首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suzuki  Kuni  Suzuki  Harumi  Binkley  Dan  Stohlgren  Thomas J. 《Landscape Ecology》1999,14(3):231-237
Elk (Cervus elaphus) populations in Rocky Mountain National Park are higher than at any time in the past century, and heavy browsing by elk may interfere with aspen (Populus tremuloides Michx.) regneration. We used aerial photographs to identify all aspen stands within Rocky Mountain National Park, and all aspen stands within the elk winter range range (defined as 2400 to 2800 m elevation) in three portions of the adjacent Roosevelt National Forest. From this population of aspen stands, we randomly selected 57 stands for evaluation of aspen regeneration. Stands that contained stems younger than 30 years and taller than 2.5 m tall were classified as regenerating successfully. Only 20% of the aspen stands in Estes Valley contained a cohort of regenerating aspen stems, whereas 45-to-75% of aspen stands across the larger landscape of the Front Range had regenerating cohorts of aspen. Within the elk winter range of the Roosevelt National Forest, 13 of 17 aspen stands were regenerating. In the elk winter range on the east side of the Park but outside of Estes Valley, 11 of 15 aspen stands were regenerating successfully. Only a few aspen stands exist in the elk winter range on the western side of the Park, and none of the five aspen stands sampled in Kawuneeche Valley had a regenerating cohort. The lack of regeneration in Kawuneeche Valley may result from locally heavy elk use in both winter and summer. In the summer elk range at higher elevations in the Park (2800 to 3200 m), 16 of 23 stands had regenerated. At landscape scales, all locations outside of the heavily impacted Estes Valley averaged about two cohorts/stand that regenerated after the mid-1960s. All stands that lacked a regenerating cohort showed evidence of moderate-to-severe damage from elk browsing of stems. No regenerating stands showed evidence of severe browsing. We conclude that at landscape scales, regeneration within aspen stands is very common across the Front Range, except in local areas of the highest elk use where little regeneration has occurred in the past 30 years.  相似文献   

2.

Context

In southwestern Alberta, human development, including roads, is encroaching on the landscape and into the range of a partially migratory population of elk (Cervus elaphus).

Objectives

To quantify factors influencing among- and within-home-range selection of winter range in this population.

Methods

We studied individual habitat selection and road avoidance at two biologically relevant spatial scales. We outlined availability extents for 107 individual elk-years based on observed fall migration distance, and based on a minimum convex polygon around winter telemetry relocations. To model the response by elk to road disturbance, we fit a habitat-selection model to each elk-year at each of the two availability extents, and examined population-level and individual variation in space-use. We then evaluated the relationship between inferred selection at the two scales and the functional response in selection.

Results

Roads had a ubiquitous influence on elk across scales. Elk, individually and as a population, avoided roads when migrating to their winter range and within this seasonal home range. Individual elk that avoided roads more strongly relative to the population did so at both scales of analysis.Further, the avoidance of low-use roads decreased with increasing road density. These results support bottom-up habitat-selection patterns (i.e., scale-independent) and functional response in habitat selection.

Conclusions

Overall, using a multi-scale habitat selection analysis, we show that road avoidance is a major determinant of elk space-use behaviour across multiple scales. Consequently, any new road construction or increases in road-use intensity could have detrimental effects on migratory elk populations by restricting space-use.
  相似文献   

3.
Land uses, especially harvesting and road building, are considered to be the primary cause of forest fragmentation in many parts of the world. To test this perception, we (1) quantified changes and rates of change in vegetative composition and structure within the Washburn Ranger District in northern Wisconsin using Landsat images, (2) examined changes in landscape structure, (3) assessed changes within the area of road influence (ARI), and (4) investigated changes in landscape composition and structure within the context of forest management activities. Our landscape classifications included six dominant cover types: mixed hardwood (MH), jack pine (JP), red pine (RP), mixed hardwood/conifer (MHC), non-forested bare ground (NFBG), and regenerating forest or shrub (RFS). Increases in NFBG and RFS, by 196% and 28% respectively, reflect expansion of the pine-barrens. Windthrow in the mature hardwoods during the late 1970s and jack pine budworm outbreaks during the mid-1990s correlated with decreases in those classes over the corresponding intervals. A 69% decrease in mean patch size and a 60% increase in edge density reflect increased fragmentation. An inverse relationship existed between the compositional trends of forested (excluding JP) cover types and RFS and NFBG cover types. ARI covered 8% of the landscape affecting species composition within the MH, RFS, and NFBG. Results from this study are key in assessing the links between management activities and ecological consequences and thereby facilitate adaptive management.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

