首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The influence of four day/night growing temperature combinations (18/12, 25/12, 25/22, and 30/22 degrees C) on phenolic acid, flavonol, and anthocyanin content and their antioxidant activities against peroxyl radicals (ROO(*)), superoxide radicals (O(2)(*)(-)), hydrogen peroxide (H(2)O(2)), hydroxyl radicals (OH(*)), and singlet oxygen ((1)O(2)) in fruit juice of Earliglow and Kent strawberry (Fragaria x ananassa Duch.) cultivars was studied. Pelargonidin-based anthocyanins such as pelargonidin 3-glucoside (291.3-945.1 microg/g fresh wt.), pelargonidin 3-rutinoside (24.7-50.9 microg/g fresh wt.), and pelargonidin 3-glucoside-succinate (62.2-244.0 microg/g fresh wt.) were the predominant anthocyanins in strawberry fruit juice. The content of cyanidin-based anthocyanins, cyanidin 3-glucoside and cyanidin 3-glucoside-succinate, was much lower than that of pelargonidin-based anthocyanins. Strawberry growth in high temperature conditions significantly enhanced the content of p-coumaroylglucose, dihydroflavonol, quercetin 3-glucoside, quercetin 3-glucuronide, kaempferol 3-glucoside, kaempferol 3-glucuronide, cyanidin 3-glucoside, pelargonidin 3-glucoside, pelargonidin 3-rutinoside, cyanidin 3-glucoside-succinate, and pelargonidin 3-glucoside-succinate in strawberry juice. Plants grown in the cool day and cool night temperature (18/12 degrees C) generally had the lowest phenolic acid, flavonols, and anthocyanins. An increase in night temperature from 12 to 22 degrees C, with the day temperature kept constant at 25 degrees C, resulted in a significant increase in phenolic acid, flavonols, and anthocyanins. These conditions also resulted in a significant increase in antioxidant capacity. The highest day/night temperature (30/22 degrees C) yielded fruit with the most phenolic content as well as ROO(*), O(2)(*)(-), H(2)O(2), OH(*), and (1)O(2) radical absorbance capacity. Fruit of Kent cv. strawberry had higher values of phenolic acid, flavonols, anthocyanins, and antioxidant capacities than fruit of Earliglow cv. strawberry under all temperature regimes.  相似文献   

2.
The effects of elevated CO2 concentrations on the antioxidant capacity and flavonoid content in strawberry fruit (Fragaria x ananassa Duch.) were studied under field conditions. Increased CO(2) (300 and 600 micromol mol(-1) above ambient) concentrations resulted in increases in ascorbic acid (AsA), glutathione (GSH), and ratios of AsA to dehydroascorbic acid (DHAsA) and GSH to oxidized glutathione (GSSG), and a decrease in DHAsA in strawberry fruit. High anthocyanin and phenolic content were also found in fruit of CO(2) treated plants. Growing strawberry plants under CO(2) enrichment conditions significantly enhanced fruit p-coumaroylglucose, dihydroflavonol, quercetin 3-glucoside, quercetin 3-glucuronide, and kaempferol 3-glucoside contents, as well as cyanidin 3-glucoside, pelargonidin 3-glucoside, and pelargonidin 3-glucoside-succinate content. Fruit of strawberry plants grown in the CO(2) enrichment conditions also had high oxygen radical absorbance activity against ROO(*), O(2)(*-), H(2)O(2), OH(*), and (1)O(2) radicals.  相似文献   

