首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Broomrape is a parasitic plant that significantly decreases yield of sunflower. Breeding for resistance has proved to be the most efficient method for suppressing broomrape infestation in the field; however, new races of parasite constantly emerge, and new resistance genes need to be discovered and introduced into cultivated sunflower lines. The aim of this work was to test SSR markers from linkage group 3 (LG3) to investigate whether they could be used for identification of a particular Or gene. Twenty sunflower inbred lines were used, and polymorphism between the lines with various resistance genes and genetic background was investigated. The used markers revealed DNA polymorphism between the investigated lines. Strong association of markers from LG3 with Or6, as well as Or4 and Or2 genes, was found. Identified markers could be used for introduction of these resistance genes into commercial sunflower lines and for establishment and identification of differential lines.  相似文献   

2.
Lagerstroemia (crape myrtle) are famous ornamental plants with large pyramidal racemes, long flower duration and diverse colours. Genetic maps provide an important genomic resource of basic and applied significance. A genetic linkage map was developed by genotyping 192 F1 progeny from a cross between L. caudata (female) and L. indica (‘Xiang Xue Yun’) (male) with a combination of amplification fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers in a double pseudo‐testcross mapping strategy. A total of 330 polymorphic loci consisting of 284 AFLPs and 46 SSRs showing Mendelian segregation were generated from 383 AFLP primer combinations and 150 SSR primers. The data were analysed using JoinMap 4.0 (evaluation version) to construct the linkage map. The map consisted of 20 linkage groups of 173 loci (160 AFLPs and 13 SSRs) covering 1162.1 cM with a mean distance of 10.69 cM between adjacent markers. The 20 linkage groups contained 2–49 loci and ranged in length from 7.38 to 163.57 cM. This map will serve as a framework for mapping QTLs and provide reference information for future molecular breeding work.  相似文献   

3.
Portugal has a diverse common bean germplasm, which is still grown in farmers' fields. In this work, we searched for resistance to rust (Uromyces appendiculatus) and powdery mildew (Erysiphe diffusa) in a representative collection of the Portuguese common bean germplasm. Despite many accessions depicting intermediate levels of resistance when compared to the susceptible check, 24 and 13 accessions showed low levels of infection, in spite of a compatible interaction (disease severity (DS) values lower than 5% and infection type (IT) of 4), to rust and powdery mildew, respectively, indicative of partial resistance. Moreover, a resistant reaction was observed in 11 accessions when inoculated with powdery mildew (IT = 0–1) and in additional 11 accessions (one in common) when inoculated with rust (IT = 0–2). The levels of resistance found in this report anticipate great potential of the Portuguese national germplasm, recently reported as genetically closer to the Andean common bean gene pool, for disease resistance breeding of this important crop.  相似文献   

4.
Concerns regarding the safety of transgenic foods have been raised because of possibility of undesirable effects development during genetic engineering. Analysis of phenotypic traits can increase the likelihoods of identifying those unintended effects in dietary composition of the GM crops. Objective of this study was to compare the transgenic lines with their non‐transgenic counterpart. Different vegetative and reproductive traits as well as antioxidant properties were considered to evaluate the transgenic (HV8 and HV23) lines containing CaMsrB2 gene and their non‐transgenic (Ilmi) parent line. Grain size and weight, seed germination, root length, root and shoot dry weight, length and width of flag leaf, plant height, and ligule, stamen and carpel length were not significantly different. Onset and completion of heading in each line occurred almost during the same period. The antioxidant properties in terms of DPPH (1,1‐diphenyl‐2‐picrylhydrazyl) radical scavenging activity and polyphenol content were not statistically different under same treatment condition. The results suggested that the transgenic rice lines containing CaMsrB2 gene were equivalent to their non‐transgenic counterpart without any visible unintended effects.  相似文献   

5.
Turnip mosaic virus (TuMV) is responsible for a serious disease that affects the production of Chinese cabbage. Previous studies have cloned a series of TuMV resistance genes and developed molecular markers. In this study, a derived cleaved amplified polymorphism sequence (dCAPS) marker and a Kompetitive Allele Specific PCR (KASP) marker were developed based on a single recessive gene, retr02, which confers broad‐spectrum TuMV resistance in Chinese cabbage by means of an additional G at the junction of exon 1 and intron 1. The two markers were able to detect the retr02 allele in Chinese cabbage accessions used in breeding programmes. Compared with the dCAPS marker, the KASP marker was flexible, cost‐effective and quick to process, which is likely to be beneficial in establishing high‐throughput assays for marker‐assisted selection.  相似文献   

