首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PURPOSE: The purpose of this study was to determine if intravenous hypertonic hydroxyethyl starch (7.5%/6%) (HES) could decrease the intraocular pressure (IOP) in healthy normotensive dogs, and compare its effect with that of mannitol (20%) (experimental study). In addition, the potential IOP-lowering effect of hypertonic HES was evaluated in six dogs with primary glaucoma (clinical study). MATERIAL AND METHODS: Experimental study: eight male ophthalmoscopically and clinically healthy Beagles were included in this study. The IOP of each dog was measured by applanation tonometry in both eyes to obtain control values at 10:00, 10:15, 10:30, 10:45, 11:00 a.m., and then every hour until 6:00 p.m. prior to the first treatment (control period). Each dog received, with at least 2-week intervals and in a random order, an intravenous (IV) infusion of 4 mL/kg hypertonic HES (1.2 g/kg NaCl; 0.96 g/kg HES) and 4 mL/kg mannitol 20% (1 g/kg) over a period of 15 min starting at 10:00 a.m. IOP was measured oculus uterque (OU) at the same time intervals as in the control study. The differences in IOP between the treatment groups and the baseline IOP (before the start of infusion), between oculus sinister (OS) and oculus dexter (OD) and between the same time points of all groups were determined with a Student's t-test for paired samples (P = 0.05). Clinical study: six dogs with primary glaucoma (representing seven eyes) received an IV infusion of 4 mL/kg hypertonic HES over a period of 15 min. IOP was measured before and 15 and 30 min after starting the infusion. RESULTS: Experimental study: no significant difference between IOP of both eyes was found. A significant decrease in IOP from baseline value was recorded at 15, 30, 45, and 60 min after the start of mannitol infusion (mean amplitude in IOP decrease 3.21 mmHg; P < 0.05) and at 15 and 30 min in dogs treated with HES (mean amplitude in IOP decrease 2.43 mmHg; P < 0.05). At 120 and 180 min there was a significantly higher IOP (P < 0.05) in HES treatment group compared to the values of the control group. Clinical study: in 5/7 eyes diagnosed with primary glaucoma a maximum decrease in IOP of an average of 24% from the baseline value (IOP before start of the infusion) was observed (range of decrease 2-21 mmHg). In three of these five cases the maximum decrease was reached at 15 min and in two cases at 30 min. In one case an increase in IOP of 35% (+ 18 mmHg) was seen after 15 min and 26% (+ 13 mmHg) after 30 min. Case 4 showed an increase in IOP of 5% (+ 3 mmHg) after 15 min and a decrease of 6% (- 4 mmHg) after 30 min. CONCLUSIONS: Intravenous hypertonic HES is comparable to intravenous mannitol 20% in lowering the intraocular pressure in healthy normotensive dogs. But this effect lasted half an hour longer after mannitol. In 6/7 eyes with primary glaucoma, hypertonic HES decreased IOP.  相似文献   

2.
The pharmacokinetics of ibafloxacin, a new veterinary fluoroquinolone antimicrobial agent, was studied following intravenous (i.v.) and oral administration to healthy dogs. The mean absolute bioavailability of ibafloxacin after oral doses of 7.5, 15 and 30 mg/kg ranged from 69 to 81%, indicating that ibafloxacin was well absorbed by dogs. Ibafloxacin was also absorbed rapidly [time of maximum concentration (t(max)) 1.5 h], reaching a mean maximum concentration (C(max)) of 6 microg/mL at 15 mg/kg, well distributed in the body [large volume of distribution at steady state (V(ss)) and V(area) of 1.1 L/kg and 4 L/kg, respectively], and exhibited an elimination half-life of 5.2 h and a low total body clearance (8.7 mL/min/kg). Both C(max) and area under the concentration-time curve (AUC) showed dose proportionality over the dose range tested (7.5-30 mg/kg). The pharmacokinetics of ibafloxacin was similar following single and repeated dosage regimens, implying no significant accumulation in plasma. Food promoted the absorption of ibafloxacin by increasing C(max) and AUC, but did not change t(max). High amounts of the metabolites, mainly 8-hydroxy- and, 7-hydroxy-ibafloxacin were excreted in urine and faeces, either unchanged or as glucuronide conjugates. Following oral administration of 15 mg ibafloxacin/kg, the total recovery of ibafloxacin, its metabolites and conjugates in urine and faeces was 61.9-99.9% of the dose within 48 h.  相似文献   

