共查询到18条相似文献,搜索用时 62 毫秒
1.
采用一步水热法原位合成工艺制备了Ni-Zn/玄武岩复合催化剂,对催化剂微观形貌和表面元素分布进行了表征。以松木颗粒为原料、水蒸气为气化剂,采用下吸式管式气化炉实验平台,研究了Ni-Zn/玄武岩复合材料在不同温度下高温蒸汽的催化气化效果,通过考察气体组分变化,探讨Ni-Zn/玄武岩复合催化剂催化性能随温度变化的规律,并与无催化剂和以白云石为催化剂的催化性能进行实验对比。实验结果表明:水热反应温度为130℃,反应时间为12 h时,Ni、Zn能很好地负载在玄武岩纤维表面;与不加催化剂和加入白云石催化剂相比,Ni-Zn/玄武岩复合催化剂气化温度在950℃时催化效率明显提升,氢气体积分数增加明显,分别由无催化剂时的58. 6%、加入白云石催化剂时的50. 02%升高至63. 28%。 相似文献
2.
白云石催化松木燃料棒水蒸气气化试验 总被引:6,自引:0,他引:6
以松木燃料棒为试验对象,水蒸气为气化剂,在反应器底部装载定量的白云石作为催化床,通过考察气相组分变化,以及焦油的傅里叶变换红外光谱变化,综合分析白云石催化随温度变化的规律。试验表明:煅烧后的白云石促进提高气化气中氢气含量,相比无催化剂添加,H_2体积分数在800℃时涨幅较大,由32.32%升高至40.11%;当温度大于850℃,由于白云石催化裂解焦油速率随温度加快,以及碳酸盐自身分解加剧,造成CO_2体积分数增大;白云石能够促使碳氢化合物向小分子H_2、CO_2和CO转化,且随温度升高而加剧。白云石促进脂肪烃的碳链断裂、芳香烃开环反应、脱羟反应、脱羧反应、三键断裂反应,以及羟基和醚链的氧化等,但羧基脱除速率随温度升高逐步大于羟基及醚氧化为羧基的速率,使羧基含量先增加后下降。 相似文献
3.
流化床生物质气化实验研究 总被引:4,自引:0,他引:4
用φ50mm流化床反应器,以木屑为物料,以水为气化剂,以硅砂作流化介质进行生物质气化工艺实验研究。在800℃得到热值为17.13MJ/m^3的产品气,此时产气率为1.07m^3/kg。对实验结果进行了物料平衡和热平衡计算,得出木屑的裂解热为812.5KJ/kg(干基)。 相似文献
4.
生物质流化床气化过程的试验研究及示范 总被引:1,自引:0,他引:1
在流化床生物质气化炉内,采用空气作气化剂,对7种农林废弃物进行了气化实验研究,燃气成分中,CO含量在14%-17%之间,H2含量一般低于10%,甲烷含量为5%-20%,燃气热值为5300-6500KJ/m^3,气化效率72.6%。 相似文献
5.
阐述了生物质气化的原理及有关生物质气化技术,分析了物料、气化反应器、气化温度和气化剂对生物质气化特性的影响,指出了生物质气化技术中的关键问题。 相似文献
6.
生物质流化床气化中试实验研究 总被引:1,自引:0,他引:1
在生物质流化床气化中试装置上考察了不同原料、当量比和水蒸气配比工况下的温度分布、燃气特性和稳定性等气化特性。结果表明:木屑、稻壳和2种颗粒燃料的气化气体体积分数范围为:H227.1%~30.4%、CO 29.7%~32.6%、CO225.3%~27.9%和CH44.9%~5.8%;使用木屑和稻壳为原料可比颗粒燃料获得较均匀的气化温度分布,增加当量比和水蒸气配比可使流化床温度分布更均匀;在气化炉密相区,随气化炉高度增加,H2和CO体积分数升高,CO2和O2体积分数降低;在稀相区气体组分含量随高度变化平缓;改变气化介质、当量比、水蒸气配比和二次风配比可显著影响气化气体焦油含量;木屑水分的提高会降低气化稳定性,稻壳气化过程中易出现炉底温度骤升现象,颗粒燃料气化过程中易导致密相区温差和压差持续升高。 相似文献
7.