4.
Animals may respond to spatial and temporal heterogeneity by altering their movement patterns. The time an animal spends in an area of a given size is termed ȁ8first-passage timeȁ9 and can be used to identify the scales at which different movement processes occur. Using first-passage time and 2-h observations, we identified nested spatial scales representing three movement behaviours for elk (Cervus elaphus) – inactive/resting (moves < 50 m), active/foraging (x̄ = 276.7 m, SD = 56.6), and active/relocating (x̄ = 1628.3 m, SD = 436.6). Our ability to identify inactive behaviour was limited by GPS accuracy. The scale separating relocating and foraging behaviour ranged 550–1650 m across individuals and varied quadratically with the mean patch size of cutover forest in an animal’s home range. We classified path segments into the 3 movement behaviours and related behaviours to local environmental conditions. Elk were likely to be inactive in areas having a low predicted use by wolves (Canis lupus), farther than 50 m from anthropogenic linear clearings, and where microclimatic conditions were cool (high shrub cover and north to east-facing slopes). In contrast, elk were most likely to forage in areas having intermediate levels of herbaceous biomass and low movement costs. Elk were most likely to be relocating when in areas of high wolf use, when close to linear clearings, and in energetically costly situations such as moving upslope. We discuss how elk use of potential foraging habitats may be restricted in this landscape by risks imposed by predators, humans, or both.  相似文献   

5.
The Influence of Landscape Structure on Female Roe Deer Home-range Size   总被引:5,自引:0,他引:5  
Animal distribution and abundance are greatly affected by the availability of their food resources, which also depends on landscape structure. Lothar hurricane in 1999 had profoundly modified the structure of the forests in France, affecting the habitat quality of ungulates. We tested whether the variations in home-range size of 23 female roe deer were influenced by the fragmentation of the landscape caused by Lothar in the Chizé forest, namely by the increase in heterogeneity associated with the localized massive tree felling. Home-range size was studied in the summers of 2001 and 2002 and we found that variation in home-range size was mainly explained by only one landscape variable: edge density. Home-range size decreased as edge density increased, which is consistent with the fact that edges are good browsing habitats for roe deer. The result of this study suggests that, after 2 years, the hurricane had improved the quality of the home ranges by creating more forest heterogeneity and increasing the contacts between the different vegetation patches within the home range. These results highlight the fact that spatial heterogeneity is likely to be a key factor influencing the distribution and local population density.  相似文献   

6.
The relationship between fine-scale spatial patterns of forage abundance and the feeding patterns of large ungulates is not well known. We compared these patterns for areas grazed in winter by elk and bison in a sagebrush-grassland landscape in northern Yellowstone National Park. At a fine scale, the spatial distribution of mapped feeding stations in 30 m × 30 m sites was found to be random where there were no large patches devoid of vegetation. In areas similar to the mapped sites, the underlying spatial distribution pattern of biomass was also determined to be random. At a broad scale, forage biomass differed among communities across the northern range but forage quality did not. These results suggest that ungulates are feeding randomly within forage patches (fine scale) but may select feeding sites based upon forage abundance at broader, landscape scales. Contrary to what has been suggested in other systems, ungulates were not overmatching at finer scales.  相似文献   

7.

Context

Movement is one of the key mechanisms for animals to deal with changes within their habitats. Therefore, resource variability can impact animals’ home range formation, especially in spatially and temporally highly dynamic landscapes, such as farmland. However, the movement response to resource variability might depend on the underlying landscape structure.

Objectives

We investigated whether a given landscape structure affects the level of home range size adaptation in response to resource variability. We tested whether increasing resource variability forces herbivorous mammals to increase their home ranges.

Methods

In 2014 and 2015 we collared 40 European brown hares (Lepus europaeus) with GPS-tags to record hare movements in two regions in Germany with differing landscape structures. We examined hare home range sizes in relation to resource availability and variability by using the normalized difference vegetation index as a proxy.

