stem rust and stripe rust, this line can contribute to breeding for multiple rust resistances in wheat.  相似文献   

2.
Wheat leaf rust (LR), caused by the obligate biotrophic fungus Puccinia triticina (Pt), is a destructive foliar disease of common wheat (Triticum aestivum L.) worldwide. The most effective, economic means to control the disease is resistant cultivars. The Romanian wheat line Fundulea 900 showed high resistance to LR in the field. To identify the basis of resistance to LR in Fundulea 900, a population of 188 F2:3 lines from the cross Fundulea 900/‘Thatcher’ was phenotyped for LR severity during the 2010–2011, 2011–2012 and 2012–2013 cropping seasons in the field at Baoding, Hebei Province. Bulked segregant analysis and simple sequence repeat markers were used to identify the quantitative trait loci (QTLs) for LR adult‐plant resistance in the population. Three QTLs were detected and designated as QLr.hebau‐1BL, QLr.hebau‐2DS and QLr.hebau‐7DS. Based on the chromosome positions and molecular marker tests, QLr.hebau‐1BL is Lr46, and QLr.hebau‐7DS is Lr34. QLr.hebau‐2DS was derived from ‘Thatcher’ and was close to Lr22. This result suggests that Lr22b may confer residual resistance on field nurseries when challenged with isolates virulent on Lr22b, or another gene linked to Lr22b confers this resistance from ‘Thatcher’. This study confirms the value of Lr34 and Lr46 in breeding for LR resistance in China; the contribution of the QTL to chromosome 2D needs further validation.  相似文献   

3.
Cold tolerance is a complex trait, and QTL pyramiding is required for rice breeding. In this study, a total of seven QTLs for cold tolerance in the Japonica rice variety ‘Nipponbare’ were identified in an F2:3 population. A stably inherited major QTL, called qCTS11, was detected in the region adjacent to the centromere of chromosome 11. In a near‐isogenic line population, the QTL was further dissected into two linked loci, qCTS11.1 and qCTS11.2. Both of the homozygous alleles of qCTS11.1 and qCTS11.2 from ‘Nipponbare’ showed major positive effects on cold tolerance. Through pyramiding the linked QTLs in the cold‐sensitive Indica rice cultivar ‘93‐11’, we have developed a new elite, high‐yielding Indica variety with cold tolerance.  相似文献   

4.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating fungal disease in common wheat (Triticum aestivum L.) worldwide. Chinese wheat cultivars ‘Lumai 21’ and ‘Jingshuang 16’ show moderate levels of adult‐plant resistance (APR) to stripe rust in the field, and they showed a mean maximum disease severity (MDS) ranging from 24 to 56.7% and 26 to 59%, respectively, across different environments. The aim of this study was to identify quantitative trait loci (QTL) for resistance to stripe rust in an F3 population of 199 lines derived from ‘Lumai 21’ × ‘Jingshuang 16’. The F3 lines were evaluated for MDS in Qingshui, Gansu province, and Chengdu, Sichuan province, in the 2009–2010 and 2010–2011 cropping seasons. Five QTL for APR were detected on chromosomes 2B (2 QTL), 2DS, 4DL and 5DS based on mean MDS in each environment and averaged values from all three environments. These QTL were designated QYr.caas‐2BS.2, QYr.caas‐2BL.2, QYr.caas‐2DS.2, QYr.caas‐4DL.2 and QYr.caas‐5DS, respectively. QYr.caas‐2DS.2 and QYr.caas‐5DS were detected in all three environments, explaining 2.3–18.2% and 5.1–18.0% of the phenotypic variance, respectively. In addition, QYr.caas‐2BS.2 and QYr.caas‐2BL.2 colocated with QTL for powdery mildew resistance reported in a previous study. These APR genes and their linked molecular markers are potentially useful for improving stripe rust and powdery mildew resistances in wheat breeding.  相似文献   

5.
Soybean (Glycine max [L.] Merr.) is cultivated primarily for its protein and oil in the seed. In addition, soybean seeds contain nutraceutical compounds such as tocopherols (vitamin E), which are powerful antioxidants with health benefits. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) that affect accumulation of soybean seed tocopherols. A recombinant inbred line (RIL) population derived from the cross ‘OAC Bayfield’ × ‘OAC Shire’ was grown in three locations over 2 years. A total of 151 SSR markers were polymorphic of which a one‐way analysis of variance identified 42 markers whereas composite interval mapping identified 26 markers linked to tocopherol QTL across 17 chromosomes. Individual QTL explained from 7% to 42% of the total phenotypic variation. Significant two‐locus epistatic interactions were identified for a total of 122 combinations in 2009 and 152 in 2010. The multiple‐locus models explained 18.4–72.2% of the total phenotypic variation. The reported QTL may be used in marker‐assisted selection (MAS) to develop high tocopherol soybean cultivars.  相似文献   