3.
4.
OBJECTIVE: To evaluate effects of iatrogenic hyperadrenocorticism on plasma cortisol concentrations produced by an infusion of hydrocortisone in dogs. PROCEDURE: Plasma cortisol concentrations were measured regularly during a 6 h infusion of hydrocortisone sodium succinate at two dose rates. The infusions were performed before and after treatment for 30 d with oral cortisone acetate at 10 mg/kg/24 h, divided thrice daily. Adrenal activity during the experimental period was assessed by weekly ACTH stimulation tests. RESULTS: Both infusion rates produced lower plasma cortisol concentrations after treatment for 30 d with cortisone. CONCLUSION: Prior exposure to high concentrations of glucocorticoids may result in accelerated metabolism of glucocorticoids administered subsequently. This may necessitate increased dosages when using glucocorticoids to support inadequate adrenal function.  相似文献   

5.
Pharmacokinetics and milk levels of ceftriaxone were studied in healthy and endometritic cows following single intravenous administration. The drug was detected up to 8 h of dosing in plasma of healthy and endometritic cows and the drug disposition followed three-compartment open model. The values of Vdarea, AUC, t1/2β, ClB, MRT and P/C ratio were 0.50 ± 0.19 L.kg−1, 62.2 ± 23.3 μg.ml−1.h, 1.02 ± 0.07 h, 0.30 ± 0.09 L.kg−1.h−1, 1.55 ± 0.25 h and 0.52 ± 0.27, respectively, in healthy and 1.55 ± 0.52 L.kg−1, 37.0 ± 17.1 μg.ml−1.h, 1.56 ± 0.25 h, 0.56 ± 0.14 L.kg−1.h−1, 2.14 ± 0.34 h and 1.44 ± 0.60, respectively, in endometritic cows. The drug was detected in milk for 36 h after administration. For MIC90 of 0.5 μg.ml−1 the most appropriate dosage for ceftriaxone, would be 9.0 mg.kg−1 repeated at 6 h intervals for the treatment of endometritis in cows.  相似文献   

6.
7.
OBJECTIVE: To compare plasma (total and unbound) and interstitial fluid (ISF) concentrations of doxycycline and meropenem in dogs following constant rate IV infusion of each drug. ANIMAL: 6 adult Beagles. PROCEDURE: Dogs were given a loading dose of doxycycline and meropenem followed by a constant rate IV infusion of each drug to maintain an 8-hour steady state concentration. Interstitial fluid was collected with an ultrafiltration device. Plasma and ISF were analyzed by high performance liquid chromatography. Protein binding and lipophilicity were determined. Plasma data were analyzed by use of compartmental methods. RESULTS: Compared with meropenem, doxycycline had higher protein binding (11.87% [previously published value] vs 91.75 +/- 0.63%) and lipophilicity (partition coefficients, 0.02 +/- 0.01 vs 0.68 +/- 0.05). A significant difference was found between ISF and plasma total doxycycline concentrations. No significant difference was found between ISF and plasma unbound doxycycline concentrations. Concentrations of meropenem in ISF and plasma (total and unbound) were similar. Plasma half-life, volume of distribution, and clearance were 4.56 +/- 0.57 hours, 0.65 +/- 0.82 L/kg, and 1.66 +/- 2.21 mL/min/kg, respectively, for doxycycline and 0.73 +/- 0.07 hours, 0.34 +/- 0.06 L/kg, and 5.65 +/- 2.76 mL/min/kg, respectively, for meropenem. The ISF half-life of doxycycline and meropenem was 4.94 +/- 0.67 and 2.31 +/- 0.36 hours, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The extent of protein binding determines distribution of doxycycline and meropenem into ISF. As a result of high protein binding, ISF doxycycline concentrations are lower than plasma total doxycycline concentrations. Concentrations of meropenem in ISF can be predicted from plasma total meropenem concentrations.  相似文献   

8.
The effect of IV mannitol (1.5 gm/kg) or oral glycerol (1.4 and 2.0 gm/kg) on intraocular pressure (IOP) and serum osmolality (SOSM) was investigated in 24 normal dogs. Mean IOPs were significantly decreased from baseline values from 0.5 through 5.5 hours following mannitol administration with a mean maximum depression of 8.7 +/- 1.8 mm Hg whereas mean SOSM was significantly increased from baseline values. Mean IOPs were significantly decreased from baseline values from 1.0 through 10 hours following oral administration of 1.4 gm/kg glycerol with a mean maximal depression of 5.4 +/- 2.7 mm Hg. Mean SOSM increased initially followed by a significant decrease. The change in IOP following mannitol administration showed less variation (smaller standard deviations) than glycerol (1.4 gm/kg). Five of the 6 dogs that received the 2.0 gm/kg glycerol vomited; the mean IOP and SOSM values were not significantly altered from baseline values in these dogs. Four of 5 dogs given cooled (10C) 2.0 gm/kg glycerol vomited. The incidence of vomiting appeared to be dose related. Both mannitol and glycerol (1.4 gm/kg) are effective for decreasing IOP in normal dogs.  相似文献   