Results

Hares in simple landscapes showed increasing home range sizes with increasing resource variability, whereas hares in complex landscapes did not enlarge their home range.

Conclusions

Animals in complex landscapes have the possibility to include various landscape elements within their home ranges and are more resilient against resource variability. But animals in simple landscapes with few elements experience shortcomings when resource variability becomes high. The increase in home range size, the movement related increase in energy expenditure, and a decrease in hare abundances can have severe implications for conservation of mammals in anthropogenic landscapes. Hence, conservation management could benefit from a better knowledge about fine-scaled effects of resource variability on movement behaviour.
  相似文献   

8.
Elk, fire and climate have influenced aspen populations in the Rocky Mountains, but mostly subjective studies have characterized these factors. A broad-scale perspective may shed new light on the status of aspen in the region. We collected field measurements of aspen (Populus tremuloides Michx.) patches encountered within 36 randomly located belt transects in 340 km2 of Rocky Mountain National Park, Colorado, to quantify the aspen population. Aspen covered 5.6% of the area in the transects, much more than expected based on previously collected remotely sensed data. The distribution and structure of aspen patches were highly heterogeneous throughout the study area. Of the 123 aspen patches encountered in the 238 ha surveyed, all but one showed signs of elk browsing or had conifer species mixed with the aspen stems. No significant difference occurred in aspen basal area, density, regeneration, browsing of regeneration and patch size, between areas of concentrated elk use (elk winter range) and areas of dispersed elk use (elk summer range). Two-thirds of the aspen patches were mixed with conifer species. We concluded that the population of aspen in our study area is highly variable in structure and that, at a landscape-scale, evidence of elk browsing is widespread but evidence of aspen decline is not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We conducted a multi-temporal spatial analysis of forest cover for a 9600 ha landscape in northern Wisconsin, U.S.A., using data from pre-European settlement (1860s), post-settlement (1931), and current (1989) periods. Using GIS we have shown forest landscape changes and trajectories that have been generally described in aggregate for the norther Great Lake States region. We created the pre-European settlement map from the witness tree data of the original federal General Land Office survey notes. The 1931 cover was produced from the Wisconsin Land Economic Inventory, and the 1989 cover map was based on color infrared photography. We used GIS to analyze 1) land area occupied by different forest types at different dates, 2) temporal transitions between dates and their driving proceses, and 3) successional trajectories with landforms and spatial associations of forest types. Over the 120 year period, forest cover has changed from a landscape dominated by old-growth hemlock (Tsuga canadensis) and hardwood forests (Acer saccharum, Betula alleghaniensis) to largely second-growth hardwoods and conifers. The former dominant hemlock is largely eliminated from the landscape. From 1860 to 1931, large-scale disturbances associated with logging were the dominant processes on the landscape. Early successional forest types covered much of the landscape by the 1930s. From 1931 to 1989, succession was the dominant process driving forest transitions as forest types succeeded to a diverse group of upland hardwood and conifer forest types. If successional trajectories continue, a more homogeneous landscape may develop comprised of both a northern hardwood type dominated by sugar maple, and a boreal conifer/hardwood forest.  相似文献   

10.
Annual variation in winter severity and growing season vegetation dynamics appear to influence the demography of temperate herbivores but parsing winter from spring effects requires independent metrics of environmental conditions specific to each season. We tested for independence in annual variation amongst four common metrics used to describe winter severity and early growing season vegetation dynamics across the entire spatial distribution of elk (Cervus elaphus) in Wyoming from 1989 to 2006. Winter conditions and early growing season dynamics were correlated in a specific way. Winters with snow cover that ended early tended to be followed by early, but slow, rises in the normalized difference vegetation index (NDVI), while long winters with extended periods of snow cover were often followed by late and rapid rises in NDVI. Across the 35 elk ranges, 0.4–86.8 % of the variation in the rate of increase in NDVI’s in spring was explained by the date snow cover disappeared from SNOTEL stations. Because phenoclimatological metrics are correlated across seasons and shifting due to climate change, identifying environmental constraints on herbivore fitness, particularly migratory species, is more difficult than previously recognized.  相似文献   