6.
A major quantitative trait locus (QTL) influencing seed fibre and colour in Brassica napus was dissected by marker saturation in a doubled haploid (DH) population from the black‐seeded oilseed rape line ‘Express 617’ crossed with a yellow‐seeded B. napus line, ‘1012–98’. The marker at the peak of a sub‐QTL with a strong effect on both seed colour and acid detergent lignin content lay only 4 kb away from a Brassica (H+)‐ATPase gene orthologous to the transparent testa gene AHA10. Near the peak of a second sub‐QTL, we mapped a copy of the key phenylpropanoid biosynthesis gene cinnamyl alcohol dehydrogenase, while another key phenylpropanoid biosynthesis gene, cinnamoyl co‐a reductase 1, was found nearby. In a cross between ‘Express 617’ and another dark‐seeded parent, ‘V8’, Bna.CCR1 was localized in silico near the peak of a corresponding seed fibre QTL, whereas in this case Bna.CAD2/CAD3 lay nearby. Re‐sequencing of the two phenylpropanoid genes via next‐generation amplicon sequencing revealed intragenic rearrangements and functionally relevant allelic variation in the three parents.  相似文献   

7.
8.
Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker‐assisted selection due to their map distance and linkage phase. Using 80 F8 recombinant inbred lines (RILs) derived from the cross of Green Arrow × PI 179449, we amplified 72 polymorphic markers between resistant and susceptible lines with the target region amplified polymorphism (TRAP) technique. Marker–trait association analysis revealed a significant association. Five candidate markers were identified and three were converted into user‐friendly dominant SCAR markers. Forty‐eight pea cultivars with known resistant or susceptible phenotypes to Fusarium wilt race 1 verified the marker–trait association. These three markers, Fw_Trap_480, Fw_Trap_340 and Fw_Trap_220, are tightly linked to and only 1.2 cM away from the Fw locus and are therefore ideal for marker‐assisted selection. These newly identified markers are useful to assist in the isolation of the Fusarium wilt race 1 resistance gene in pea.  相似文献   

9.
The slow‐rusting and mildewing gene Yr18/Lr34/Pm38/Sr57 confers partial, durable resistance to multiple fungal pathogens and has its origins in China. A number of diagnostic markers were developed for this gene based on the gene sequence, but these markers do not always predict the presence of the resistant phenotype as some wheat varieties with the gene are susceptible to stripe rust in China. We hypothesized that these varieties have a suppressor of Yr18. This study was undertaken to determine the presence of Yr18, the suppressor and/or another resistance gene in 144 Chinese wheat landraces using molecular markers and stripe rust field data. Forty‐three landraces were predicted to have Yr18 based on the presence of the markers, but had final disease severities higher than 70%, indicating that this gene may be under the influence of a suppressor. Four of these landraces, ‘Sichuanyonggang 2’, ‘Baikemai’, ‘Youmai’ and ‘Zhangsihuang’, were chosen for genetic studies. Crosses were made between the lines and ‘Avocet S’, with further crosses of Sichuanyonggang 2 ×  ‘Huixianhong’ and Sichuanyonggang 2 ×  ‘Chinese Spring’. The F1 plants of Sichuanyonggang 2/Chinese Spring was susceptible indicating the presence of a dominant suppressor gene. The results of genetic analyses of F2:3 and BC1F2 families derived from these crosses indicated the presence of Yr18, a Yr18 suppressor and another additive resistance gene. The Yr18 region in Sichuanyonggang 2 was sequenced to ensure that it contained the functional allele. This is the first report of a suppressor of Yr18/Lr34/Pm38/Sr57 gene with respect to stripe rust response.  相似文献   

10.
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is one of the most serious soybean (Glycine max) diseases in tropical and subtropical areas. A soybean line, PI 587855, showed a resistance phenotype against ASR pathogens in Japan and South America at high frequency; however, little is known of the genetic control of this resistance and chromosomal location of the corresponding locus. Therefore, the aim of this study was to study the inheritance of PI 587855 resistance and map the corresponding locus with SSR markers aiming to use the linked markers in marker‐assisted selection. In the segregating population, resistance to ASR appeared to be controlled by a single dominant gene. The ASR resistance locus was mapped near to the chromosomal region where the resistant loci, Rpp1 and Rpp1‐b, were previously mapped. Comparative genetic mapping and disease reaction profiles of other seven lines carrying Rpp1 or Rpp1‐b to four Brazilian ASR isolates revealed that the resistance reaction exhibited by PI 587855 was similar to that of Rpp1‐b‐carrying varieties which have useful resistance to South American ASR strains.  相似文献   