9.
OBJECTIVE: To determine pharmacokinetics of buprenorphine in dogs after i.v. administration. ANIMALS: 6 healthy adult dogs. PROCEDURES: 6 dogs received buprenorphine at 0.015 mg/kg, i.v. Blood samples were collected at time 0 prior to drug administration and at 2, 5, 10, 15, 20, 30, 40, 60, 90, 120, 180, 240, 360, 540, 720, 1,080, and 1,440 minutes after drug administration. Serum buprenorphine concentrations were determined by use of double-antibody radioimmunoassay. Data were subjected to noncompartmental analysis with area under the time-concentration curve to infinity (AUC) and area under the first moment curve calculated to infinity by use of a log-linear trapezoidal model. Other kinetic variables included terminal rate constant (k(el)) and elimination half-life (t(1/2)), plasma clearance (Cl), volume of distribution at steady state (Vd(ss)), and mean residence time (MRT). Time to maximal concentration (T(max)) and maximal serum concentration (C(max)) were measured. RESULTS: Median (range) values for T(max) and MRT were 2 minutes (2 to 5 minutes) and 264 minutes (199 to 600 minutes), respectively. Harmonic mean and pseudo SD for t(1/2) were 270+/-130 minutes; mean +/- SD values for remaining pharmacokinetic variables were as follows: C(max), 14+/-2.6 ng/mL; AUC, 3,082+/-1,047 ng x min/mL; Vd(ss), 1.59+/-0.285 L/kg; Cl, 5.4+/-1.9 mL/min/kg; and, k(el), 0.0026+/-0.0,012. CONCLUSIONS AND CLINICAL RELEVANCE: Pharmacokinetic variables of buprenorphine reported here differed from those previously reported for dogs. Wide variations in individual t(1/2) values suggested that dosing intervals be based on assessment of pain status rather than prescribed dosing intervals.  相似文献   

10.
Gemcitabine is a relatively new chemotherapeutic compound used to treat a variety of cancers in dogs. Previous work presented in a companion paper explored the plasma kinetics of gemcitabine and its inactive metabolite, 2',2'-difluorodeoxyuridine (dFdU), in dogs after an intravenous bolus gemcitabine dose and demonstrated the saturation of intracellular dFdCTP (2',2'-difluorodeoxycytidine 5'-triphosphate) occurs in vitro with increasing extracellular gemcitabine exposure in canine melanoma cells. In this study, the plasma pharmacokinetics (PKs) of gemcitabine and dFdU are further explored after gemcitabine doses of 10, 30, and 60 mg/kg administered by intravenous infusion with a loading dose. Gemcitabine displayed linear PKs, while the kinetics of dFdU were not dose proportional. The overall clearance, volume of distribution at steady-state, and terminal elimination half-life (t(1/2)) for gemcitabine were 0.421 L/h.kg, 0.822 L/kg, and 1.49 h, respectively. Plasma concentrations of dFdU peaked at approximately 2 h postdosing and had a t(1/2) of 14.9 h.  相似文献   

11.
ObjectiveTo establish the correlation between the bispectral index (BIS) and different rates of infusion of propofol in dogs.Study designProspective experimental trial.AnimalsEight adult dogs weighing 6–20 kg.MethodsEight animals underwent three treatments at intervals of 20 days. Propofol was used for induction of anesthesia (10 mg kg−1 IV), followed by a continuous rate infusion (CRI) at 0.2 mg kg−1 minute−1 (P2), 0.4 mg kg−1 minute−1 (P4) or 0.8 mg kg−1 minute−1 (P8) for 55 minutes. The BIS values were measured at 10, 20, 30, 40, and 50 minutes (T10, T20, T30, T40, and T50, respectively) after the CRI of propofol was started. Numeric data were submitted to analysis of variance followed by Tukey test (p < 0.05).ResultsThe BIS differed significantly among groups at T40, when P8 was lower than P2 and P4. At T50, P8 was lower than P2. The electromyographic activity (EMG) in P2 and P4 was higher than P8 at T40 and T50.ConclusionsAn increase in propofol infusion rates decreases the BIS values and EMG.  相似文献   