6.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

7.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

8.
The objective of this study was to identify quantitative trait loci (QTLs) controlling 100‐seed weight in soybean using 188 recombinant inbred lines (RIL) derived from a cross of PI 483463 and ‘Hutcheson’. The parents and RILs were grown for 4 years (2010–2013), and mature, dry seeds were used for 100‐seed weight measurement. The variance components of genotype (a), environment (e) and a × e interactions for seed weight were highly significant. The QTL analysis identified 14 QTLs explaining 3.83–12.23% of the total phenotypic variation. One of the QTLs, qSW17‐2, was found to be the stable QTL, being identified in all the environments with high phenotypic variation as compared to the other QTLs. Of the 14 QTLs, 10 QTLs showed colocalization with the seed weight QTLs identified in earlier reports, and four QTLs, qSW5‐1, qSW14‐1, qSW15‐1 and qSW15‐2, found to be the novel QTLs. A two‐dimensional genome scan revealed 11 pairs of epistatic QTLs across 11 chromosomes. The QTLs identified in this study may be useful in genetic improvement of soybean seed weight.  相似文献   

9.
10.
Modifying plant architecture is considered a promising breeding option to enhance crop productivity. Modern chickpea (Cicer arietinum L.) cultivars with either compound (wild‐type) or simple leaf shapes are commercially grown but the relationships between leaf shape and yield are not well understood. In this study, a random sample of ‘Kabuli’ type progeny lines of both leaf types, derived from two crosses between modern American simple leaf cultivars and early‐flowering wild‐type breeding lines, were planted at different sowing densities. Leaf area development and final grain yield in genotypes of the two leaf types responded differently to changes in sowing densities. Compound leaf lines attained higher leaf area indices and higher grain yields at both low and high sowing densities. Yield responses of the simple leaf lines to increasing sowing density were significantly higher compared to compound leaf genotypes in two of three field experiments. The prospects for utilizing the simple leaf trait as a breeding target for short‐season growing areas are discussed.  相似文献   

11.
Soybean is one of the most important crops worldwide for its protein and oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense single nucleotide polymorphism (SNP)‐based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line population and quantitative trait loci (QTL) for seed isoflavone contents. The genetic map is composed of 1502 SNP markers and covers about 1423.72 cM of the soybean genome. Two QTL for seed isoflavone contents have been identified in this population. One major QTL that controlled both daidzein (qDZ1) and total isoflavone contents (qTI1) was found on LG C2 (Chr 6). And a second QTL for glycitein content (qGT1) was identified on the LG G (Chr 18). These two QTL in addition to others identified in soybean could be used in soybean breeding to optimize isoflavone content. This newly assembled soybean linkage map is a useful tool to identify and map QTL for important agronomic traits and enhance the identification of the genes involved in these traits.  相似文献   

12.
Soybean (Glycine max (L.) Merr.) seed contains small amounts of tocopherol, a non‐enzymatic antioxidant known as lipid‐soluble vitamin E (VE). Dietary VE contributes to a decreased risk of chronic diseases in humans and has several beneficial effects on resistance to stress in plants, and increasing VE content is an important breeding goal for increasing the nutritional value of soybean. In this study, quantitative trait loci (QTLs) underlying VE content with main, epistatic and QTL × environment effects were identified in a population of F5 : 6 recombinant inbred lines from a cross between ‘Hefeng 25’ (a low‐VE cultivar) and ‘OAC Bayfield’ (a high‐VE cultivar). A total of 18 QTLs were detected that showed additive main effects (a) and/or additive × environment interaction effects (ae) in different environments. Moreover, 19 epistatic pairs of QTLs were found to be associated with α‐tocopherol (α‐Toc), γ‐tocopherol (γ‐Toc), δ‐tocopherol (δ‐Toc) and total VE (TE) contents. The QTLs identified in multienvironments could provide more information about QTL by environment interactions and could be useful for the marker‐assistant selection of soybean cultivars with high seed VE contents.  相似文献   

13.
Seed starch content (SSC) greatly affects the taste, flavour and processing properties of soy foods. The objective in this study was to identify quantitative trait loci (QTL) for SSC in soybean. A total in 169 recombinant inbred lines (RILs) derived from a cross in ‘Williams 82’ and ‘PI 366121’ were grown for three consecutive years. The SSC of the RILs displayed continuous variation with transgressive segregation and hence amenable for QTL mapping. Nine significant QTL exhibiting 5.6–11.3% of the total phenotypic variation (PVE) were identified. The QTL qSTR06_2 showed highest PVE (9.1–11.3%) at LOD values of 4.25–5.39. No stable QTL over 3 years were identified, indicating strong environmental influence on SSC. The QTL qSTR11_1 and qSTR20_1 were found to colocalize with some of the previously reported QTL for sucrose content in soybean, implying the interrelationship between starch and sucrose biosynthesis. As the carbohydrate components may affect key constituents such as oil and protein in soybean seed, findings of the study may be useful in breeding soybeans with improved seed composition.  相似文献   