11.
We evaluated support for four alternate hypotheses explaining the distribution of breeding Brown-headed Cowbirds (Molothrus ater) in forests at varying distances from the forest edge in three Midwestern USA landscapes with varying amounts of forest fragmentation (core forest area ranged from 5 to 70%). We focused on breeding cowbirds’ use of forest because of the risk of nest parasitism to forest-dwelling hosts and to identify factors affecting breeding cowbird habitat selection. We compared distances of cowbird locations in the forest from the forest edge (“edge distances”) to distances of random forest locations in the entire landscape or within individual cowbird home ranges. We analyzed 1322 locations of 84 cowbirds across three landscapes. We found support for the landscape context hypothesis that breeding cowbird preference for forest edge varied with landscape context. Ninety percent of cowbird locations were within 150–350 m of forest edge, despite the overall availability of forest at greater distances from edge (as far as 500–1450 m) both within cowbird home ranges and the entire forested landscape. Cowbird preference for edge varied by landscape context largely due to differences in the availability of forest edge. In a highly fragmented forest cowbirds utilized the entire forest and likely viewed it as “all edge.” In less fragmented forests, cowbirds preferred edge. We consider how variation in cowbird edge preference might relate to patterns in host abundance, host diversity, and host quality because cowbird movements indicate they are capable of using forest farther from edges.  相似文献   

12.
A better understanding of scaling-up effects on estimating important landscape characteristics (e.g. forest percentage) is critical for improving ecological applications over large areas. This study illustrated effects of changing grain sizes on regional forest estimates in Minnesota, Wisconsin, and Michigan of the USA using 30-m land-cover maps (1992 and 2001) produced by the National Land Cover Datasets. The maps were aggregated to two broad cover types (forest vs. non-forest) and scaled up to 1-km and 10-km resolutions. Empirical models were established from county-level observations using regression analysis to estimate scaling effects on area estimation. Forest percentages observed at 30-m and 1-km land-cover maps were highly correlated. This intrinsic relationship was tested spatially, temporally, and was shown to be invariant. Our models provide a practical way to calibrate forest percentages observed from coarse-resolution land-cover data. The models predicted mean scaling effects of 7.0 and 12.0% (in absolute value with standard deviations of 2.2 and 5.3%) on regional forest cover estimation (ranging from 2.3 and 2.5% to 11.1 and 23.7% at the county level) with standard errors of model estimation 3.1 and 7.1% between 30 m and 1 km, and 30 m and 10 km, respectively, within a 95% confidence interval. Our models improved accuracy of forest cover estimates (in terms of percent) by 63% (at 1-km resolution) and 57% (at 10-km resolution) at the county level relative to those without model adjustment and by 87 and 84% at the regional level in 2001. The model improved 1992 and 2001 regional forest estimation in terms of area for 1-km maps by 15,141 and 7,412 km2 (after area weighting of all counties) respectively, compared to the corresponding estimates without calibration using 30 m-based regional forest areas as reference.  相似文献   

13.
To aid effective conservation and management there is a need to understand the effect of landscape on species ecology. The aim of this research was to assess the effect of landscape parameters on breeding success of barn owls throughout the Rother and Arun River catchments, Sussex, UK. We used a Geographic Information System to describe the habitat mosaic and landscape structure within an estimated home range area of 3 km2 around 85 artificial nest box sites. Results showed that land cover was less heterogeneous at successful sites, with home ranges dominated by a few habitat types of regular patch shapes. Unsuccessful nesting sites had significantly more improved grassland, suburban land and wetlands than successful sites. Cluster analysis and Principle Components Analysis was used to assess the similarity of the habitat mosaic within these areas and pellet analysis was undertaken to assess barn owl diet and prey availability. Ten prey species were recovered from pellets, field vole (Microtus agrestis), common shrews (Sorex araneus) and house mice (Mus musculus) making up nearly 90% of recoveries. However box sites varied in relative proportions of small mammal, and hence prey availability. Results indicated that land use and landscape structure can affect breeding success in barn owls. Higher levels of poor quality small mammal habitat were associated with unsuccessful sites. However, at a landscape scale, the habitat mosaic across the study area lacked variation, limiting analysis and clear correlations between habitat type and positive breeding success, suggesting that a finer scale was needed in future studies utilising this approach.  相似文献   