11.
A half diallel mating design was used to study the inheritance of anthracnose and turcicum leaf blight (TLB) in six sorghum cultivars. Applying pathogens inoculum separately and applying both pathogens simultaneously differently affected the reaction of each genotype. GA06/18 was resistant to both pathogens. GA06/106 x Epuripuri and MUC007/009 x Epuripuri showed high heterosis for resistance to both diseases indicating that they were good materials for sorghum breeding. Additive and non‐additive (dominance) variance components were almost equally reflected by equal contribution of both variances towards the anthracnose resistance suggesting that both additive and dominance gene effects were involved in anthracnose resistance. Contribution of additive gene effects towards TLB resistance was greater than non‐additive gene effects suggesting that additive gene effects were more important in controlling TLB resistance. This study highlighted that deployment of resistant varieties is the most cost effective way to manage both diseases especially when integrated with appropriate agronomy practices.  相似文献   

12.
Hybrid rice has contributed substantially to the improvement of grain production worldwide, yet its poor cooking and tasting characteristics have long been recognized. In this study, 132 recombinant inbred lines derived from LYPJ were used to identify quantitative trait loci (QTLs) for 12 cooking traits with the high‐density SNP linkage map recently developed by our team. We identified 17 QTLs on chromosomes 1, 2, 4, 5, 6, 7, 8, 9 and 11, which accounted for 7.50% to 23.50% of the phenotypic variations. A novel major QTL qBGL7 for boiled grain length was further fine‐mapped to an interval of 440 Kb between the two markers RM21906 and gl3 using a BC3F2 population. Two near‐isogenic lines with extreme boiled grain length, GX5‐176 and GX5‐101, could be directly used in improving cooking quality. We also identified a QTL for soaked grain width expansion rate, qSGWE6, in the Wx gene region on chromosome 6. The Wx differential regulation coincided with sequential variation between the two parents. Our work offered a theoretical basis for molecular breeding of high‐quality hybrid rice.  相似文献   

13.
Cowpea mild mottle virus (CPMMV) is an emerging severe disease of soybean. The resistant genotypes, DS 12‐5 and SL958, were crossed with susceptible genotypes F4C7‐32 and JS335, respectively. Resistance reactions of sap‐inoculated F2 plants and individual F2 plant‐derived F3 families indicated that resistance was controlled by a single dominant gene. Molecular mapping with bulked segregant analysis showed that Satt635 and UO8405 are linked to resistance gene which is located on linkage group H.  相似文献   

14.
A chicory genetic map of 1208 cM has been created using 247 F2 plants and 237 markers (170 AFLP, 28 SSR, 27 EST‐SNP and 12 EST‐SSR). This map covers 84% of the chicory genome. The chicory‐genic‐markers‐associated sequences were used to find potential orthologs in mapped lettuce ESTs from the Compositae Genome Project Database. Twenty‐seven putative orthologous pairs were retained, pinpointing seven putative blocks of synteny that covered 11% of the chicory genome and 13% of the lettuce genome, opening new perspectives for the analysis of these two species.  相似文献   

15.
Brassica napus is a most important oilseed grown worldwide with a limited genetic background, due to the short history of speciation, domestication and cultivation. To create novel germplasm for rapeseed breeding, we made interspecific crosses followed with chromosome doubling between B. rapa and B. oleracea to generate novel B. napus with favourable agronomic traits. The resynthesized (S0) hybrids were confirmed by SSR and cytogenetic analysis, and the fertility was increased from 32.7% in S0 generation to ~97.31% in S1 generation. The plant shapes of the progeny were dramatically improved compared to the diploid parents and B. napus cv. ‘Yangyou 6’, especially for the branch initiation height, branch number and pod number. The single‐plant yield was significantly improved in S1 progeny for the variations in branching sites and number. Significant improvement in plant shape and yield was observed on S2 generation compared to the local elite commercial open‐pollinated cultivar, which would be further fixed by intensive selection and pyramiding breeding. Such variation is of great value for breeding rapeseed with improved plant architecture and harvest index.  相似文献   

16.
A partial resistance to maize mosaic virus (MMV) and maize stripe virus (MStV) was mapped in a RILs population derived from a cross between lines MP705 (resistant) and B73 (susceptible). A genetic map constructed from 131 SSR markers spanned 1399 cM with an average distance of 9.6 cM. A total of 10 QTL were detected for resistance to MMV and MStV, using composite interval mapping. A major QTL explaining 34–41% of the phenotypic variance for early resistance to MMV was detected on chromosome 1. Another major QTL explaining up to 30% of the phenotypic variation for all traits of resistance to MStV was detected in the centromeric region of chromosome 3 (3.05 bin). After adding supplementary SSR markers, this region was found to correspond well to the one where a QTL of resistance to MStV already was located in a previous mapping study using an F2 population derived from a cross between Rev81 and B73. These results suggested that these QTL of resistance to MStV detected on chromosome 3 could be allelic in maize genome.  相似文献   