3.
The phenolics from different strawberry cultivars (Aromas, Camarosa, Diamante, Medina, and Ventana) cultivated in two different soilless systems (with and without recycling nutrient solution) were quantified to assess differences in their profiles as a function of both the variety and the cultivation system. Considering groups of phenols, it was found that either anthocyanins (including pelargonidin-3-glucoside, cyanidin-3-glucoside, pelargonidin-3-rutinoside, pelargonidin-3-acetylglucoside, and two unidentified pelargonidin derivatives) or phenolic acids (including caffeic, ferulic, p-coumaric, p-hydroxybenzoic, and ellagic acid) were quantitatively more important than those of flavonols (quercetin and kaempferol); the ranges of values were 78.81-198.88, 49.77-128.37, and 12.85-43.04 microg/g, respectively. Considering individual compounds and after applying relevant pattern recognition techniques, it was concluded that the contents of cyanidin-3-glucoside, pelargonidin-3-rutinoside, p-coumaric acid, and pelargonidin-3-glucoside were the most appropriate variables to discriminate among varieties, whereas those of p-hydroxybenzoic acid and pelargonidin-derivative 1 were the most appropriate to discriminate between cultivation systems. The first factor of PCA was mainly linked to anthocyanins and quercetin, whereas the second principal component (PC) was related to kaempferol and p-coumaric acid.  相似文献   

4.
Anthocyanins and phenolics of 10 blue honeysuckle (Lonicera caerulea L.) genotypes were characterized and quantified by HPLC-DAD. Peak assignments were confirmed by low-resolution electrospray mass spectrometry. Six anthocyanins were detected with the major peak identified as cyanidin 3-glucoside. Five additional anthocyanins were characterized as cyanidin 3,5-diglucoside, cyanidin 3-rutinoside, pelargonidin 3-glucoside, peonidin 3-glucoside, and peonidin 3-rutinoside. Four polyphenolics were identified as chlorogenic acid, neochlorogenic acid, quercetin 3-rutinoside, and quercetin 3-glucoside. Two additional unidentified phenolics were characterized as flavonol and hydroxycinnamic derivatives based on UV-vis spectra. Hydroxycinnamate levels ranged from 30.4 to 156.2 mg/100 g, whereas the flavonol content ranged from 12.6 to 32.8 mg/100 g. The L. caerulea subspecies boczkarnikovae contained the highest amounts of hydroxycinnamic derivatives and flavonols.  相似文献   

5.
Polyphenols present in red table grape varieties Red Globe, Flame Seedless, Crimson Seedless, and Napoleon, and the white varieties Superior Seedless, Dominga, and Moscatel Italica were analyzed by HPLC-DAD-MS. The anthocyanins peonidin 3-glucoside, cyanidin 3-glucoside (and their corresponding p-coumaroyl derivatives), malvidin 3-glucoside, petunidin 3-glucoside, and delphinidin 3-glucoside were found. In addition, caffeoyltartaric acid, p-coumaroyltartaric acid, and the flavonols quercetin 3-glucuronide, quercetin 3-rutinoside, quercetin 3-glucoside, kaempferol 3-galactoside, kaempferol 3-glucoside, and isorhamnetin 3-glucoside were detected. Flavan-3-ols were also detected, and were identified as gallocatechin, procyanidin B1, procyanidin B2, procyanidin B4, procyanidin C1, catechin, and epigallocatechin. These phenolics were present only in the skin, as the flesh of these grape cultivars was almost devoid of these compounds. Anthocyanins were the main phenolics in red grapes ranging from 69 (Crimson Seedless) to 151 (Flame Seedless) mg/kg fresh weight of grapes, whereas flavan-3-ols were the most abundant phenolics in the white varieties ranging from 52 (Dominga) to 81 (Moscatel Italica) mg/kg fresh weight of grapes. Total phenolics ranged from 115 (Dominga) to 361 (Flame Seedless) mg/kg fresh weight of grapes. This means that a serving of unpeeled table grapes (200 g) could provide up to 72 mg of total phenolics (Flame Seedless). These results indicate that the intake of unpeeled table grapes should be recommended in dietary habits as a potential source of antioxidant and anticarcinogenic phenolic compounds.  相似文献   

6.
The effects of maturation (green, pink, and ripe) on phenolic composition of strawberry cultivars Camarosa, Dorit, Chandler, and Osmanli and their hybrids were investigated using a high-pressure liquid chromatography (HPLC) method. p-Hydroxybenzoic acid, p-coumaric acid, ellagic acid, cyanidin-3-glucoside, pelargonidin-3-glucoside, kaempferol, quercetin, and myricetin were individually quantified for each stage. The highest amounts of anthocyanins were obtained from ripe fruits whereas ellagic acid was found as the main phenolic in the green fruits. Phenolic concentrations were found statistically different in green and ripe fruits. One hybrid was found to have higher phenolic contents than the other genotypes. The p-hydroxybenzoic and p-coumaric acid levels changed during maturation, but no differences in contents of flavonoids in green and ripe fruit were detected.  相似文献   