12.
The purpose of this study was to investigate the influence of different saline and colloid solutions on adrenal steroid secretion in dogs. Six healthy male Beagles underwent three infusion cycles: 10 min infusion of 30 ml/kg of NaCl 0.9%, 5 ml/kg of hydroxy ethyl starch, or 5 ml/kg of NaCl 10%. Plasma osmolality, hematocrit, total solids, cortisol and aldosterone levels were measured at 0, 5, 15, 30, 60, 120, 180 and 240 min after beginning infusion. Plasma ACTH levels were measured at 0, 15 and 240 min. An identical timing of sampling was applied during a control session omitting the fluid infusion. Osmolality, sodium, chloride and cortisol levels were found to be significantly higher with hypertonic saline solute compared to control. All fluid infusions lead to lowered plasma potassium, hematocrit, total solids and aldosterone values. ACTH concentrations did not show significant changes with any of the infusion cycles. The increase in cortisol levels suggests that hypertonic saline infusion could be interesting in critical care resuscitation, particularly in patients who are suffering from relative adrenal insufficiency.  相似文献   

13.
OBJECTIVE: To determine the pharmacokinetics of carvedilol administered IV and orally and determine the dose of carvedilol required to maintain plasma concentrations associated with anticipated therapeutic efficacy when administered orally to dogs. ANIMALS: 8 healthy dogs. PROCEDURES: Blood samples were collected for 24 hours after single doses of carvedilol were administered IV (175 microg/kg) or PO (1.5 mg/kg) by use of a crossover nonrandomized design. Carvedilol concentrations were detected in plasma by use of high-performance liquid chromatography. Plasma drug concentration versus time curves were subjected to noncompartmental pharmacokinetic analysis. RESULTS: The median peak concentration (extrapolated) of carvedilol after IV administration was 476 ng/mL (range, 203 to 1,920 ng/mL), elimination half-life (t(1/2)) was 282 minutes (range, 19 to 1,021 minutes), and mean residence time (MRT) was 360 minutes (range, 19 to 819 minutes). Volume of distribution at steady state was 2.0 L/kg (range, 0.7 to 4.3 L/kg). After oral administration of carvedilol, the median peak concentration was 24 microg/mL (range, 9 to 173 microg/mL), time to maximum concentration was 90 minutes (range, 60 to 180 minutes), t(1/2) was 82 minutes (range, 64 to 138 minutes), and MRT was 182 minutes (range, 112 to 254 minutes). Median bioavailability after oral administration of carvedilol was 2.1% (range, 0.4% to 54%). CONCLUSIONS AND CLINICAL RELEVANCE: Although results suggested a 3-hour dosing interval on the basis of MRT, pharmacodynamic studies investigating the duration of beta-adrenoreceptor blockade provide a more accurate basis for determining the dosing interval of carvedilol.  相似文献   

14.
15.
OBJECTIVE: To determine the plasma concentration and define the pharmacokinetic characteristics of fentanyl (10 microg kg(-1)) administered as a single intravenous (IV) injection followed by: (a) no further drug; or (b) a constant rate infusion (CRI) of fentanyl 10 microg kg(-1) hour(-1) lasting 1, 3 or 4 hours in dogs. Animals Fourteen healthy adult beagles (seven males and seven females). EXPERIMENTAL DESIGN: Randomized cross-over design. MATERIALS AND METHODS: Dogs were randomly assigned to four treatment groups. Drugs were administered to each dog in a randomized cross-over design with at least a 14-day washout interval between experiments. All dogs received an IV loading dose of fentanyl (10 microg kg(-1)). One group received no further fentanyl. In others, the loading dose was followed by a CRI of fentanyl (10 microg kg(-1) hour(-1)) for 1, 3 or 4 hours. Blood samples were collected and plasma fentanyl concentrations determined using high-performance liquid chromatography-mass spectrometry. Plasma pharmacokinetic estimates were obtained by plotting plasma concentrations versus time data and by fitting the change in concentration to a pharmacokinetic model, using a purpose-built program written by the Graduate School of Pharmaceutical Sciences (Kyoto University) in Visual Basic (VBA) on Excel (Microsoft Corporation). RESULTS: Plasma fentanyl concentration decreased rapidly after single IV injection: the plasma concentration-time curve best fitted a two-compartment model. Pharmacokinetic variables for IV injection were characterized by a short distribution half-time (t1/2alpha was 4.5 minutes), a relatively long elimination half time (t1/2beta was 45.7 minutes), a large volume of distribution (approximately 5 L kg(-1)) and high total body clearance (77.9 mL minute(-1) kg(-1)). Stable plasma fentanyl levels were obtained in all CRI groups although pharmacokinetic variables were influenced by the duration of administration. CONCLUSIONS AND CLINICAL RELEVANCE: While this study clarified the pharmacokinetic features of rapid IV fentanyl injection and CRI in dogs, the plasma concentration achieving analgesia was not and so further research is needed. Further studies on the effects of other sedatives and/or anaesthetics on fentanyl's disposition are also required as the drug is commonly used with other agents.  相似文献   