利用感应加热原理,设计并建立了基于感应加热的流化床生物质气化制氢试验装置,从反应器内部为生物质气化过程提供热量,实现了准确控温下的生物质气化制氢。以稻壳为生物质原料,水蒸气和空气为气化剂,进行了生物质气化制氢试验研究,考察了反应温度、蒸汽与生物质的质量比(S/B)、当量比(ER)对产物气成分和产氢率的影响。试验结果表明:气化温度在800℃时,H2体积分数随着S/B增大或ER减小而升高,H2产率在S/B为1.5或ER为0.22存在最大值。在温度为950℃、S/B为1.5、ER为0.22时,H2体积分数和产率同时达到最大值35.47%和78.22 g/kg。 相似文献
8.
9.
10.
11.
生物质气化技术及焦油净化方法 总被引:3,自引:0,他引:3
生物质气化供气是农村利用生物质能源的主要途径。与生物质集中供气技术相比,户用的单独供气技术更适合于经济相对落后和居住较分散的农村用户。为此,分析对比了目前生物质气化装置为降低燃气焦油含量而常用的热裂解、催化裂解、湿法与干法等可用技术的特点与应用条件,提出了催化裂解方法较具发展前景。采用生物质气化与焦油裂解一体化的气化装置,并配置具有降温、除尘和焦油分离回收等多种功能的高效净化装置,是适合小型气化装置特点的处理焦油的有效技术。 相似文献
12.
13.
基于ASPEN PLUS的烟气气氛下生物质气化模拟 总被引:1,自引:0,他引:1
基于ASPEN PLUS平台利用气固反应动力学,在生物质热解气燃烧所产生的烟气气氛下,建立生物质热解气化模型。通过AKTS热动力学软件分析了生物质在模拟烟气(80%N2、17%CO_2、3%O_2)气氛下热解气化的反应动力学,并对比模拟值和实验值,验证模型的可靠性;对影响热解气化特性的气氛进行分析并确定反应釜数量。结果表明:基于ASPEN PLUS平台进行生物质气化模拟性能良好。生物质热解气化过程中,动力学参数活化能和指前因子随着反应的进行而变化;与氮气和氧气气氛相比,烟气气氛有利于CO产生,产气热值比实验值提高1.3倍。 相似文献
14.
白云石基多孔陶瓷负载Al2O3催化生物质热解试验 总被引:1,自引:0,他引:1
针对生物质热解催化剂煅烧白云石存在机械强度低、容易破碎的问题,提出以白云石和石英砂作为陶瓷主要骨料,烧制后经浓度0. 3、0. 5、1. 0 mol/L Al_2(SO_4)_3溶液处理,制成具有较高机械强度的白云石基多孔陶瓷;以制备的负载Al_2O_3的白云石基多孔陶瓷为催化剂,在水平管式炉上开展玉米秸秆粉催化快速热解试验。结果表明:当白云石与石英砂配比分别为30:70、40:60、45:55、50:50时,随着白云石所占比例的增加,生物油的产率先增大、后减小,生物炭的产率则先减小、后增大,当配比为40∶60时,存在生物油最大产率36. 85%,生物炭最低产率25. 11%。随着Al_2(SO_4)_3溶液浓度的提高,生物油的产率不断减小,生物炭的产率先减小、后又增大,与未经Al2(SO4)3溶液处理相比,生物油产率的降低幅度分别为10. 69%、15. 33%、21. 55%。生物油中醇类物质的相对含量略有增加,酮类、酸类、醛类物质的相对含量逐渐减小,但与不使用催化剂、未经Al_2(SO_4)_3溶液处理时相比,酚类物质的相对含量有显著提高,表明Al2O3的存在有利于酚类物质的生成。热解所产生的不可冷凝生物气主要成分为CO、CO_2、CH_4、H_2,其中CO_2的体积分数最高,约占63%,其次是CO,约占32%。加入制备的白云石基多孔陶瓷后,CO_2、CH_4和H_2的体积分数提高,CO的体积分数降低。 相似文献
15.
16.
下吸式气化炉木屑高温蒸汽气化制取富H2实验 总被引:4,自引:0,他引:4
设计了生物质高温蒸汽气化实验平台,主反应器为高温蒸汽发生系统和带有喉口的下吸式气化炉。利用该实验平台对木屑进行高温蒸汽气化研究,气化过程通入的蒸汽温度控制在600~1 000℃。实验结果表明:高温蒸汽既是气化过程的气化剂又是部分热载体,能有效提高气化效率,并维持炉内温度场的稳定。实验条件下,气化气可燃组分体积分数达到77%以上,当蒸汽温度为(948±4)℃时,气化气中H2体积分数达到(51.83±0.12)%,气体热值为9.81 MJ/m3,H2/CO组分比达到2.17,气化气可持续稳定燃烧,气化性能较为理想。 相似文献
17.