7.
Thirty-seven apricot varieties, including four new releases (Rojo Pasión, Murciana, Selene, and Dorada) obtained from different crosses between apricot varieties and three traditional Spanish cultivars (Currot, Mauricio, and Búlida), were separated according to flesh color into four groups: white, yellow, light orange, and orange (mean hue angles in flesh were 88.1, 85.0, 77.6, and 72.4, respectively). Four phenolic compound groups, procyanidins, hydroxycinnamic acid derivatives, flavonols, and anthocyanins, were identified by HPLC-MS/MS and individually quantified using HPLC-DAD. Chlorogenic and neochlorogenic acids, procyanidins B1, B2, and B4, and some procyanidin trimers, quercetin 3-rutinoside, kaempferol 3-rhamnosyl-hexoside and quercetin 3-acetyl-hexoside, cyanidin 3-rutinoside, and 3-glucoside, were detected and quantified in the skin and flesh of the different cultivars. The total phenolics content, quantified as the addition of the individual compounds quantified by HPLC, ranged between 32.6 and 160.0 mg 100 g(-1) of edible tissue. No correlation between the flesh color and the phenolic content of the different cultivars was observed.  相似文献   

8.
Flavonoids have been reported to lower oxidative stress and possess beneficial effects on cardiovascular diseases and chronic inflammatory diseases associated with nitric oxide (NO). Common phenolic compounds, including phenolic acids, flavonols, isoflavones, and anthocyanins, present in fruits were investigated for their effects on NO production in LPS/IFN-gamma-activated RAW 264.7 macrophages. Phenolic compounds at the range of 16-500 microM that inhibited NO production by > 50% without showing cytotoxicity were the flavonols quercetin and myricetin, the isoflavone daidzein, and the anthocyanins/anthocyanidins pelargonidin, cyanidin, delphinidin, peonidin, malvidin, malvidin 3-glucoside, and malvidin 3,5-diglucosides. Anthocyanins had strong inhibitory effects on NO production. Anthocyanin-rich crude extracts and concentrates of selected berries were also assayed, and their inhibitory effects on NO production were significantly correlated with total phenolic and anthocyanin contents. This is the first study to report the inhibitory effects of anthocyanins and berry phenolic compounds on NO production.  相似文献   

9.
In order to further characterize the anthocyanins, flavonols, and other phenolics present in mature saskatoon ( Amelanchier alnifolia Nutt.) fruit, extracts were characterized using high-performance liquid chromatography, gas chromatography, and liquid chromatography-mass spectrometry. Cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, cyanidin 3-O-arabinoside, and cyanidin 3-O-xyloside were identified as the four major anthocyanins in the mature fruit. The quercetin-derived flavonols, quercetin 3-O-glucoside, quercetin 3-O-galactoside, quercetin 3-O-arabinoside, quercetin 3-O-xyloside, quercetin 3-O-arabinoglucoside, quercetin 3-O-robinobioside, and quercetin 3-O-rutinoside were also identified in mature fruit extracts. In addition, two chlorogenic acid isomers (hydroxycinnamates), 3-O-caffeoylquinic acid and 5-O-caffeoylquinic acid were detected. The total content of the anthocyanin-, flavonol-, and hydroxycinnamate-type phenolics detected in mature 'Smoky' saskatoon fruit was 140, 25, and 96 mg/100 g fresh weight, respectively. These data further our knowledge of the phenolic composition of mature saskatoon fruit, and as anthocyanins, flavonols, and hydroxycinnamates exhibit antioxidant activities, the presence and levels of these classes of phenolics will aid in the understanding of the potential health-beneficial effects of saskatoon fruits in the human diet.  相似文献   