14.
In order to document the extent of landscape fragmentation for a section of the New Jersey Pine Barrens region, we have used satellite image and spatial analysis to monitor landscape change between 1972 and 1988. Land-cover patterns were quantified by mean, number, and size of patches; and amount of edges between land cover types. During the intervening sixteen year period, fractal dimension, diversity, and contagion generally decreased while dominance, disturbance and edges increased, indicating a trend to a more dissected and disturbed landscape. There was an increase in the number of forest patches and a significant decrease in the average size of forest patches. In contrast, the mean patch size for the non-forest category has increased as a result of a coalescence of patches. The landscape fragmentation is shown by a downward shift in the distribution of forest patches by size class. These changes in landscape pattern have implications for many ecological processes and resources. Management practices need to consider landscape fragmentation in the Pinelands National Reserve in order to preserve the essential character of the Pine Barrens landscape.  相似文献   

15.
Spatially-explicit, individual-based models are increasingly used to evaluate the effects of habitat loss and fragmentation on habitat use and population persistence. Yet, they are criticized on the basis that they rely on little empirical data, especially regarding decision rules of moving individuals. Here we report the results of an experiment measuring the gap-crossing decisions of forest birds attracted to a recording of chickadee(Poecile atricapillus) mobbing calls, and provided with options to travel to the speaker by either crossing an open area (short cut) or taking a longer route under forest cover (detour). We performed the experiment in winter and late summer near Québec City, Québec, Canada. We recorded 1078 travel paths from 6 resident and 12 migratory species in 249 experimental sites. In both seasons, birds preferred to travel under forest cover rather than cross open areas, even when the forested detour conveyed a substantially longer route than the short cut in the open. Only when the detour under forest cover. This was considerably longer than the short-cut in the open, in both relative and absolute terms, were birds more likely to take short cuts, indicating that gap-crossing decisions are scale dependent. However, birds rarely ventured >25 m from forest edges despite having the opportunity to do so. Except for Hairy Woodpeckers (Picoides villosus) which ventured further into the open, all species showed similar gap-crossing decisions. Residents remained marginally closer to forest edges in late summer as compared to in winter. Conspecific group size had no influence on gap-crossing decisions. This experiment supports the hypothesis that forest bird movements are constrained in fragmented landscapes, and provides opportunities to calibrate spatially-explicit, individual-based models addressing the influence of landscape composition and configuration on dispersal. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Landscape composition and configuration, often termed as habitat loss and fragmentation, are predicted to reduce species population viability, partly due to the restriction of movement in the landscape. Unfortunately, measuring the effects of habitat loss and fragmentation on functional connectivity is challenging because these variables are confounded, and often the motivation for movement by target species is unknown. Our objective was to determine the independent effects of landscape connectivity from the perspective of a mature forest specialist—the northern flying squirrel (Glaucomys sabrinus). To standardize movement motivation, we translocated 119 squirrels, at varying distances (0.18–3.8 km) from their home range across landscapes representing gradients in both habitat loss and fragmentation. We measured the physical connectedness of mature forest using an index of connectivity (landscape coincidence probability). Patches were considered connected if they were within the mean gliding distance of a flying squirrel. Homing success increased in landscapes with a higher connectivity index. However, homing time was not strongly predicted by habitat amount, connectivity index, or mean nearest neighbour and was best explained as a simple function of sex and distance translocated. Our study shows support for the independent effects of landscape configuration on animal movement at a spatial scale that encompasses several home ranges. We conclude that connectivity of mature forest should be considered for the conservation of some mature forest specialists, even in forest mosaics where the distinction between habitat and movement corridors are less distinct.  相似文献   

17.
林内景观质量评价对林场的经营和管理有重要意义,而林分空间结构的研究对生态景观林景观质量有重要影响。以塞罕坝机械林场落叶松纯林与落叶松-白桦混交林为研究对象,选取了16张最具代表性的照片,采用美景度评价(SBE)法以美景度作为景观质量指标,通过探究林分空间结构对林分夏季近景的景观质量影响,进而为塞罕坝生态景观林夏季景观经营技术提供依据。结果表明:(1)林内垂直结构越完整,林下整齐度越高,人们的喜好频数越高,美景度越高。(2)林内透视距离与美景度值存在明显的二项式关系;林内透视距离高于1倍树高时,美景度值随透视距离增加而增加。(3)林分枝下高与株高比值和美景度值存在二项式关系,林分枝下高与株高比值在0.5~0.6之时,美景度值存在1个峰值,此时人们接受程度最高。人们对林内垂直结构、透视距离、林下整齐度、树干形态与枝下高等指标偏好程度为打造更美好的生态景观林提供科学指导,对林场的转型和森林景观旅游事业有促进作用。  相似文献   

18.
Context

Climate and land-use change have led to disturbance regimes in many ecosystems without a historical analog, leading to uncertainty about how species adapted to past conditions will respond to novel post-disturbance landscapes.