14.
15.
A major quantitative trait locus (QTL) influencing seed fibre and colour in Brassica napus was dissected by marker saturation in a doubled haploid (DH) population from the black‐seeded oilseed rape line ‘Express 617’ crossed with a yellow‐seeded B. napus line, ‘1012–98’. The marker at the peak of a sub‐QTL with a strong effect on both seed colour and acid detergent lignin content lay only 4 kb away from a Brassica (H+)‐ATPase gene orthologous to the transparent testa gene AHA10. Near the peak of a second sub‐QTL, we mapped a copy of the key phenylpropanoid biosynthesis gene cinnamyl alcohol dehydrogenase, while another key phenylpropanoid biosynthesis gene, cinnamoyl co‐a reductase 1, was found nearby. In a cross between ‘Express 617’ and another dark‐seeded parent, ‘V8’, Bna.CCR1 was localized in silico near the peak of a corresponding seed fibre QTL, whereas in this case Bna.CAD2/CAD3 lay nearby. Re‐sequencing of the two phenylpropanoid genes via next‐generation amplicon sequencing revealed intragenic rearrangements and functionally relevant allelic variation in the three parents.  相似文献   

16.
We report on a new adult plant resistance (APR) gene Rph23 conferring resistance to leaf rust in barley. The gene was identified and characterized from a doubled haploid population derived from an intercross between the Australian barley varieties Yerong (Y) and Franklin (F). Genetic analysis of adult plant field leaf rust scores of the Y/F population collected over three successive years indicated involvement of two highly additive genes controlling APR, one of which was named Rph23. The gene was mapped to chromosome 7HS positioned at a genetic distance 36.6 cM. Rph23 is closely linked to marker Ebmac0603, which is flanked by markers bPb‐8660 and bPb‐9601 with linkage distances of 0.8 and 5.1 cM, respectively. A PCR‐based marker was optimized for marker‐assisted selection of Rph23, and on the basis of this marker, the gene was postulated as being common in Australian and global barley germplasm. Pedigree and molecular marker analyses indicated that the six‐rowed black Russian landrace ‘LV‐Taganrog’ is the likely origin of Rph23.  相似文献   

17.
18.
19.
Hexaploid triticale contains valuable genes from both tetraploid wheat and rye and plays an important role in wheat breeding programmes. In order to explore the potential of hexaploid triticale ‘Certa’ in wheat improvement, two crosses were made using ‘Certa’ as female parent, and common wheat cultivars ‘Jinmai47’ (JM47) and ‘Xinong389’ (XN389) as male parents. The karyotyping of BCF4:5 lines from Certa/JM47//JM47 and F5:6 lines from Certa/XN389 was investigated using sequential fluorescence in situ hybridization (FISH). One 1B(1R) substitution line and five 1BL.1RS whole‐arm translocation lines were identified, one of which was found lacking ω‐secalin locus. Many structural alterations on wheat chromosomes were detected in the progeny. Great morphologic differences resulting from genetic variations were observed, among which the photosynthetic capability was increased while grain quality was slightly improved. Compared with both parents, the stripe rust resistance at adult stage was increased in lines derived from Certa/JM47//JM47, while it was decreased in lines derived from Certa/XN389. These newly developed lines might have the potential to be utilized in wheat improvement programmes.  相似文献   

20.
Soybean (Glycine max) seeds contain bioactive proteins with antinutritional and immunological properties that affect metabolism and assimilation of nutrients. The presence of antinutritional proteins requires soybeans to be heat‐treated resulting in input energy costs. Nulls for bioactive seed proteins have been previously isolated from the USDA soybean collection, including Kunitz trypsin inhibitor (TI), soybean agglutinin (LE) and immunodominant soybean allergen P34 protein. Each of these nulls has the potential to partially address the concerns of soybean feed/food consumption. A stack of recessive nulls of TI, LE and P34 was created in a cv ‘Williams 82’ background termed ‘Triple Null’. Triple Null has a slight reduction of total protein compared with ‘Williams 82’ corresponding to aggregate contribution of TI, LE and P34 in the seed proteome. Triple Null's proteome analysis revealed P34 and TI nulls are frame‐shift mutants able to accumulate small amounts of authentic P34 and TI proteins. Triple Null has possible application as a conventional feed/food source and for immunotherapy to mitigate soybean allergenic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号