10.
Anthocyanin constituents in black raspberries (Rubus occidentalis L.) were investigated by HPLC-DAD, and their involvement as potent, significant antioxidants in black raspberries was demonstrated by three common antioxidant assays (FRAP, DPPH, ABTS) in this study. Five anthocyanins were present in black raspberries: cyanidin 3-sambubioside, cyanidin 3-glucoside, cyanidin 3-xylosylrutinoside, cyanidin 3-rutinoside, and pelargonidin 3-rutinoside. Their identities and structures, with particular emphasis on cyanidin 3-xylosylrutinoside, were confirmed by NMR spectroscopy. Two of these anthocyanins, cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside, predominated, comprising 24-40 and 49-58%, respectively, of the total anthocyanins in black raspberries. On the basis of both potency and concentration, cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside were found to be the significant contributors to the antioxidant systems of black raspberries. These findings indicate that these two anthocyanin compounds may function as the primary phenolic antioxidants in black raspberries. These two compounds exhibit potential biological activities that may be exploited in conjunction with other naturally occurring bioactive compounds in black raspberry fruit-based products used in clinical trials for the treatment of various types of cancer.  相似文献   

11.
Studies have shown that anthocyanins present in berry fruits have some beneficial health effects such as reducing age-associated oxidative stress and possessing anti-inflammatory properties. Therefore, six Manitoba berries (wild blueberry, Saskatoon berry, raspberry, chokecherry, strawberry, and seabuckthorn) were studied for their anthocyanin compositions (mg/100 g) on dry weight basis. Saskatoon berry and wild blueberry showed a high content of total anthocyanins (562.4 and 558.3 mg/100 g, respectively) that were not significantly (P>0.05) different from each other. The corresponding values for other berries: raspberry (365.2 mg/100 g), chokecherry (177.39 mg/100 g), and strawberry (97.5 mg/100 g) were significantly different from each other (P<0.05), and the total anthocyanin content of seabuckthorn was negligible (0.84 mg/100 g). Fifteen major anthocyanins were isolated from Manitoba berries. Saskatoon berry and wild blueberry contained higher amounts of delphinidin 3-glucoside (Dp-3-glc), malvidin 3-glucoside (Mv-3-glc), and malvidin 3-galactoside (Mv-3-gal). Dp-3-glc was 263.8 (mg/100 g) in Saskatoon berry and 84.4 (mg/100 g) in wild blueberry, whereas the corresponding values for Mv-3-glc in these berries were 47.4 and 139.6 (mg/100 g), respectively. Raspberry, strawberry, and chokecherry contained higher amounts of cyanidin 3-glucoside (Cy-3-glc), cyanidin 3-rutinoside (Cy-3-rut), and pelargonidin 3-glucoside (Pg-3-glc). The total anthocyanin content of Manitoba fruits followed the order: Saskatoon berry and blueberry (high anthocyanin berries), raspberry and chokecherry (medium anthocyanin berries), strawberry (low anthocyanin berries), and seabuckthorn (negligible anthocyanin berries). This study demonstrated that Saskatoon berries and wild blueberries have high potential value for fruit growers as well as the food and nutraceutical manufacturers because of their high anthocyanin contents.  相似文献   

12.
Strawberries (Fragaria × ananassa Duch. cvs. Everest, Elsanta) were grown in a tunnel covered with two films, which were distinguished in their ultraviolet transparency, as well as under open-field conditions. One applied film was not transparent for UVB radiation, and the second film transmitted 70% of UVB radiation. During the present study, the nutritional value and quality parameters of the fruits were evaluated. Strawberries were UV-unresponsive in view of the content of ascorbic acid and sum parameters like total anthocyanins and antioxidant capacity measured with TEAC (trolox equivalent antioxidant capacity), ORAC (oxygen radical absorbance capacity) and total phenols. These parameters were mainly affected by sampling date and cultivar. However, HPLC analysis showed that individual phenolics were affected in the absence of UV radiation. The content of the anthocyanin cyanidin 3-glucoside and the flavonols quercetin 3-glucuronide and kaempferol 3-glucoside was decreased in the fruits grown under UV blocking film compared to open-field grown strawberries. By means of the UV transparent film the content of the mentioned flavonoids could be enhanced up to similar amounts like in open-field grown strawberries. All other phenolics were not consistently affected by UV radiation. This result was independent of cultivar.  相似文献   