Objectives

We examined habitat selection by spotted owls in a post-fire landscape. We tested whether selection or avoidance of severely burned areas could be explained by patch size or configuration, and whether variation in selection among individuals could be explained by differences in habitat availability.

Methods

We applied mixed-effects models to GPS data from 20 spotted owls in the Sierra Nevada, California, USA, with individual owls occupying home ranges spanning a broad range of post-fire conditions after the 2014 King Fire.

Results

Individual spotted owls whose home ranges experienced less severe fire (<?5% of home range severely burned) tended to select severely burned forest, but owls avoided severely burned forest when more of their home range was affected (~ 5–40%). Owls also tended to select severe fire patches that were smaller in size and more complex in shape, and rarely traveled?>?100-m into severe fire patches. Spotted owls avoided areas that had experienced post-fire salvage logging but the interpretation of this effect was nuanced. Owls also avoided areas that were classified as open and/or young forest prior to the fire.

Conclusions

Our results support the hypothesis that spotted owls are adapted to historical fire regimes characterized by small severe fire patches in this region. Shifts in disturbance regimes that produce novel landscape patterns characterized by large, homogeneous patches of high-severity fire may negatively affect this species.

  相似文献   

19.
Oba  Gufu  Post  Eric  Syvertsen  P.O.  Stenseth  N.C. 《Landscape Ecology》2000,15(6):535-546
Progressive growth of bush cover in dry savannahs is responsible for declines in range conditions. In southern Ethiopia, the Booran pastoralists assisted our understanding of spatial patterns of bush cover and range conditions in 54 landscape patch types grouped into six landscape units within an area of 30000 km2. The size of landscape patches sampled was 625 m2. We assessed the relationships between bush cover, grass cover and bare soil and grazing pressure and soil erosion and changes in range condition. Externally, political conflicts and internally, break down of land use, and official bans on the use of fire promoted bush cover and the decline in range conditions. Bush cover was negatively correlated with grass cover, and positively correlated with bare soil. Grass cover was negatively correlated with bare soil and grazing pressure in most landscape patch types. Grazing pressure was not significantly correlated with bush cover or bare soil, while soil erosion was directly related to bare soil. Soil erosion was absent in 64% of the landscape patch types, and seemingly not a threat to the rangelands. The relationship between bush cover, grass cover, bare soil and soil erosion is complex and related to climate, landscape geology, and patterns of land use. Main threats to range conditions are bush climax, loss of grass cover and unpalatable forbs. Currently, >70% of the landscape patch types are in poor to fair range conditions. Decline in range conditions, unless reversed, will jeopardise the pastoral production system in southern Ethiopia.  相似文献   

20.
Forest ecosystems have been widely fragmented by human land use, inducing significant microclimatic and biological changes at the forest edge. If we are to rigorously assess the ecological impacts of habitat fragmentation, there is a need to effectively quantify the amount of edge habitat within a landscape, and to allow this to be modelled for individual species and processes. Edge effect may extend only a few metres or as far as several kilometres, depending on the species or process in question. Therefore, rather than attempting to quantify the amount of edge habitat by using a fixed, case-specific distance to distinguish between edge and core, the area of habitat within continuously-varying distances from the forest edge is of greater utility. We quantified the degree of fragmentation of forests in England, where forests cover 10 % of the land area. We calculated the distance from within the forest patches to the nearest edge (forest vs. non-forest) and other landscape indices, such as mean patch size, edge density and distance to the nearest neighbour. Of the total forest area, 37 % was within 30 m and 74 % within 100 m of the nearest edge. This highlights that, in fragmented landscapes, the habitats close to the edge form a considerable proportion of the total habitat area. We then show how these edge estimates can be combined with ecological response functions, to allow us to generate biologically meaningful estimates of the impacts of fragmentation at a landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号