17.
The development of low‐water‐input forages would be useful for improving the water‐use efficiency of livestock production in semi‐arid and arid regions. The desiccation‐tolerant (DT) species Sporobolus stapfianus Gandoger and two desiccation‐sensitive (DS) species, Sporobolus pyramidalis and Sporobolus fimbriatus (Trin.) Nees. (Poaceae), were evaluated for aerial biomass production and seed productivity under three different irrigation regimes. Sporobolus stapfianus displayed the least biomass production, whereas S. pyramidalis and S. fimbriatus produced up to 3.8‐ and 11.2‐fold greater dry biomass, respectively, at the highest irrigation rate of 12 334 l (0.01 acre‐feet). Sporobolus fimbriatus and to a lesser extent S. pyramidalis showed significant increases in biomass production in response to increased irrigation rates, whereas S. stapfianus did not. Sporobolus pyramidalis and S. fimbriatus exhibited 3.2‐ and 6.0‐fold greater seed production, respectively, in response to increased irrigation rates, whereas S. stapfianus showed only a 1.4‐fold increase. All Sporobolus species possessed forage quality traits (e.g. crude protein, fibre content) comparable to those of timothy, a forage grass grown widely in the Great Basin in the western United States. Micronutrient content exceeded the minimum requirements of beef cattle, without surpassing tolerable limits, with the exception of zinc, which appeared low in all three Sporobolus species. The low water requirements displayed by these species, combined with their acceptable forage qualities, indicate that these grasses have the potential to serve farmers and ranchers in semi‐arid and arid regions of the western United States where irrigation resources are limited.  相似文献   

18.
Wheat, among all cereal grains, possesses unique characteristics conferred by gluten; in particular, high molecular weight glutenin subunits (HMW‐GS) are of considerable interest as they strictly relate to bread‐making quality and contribute to strengthening and stabilizing dough. Thus, the identification of allelic composition, in particular at the Glu‐B1 locus, is very important to wheat quality improvement. Several PCR‐based molecular markers to tag‐specific HMW glutenin genes encoding Bx and By subunits have been developed in recent years. This study provides a survey of the molecular markers developed for the HMW‐GS at the Glu‐B1 locus. In addition, a selection of molecular markers was tested on 31 durum and bread wheat cultivars containing the By8, By16, By9, Bx17, Bx6, Bx14 and Bx17 Glu‐B1 alleles, and a new assignation was defined for the ZSBy9_aF1/R3 molecular marker that was specific for the By20 allele. We believe the results constitute a practical guide for results that might be achieved by these molecular markers on populations and cultivars with high variability at the Glu‐B1 locus.  相似文献   

19.
Development of effective molecular markers linked to Pm21 deriving from Haynaldia villosa is critical for wheat breeding of powdery mildew resistance. In this study, we designed 12 pairs of conserved‐intron scanning primers (CISPs), using intron‐containing conserved genes located on the short arm of Brachypodium distachyon chromosome 3 (3BdS) aligned with cDNA or expressed sequence tags (ESTs) of Triticeae crops. Of 12 CISP primer pairs, 11 amplified DNA both in H. villosa and in wheat, and four displayed H. villosa chromosome 6VS‐specific polymorphisms. Six non‐polymorphic DNAs were further sequenced for designing internal primers, and five additional 6VS‐specific markers were obtained. Of the total nine 6VS‐specific co‐dominant markers, six could effectively trace Pm21 in F2 population derived from the hybrid between the T6AL.6VS line and ‘Yangmai 158’. This study demonstrated that Brachypodium genomic information could be powerfully utilized to develop molecular markers in H. villosa or other Triticeae species.  相似文献   

20.
Growing sugar beet (Beta vulgaris L. ssp. vulgaris) as a winter crop in cool temperate climates is expected to increase yield potential. However, this requires bolting resistance after winter. One strategy to achieve complete bolting resistance is to accumulate genes for bolting delay from various genetic resources within the B. vulgaris gene pool. To identify such genes, a QTL mapping was performed in a segregating population derived from a biennial leaf beet with delayed bolting after winter. The population was tested for bolting delay after winter in two different experiments with natural or artificial vernalization. Three QTL for bolting delay were mapped on linkage groups 3, 5 and 9 affecting bolting time by up to 19 days. These QTL could be combined with recently reported bolting QTL to develop a winter sugar beet with complete bolting resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号