13.
The phenolic compounds hydroxycinnamates, anthocyanins, flavonols, and flavan-3-ols of sweet cherry cultivars Burlat, Saco, Summit, and Van harvested in 2001 and 2002 were quantified by HPLC-DAD. Phenolics were analyzed at partially ripe and ripe stages and during storage at 15 +/- 5 degrees C (room temperature) and 1-2 degrees C (cool temperature). Neochlorogenic and p-coumaroylquinic acids were the main hydroxycinnamic acid derivatives, but chlorogenic acid was also identified in all cultivars. The 3-glucoside and 3-rutinoside of cyanidin were the major anthocyanins. Peonidin and pelargonidin 3-rutinosides were the minor anthocyanins, and peonidin 3-glucoside was also present in cvs. Burlat and Van. Epicatechin was the main monomeric flavan-3-ol with catechin present in smaller amounts in all cultivars. The flavonol rutin was also detected. Cultivar Saco contained the highest amounts of phenolics [227 mg/100 g of fresh weight (fw)] and cv. Van the lowest (124 mg/100 g of fw). Phenolic acid contents generally decreased with storage at 1-2 degrees C and increased with storage at 15 +/- 5 degrees C. Anthocyanin levels increased at both storage temperatures. In cv. Van the anthocyanins increased up to 5-fold during storage at 15 +/- 5 degrees C (from 47 to 230 mg/100 g of fw). Flavonol and flavan-3-ol contents remained quite constant. For all cultivars the levels of phenolic acids were higher in 2001 and the anthocyanin levels were higher in 2002, which suggest a significant influence of climatic conditions on these compounds.  相似文献   

14.
Qualitative and quantitative analyses of phenolic compounds were carried out on quince fruit samples from seven different geographical origins in Portugal. For each origin, both pulp and peel were analyzed by reversed-phase HPLC-DAD and HPLC-DAD/MS.The results revealed differences between the phenolic profiles of pulps and peels in all studied cases. The pulps contained mainly caffeoylquinic acids (3-, 4-, and 5-O-caffeoylquinic acids and 3,5-dicaffeoylquinic acid) and one quercetin glycoside, rutin (in low amount). The peels presented the same caffeoylquinic acids and several flavonol glycosides: quercetin 3-galactoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, and several unidentified compounds (probably kaempferol glycoside and quercetin and kaempferol glycosides acylated with p-coumaric acid). The highest content of phenolics was found in peels.  相似文献   

15.
Studies suggest that consumption of berry fruits, including strawberries ( Fragaria x ananassa Duch.), may have beneficial effects against oxidative stress mediated diseases such as cancer. Berries contain multiple phenolic compounds, which are thought to contribute to their biological properties. Comprehensive profiling of phenolics from strawberries was previously reported using high-performance liquid chromatography with mass spectrometry (HPLC-MS) detection. The current study reports the isolation and structural characterization of 10 phenolic compounds from strawberry extracts using a combination of Amberlite XAD16-resin and C18 columns, HPLC-UV, and nuclear magnetic resonance (NMR) spectroscopy methods. The phenolics were cyanidin-3-glucoside ( 1), pelargonidin (2), pelargonidin-3-glucoside (3), pelargonidin-3-rutinoside (4), kaempferol (5), quercetin (6), kaempferol-3-(6'-coumaroyl)glucoside) (7), 3,4,5-trihydroxyphenyl-acrylic acid (8), glucose ester of ( E)- p-coumaric acid (9), and ellagic acid . Strawberry crude extracts and purified compounds 1- 10 were evaluated for antioxidant and human cancer cell antiproliferative activities by the Trolox equivalent antioxidant capacity (TEAC) and luminescent ATP cell viability assays, respectively. Among the pure compounds, the anthocyanins 1 (7156 microM Trolox/mg), 2 (4922 microM Trolox/mg), and 4 (5514 microM Trolox/mg) were the most potent antioxidants. Crude extracts (250 microg/mL) and pure compounds (100 microg/mL) inhibited the growth of human oral (CAL-27, KB), colon (HT29, HCT-116), and prostate (LNCaP, DU145) cancer cells with different sensitivities observed between cell lines. This study adds to the growing body of data supporting the bioactivities of berry fruit phenolics and their potential impact on human health.  相似文献   

16.
This investigation was conducted to determine the structures and amounts of anthocyanins obtained from seed coats of kidney bean (Phaseolus vulgaris L.) cultivated in Korea. Anthocyanins in the seed coat of kidney bean were extracted with 1% HCl/20% CH(3)OH, and the crude anthocyanin extracts were purified by semipreparative HPLC. Five major anthocyanins were isolated, and their chemical structures were identified by spectroscopic methods (UV-vis, LC/ES-MS, and 1H and 13C NMR). The structures of these five anthocyanins were elucidated as cyanidin 3,5-diglucoside, delphinidin 3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, and pelargonidin 3-glucoside. Using RP-HPLC with photodiode array detection, each of the five anthocyanins was separated within 12 min by using a gradient elution. It was proved that the application of RP-HPLC could be an excellent method for determining the composition and contents of anthocyanins in kidney bean. The preponderance of pelargonidin 3-glucoside and delphinidin 3-glucoside are observed in red and black kidney beans, respectively. However, in this study, it is reported for the first time that the contents and composition of anthocyanins in speckled seed depend on the classes of speckle color. The contents of cyanidin 3,5-diglucoside, delphinidin 3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, pelargonidin 3-glucoside, and total anthocyanins in seed coats of 16 kidney beans cultivated in Korea were in the ranges of 0-0.04, 0-2.61, 0-0.12, 0-0.17, 0-0.59 and 0-2.78 mg/g of dried seed coats, respectively.  相似文献   

17.
The main flavonols found in seven widespread Vitis vinifera red grape cultivars include the 3-glucosides and 3-glucuronides of myricetin and quercetin and the 3-glucosides of kaempferol and isorhamnetin. In addition, the methoxylated trisubstituted flavonols, laricitrin and syringetin, were predominantly found as 3-glucosides. As minority flavonols, the results suggest the detection of the 3-galactosides of kaempferol and laricitrin, the 3-glucuronide of kaempferol, and the 3-(6' '-acetyl)glucosides of quercetin and syringetin. The flavonol profiles based on the eight above-mentioned flavonols allowed the cultivar differentiation of the grape samples. With regard to flavonol biosynthesis in the berry skin, quercetin 3-glucuronide predominated at véraison, followed by quercetin 3-glucoside, and only trace amounts of trisubstituted flavonols were detected. The proportion of quercetin 3-glucoside remained almost constant during berry ripening, whereas the proportion of quercetin 3-glucuronide decreased and the other flavonols, especially myricetin 3-glucoside, increased their importance. In wines, flavonol 3-glycosides coexisted with their corresponding free aglycones released by hydrolysis. The presence of laricitrin, syringetin, and laricitrin 3-glucoside in red wines is reported here for the first time. The extent of hydrolysis was widely variable among wines made from the same grape cultivar, and the results suggest the influence of the type of aglycone and glycoside on the rate of hydrolysis. Due to hydrolysis, the differentiation of single-cultivar wines gave acceptable results only when aglycone-type flavonol profiles were used.  相似文献   

18.
This paper presents a large amount of data on the composition of quince fruit with regard to phenolic compounds, organic acids, and free amino acids. Subsequently, principal component analysis (PCA) is carried out to characterize this fruit. The main purposes of this study were (i) the clarification of the interactions among three factors-quince fruit part, geographical origin of the fruits, and harvesting year-and the phenolic, organic acid, and free amino acid profiles; (ii) the classification of the possible differences; and (iii) the possible correlation among the contents of phenolics, organic acids, and free amino acids in quince fruit. With these aims, quince pulp and peel from nine geographical origins of Portugal, harvested in three consecutive years, for a total of 48 samples, were studied. PCA was performed to assess the relationship among the different components of quince fruit phenolics, organic acids, and free amino acids. Phenolics determination was the most interesting. The difference between pulp and peel phenolic profiles was more apparent during PCA. Two PCs accounted for 81.29% of the total variability, PC1 (74.14%) and PC2 (7.15%). PC1 described the difference between the contents of caffeoylquinic acids (3-O-, 4-O-, and 5-O-caffeoylquinic acids and 3,5-O-dicaffeoylquinic acid) and flavonoids (quercetin 3-galactoside, rutin, kaempferol glycoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, quercetin glycosides acylated with p-coumaric acid, and kaempferol glycosides acylated with p-coumaric acid). PC2 related the content of 4-O-caffeoylquinic acid with the contents of 5-O-caffeoylquinic and 3,5-O-dicaffeoylquinic acids. PCA of phenolic compounds enables a clear distinction between the two parts of the fruit. The data presented herein may serve as a database for the detection of adulteration in quince derivatives.  相似文献   

19.
Mashua (Tropaeolum tuberosum Ruíz and Pavón), an Andean tuber with high antioxidant activity, has sparked interest because of its traditional medicinal use. In this study, we evaluated the anthocyanin composition for three purple mashua genotypes and their contribution to the overall antioxidant activity of the tuber. Mashua anthocyanins, total phenolics, and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) antioxidant activity ranged from 45.5 to 131.9 mg of cyanidin 3-glucoside equivalents/100 g fresh weight (FW), 174.9 to 275.5 mg of gallic acid equivalents/100 g of FW, and 16.2 to 45.7 micromol of Trolox equivalents/g of FW, respectively. The high-performance liquid chromatography with photodiode array detection (HPLC-DAD) and HPLC-electrospray ionization tandem mass spectrometry (ESI/MS-MS) profiles revealed the presence of 11 different anthocyanins. The two major pigments (56.4-73.0% total area range at 520 nm) were identified as delphinidin 3-glucoside-5-acetylrhamnoside and delphinidin 3-sophoroside-5-acetylrhamnoside. Other pigments were delphinidin 3-glucoside-5-rhamnoside, delphinidin 3-sophoroside-5-rhamnoside, delphinidin 3-glucoside, cyanidin 3-sophoroside, and cyanidin 3-sophoroside-5-rhamnoside. Cyanidin 3-glucoside and cyanidin 3-rutinoside were only found in two genotypes, while pelargonidin 3-sophoroside and pelargonidin 3-sophoroside-5-rhamnoside were only found in the third one. Anthocyanins from mashua were the major contributors to the total ABTS values for only one of the three genotypes, suggesting that other phenolics present are playing a major role in the antioxidant power of mashua tubers. Results from this study provide important information for the Nutraceutical and Functional Food Market for the use of mashua anthocyanins not only as a source of natural colorants but also as a source of phytonutrients.  相似文献   

20.
Phenolic compounds in strawberry (Fragaria x ananassa) fruits were identified and characterized by using the complementary information from different high-performance liquid chromatography detectors: diode array, mass spectrometer in positive and negative mode, and coulometric array. Electrochemical profiles obtained from the coulometric array detector contributed to the structural elucidation suggested from the UV-vis and mass spectra. About 40 phenolic compounds including glycosides of quercetin, kaempferol, cyanidin, pelargonidin, and ellagic acid, together with flavanols, derivatives of p-coumaric acid, and ellagitannins, were described, providing a more complete identification of phenolic compounds in strawberry fruits. Quercetin-3-malonylhexoside and a deoxyhexoside of ellagic acid were reported for the first time. Antioxidative properties of individual components in strawberries were estimated by their electrochemical responses. Ascorbic acid was the single most important contributor to electrochemical response in strawberries (24%), whereas the ellagitannins and the anthocyanins were the groups of polyphenols with the highest contributions, 19 and 13% at 400 mV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号