16.
OBJECTIVE: To determine pharmacokinetics of clomipramine and its principle metabolite (desmethylclomipramine) in the plasma of dogs after IV or oral administration of a single dose. ANIMALS: 6 male and 6 female Beagles. PROCEDURES: Clomipramine was administered IV (2 mg/kg), PO (4 mg/kg) after food was withheld for 15 hours, and PO (4 mg/kg) within 25 minutes after dogs were fed. Plasma clomipramine and desmethylclomipramine concentrations were measured by use of a gas chromatography with mass-selection method. RESULTS: Time to peak plasma concentrations of clomipramine and desmethylclomipramine following oral administration was 1.2 hours. For clomipramine, after IV administration, elimination half-life was 5 hours, mean residence time was 3 hours, and plasma clearance was 1.4 L/h/kg. Values for mean residence time and terminal half-life following oral administration were similar to values obtained following IV administration, and systemic bioavailability was approximately 20% for clomipramine and 140% for desmethylclomipramine, indicating fast absorption of clomipramine from the gastrointestinal tract and extensive first-pass metabolism. Administration of clomipramine with food did not alter the area under the concentration versus time curve for desmethylclomipramine but resulted in a 25% increase for clomipramine. Clomipramine and desmethylclomipramine were extensively bound (> 96%) to serum proteins. There were no significant differences in area under the concentration versus time curve between male and female dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that there should not be any clinically important differences in efficacy regardless of whether clomipramine is administered with or without food.  相似文献   

17.
OBJECTIVE: To evaluate the effect of 2 hydroxyethyl starch (HES) preparations (ie, HES solution with a molecular weight of 600 kd and a degree of substitution of 0.7 [HES 600/0.7] and a calcium-containing polyionic HES solution with a molecular weight of 670 kd and a degree of substitution of 0.75 [HES 670/0.75]) on canine platelet function. SAMPLE POPULATION: Blood samples from 10 healthy adult dogs. PROCEDURES: Dilution of citrated whole blood was performed with saline (0.9% NaCl) solution, HES 600/0.7, and HES 670/0.75 at ratios of 1:9 (ie, 1 part saline solution or colloid to 9 parts whole blood) and 1:3. Measurements of time to platelet plug formation in a capillary tube (ie, closure time) were made by use of a bench-top platelet function analyzer with collagen and ADP platelet agonists. RESULTS: Mean baseline closure time was 68.0 +/- 15.3 seconds. A 1:3 dilution of whole blood with saline solution, HES 600/0.7, and HES 670/0.75 resulted in mean closure times of 85.8 +/- 15.7 seconds, 100.6 +/- 18.6 seconds, and 101.6 +/- 16.2 seconds, respectively. Closure time following 1:3 dilution of whole blood with saline solution was significantly different from baseline and from 1:9 dilution with saline solution. Closure time following 1:3 dilution of whole blood with HES 670/0.75 was significantly different from baseline, 1:3 and 1:9 dilutions with saline solution, and 1:9 dilutions with HES 600/0.7 or HES 670/0.75. CONCLUSIONS AND CLINICAL RELEVANCE: Saline solution, HES 600/0.7, and HES 670/0.75 affect canine platelet function by prolonging closure times; HES solutions prolonged closure time to a greater extent than saline solution.  相似文献   

18.
This study examined the pharmacokinetics and physiologic effects of two infusions rates of morphine in conscious dogs. Five adult dogs were randomly studied at weekly intervals. An initial dose of either 0.3 or 0.6 mg/kg were each followed by infusions of 0.17 and 0.34 mg/kg/h. Plasma morphine concentrations, physiological parameters, sedation and mechanical antinociception were evaluated during each infusion. Morphine was assayed by high pressure liquid chromatography (HPLC) with electrochemical coulometric detection and pharmacokinetic parameters were calculated. Data were fitted to a bi-compartment model with a rapid distribution (<1 min for both doses) and slower termination rate. For the high and low doses, respectively, mean+/-SD terminal half-life was 38+/-5 and 27+/-14 min, apparent volumes of distribution at steady-state were 1.9+/-0.5 and 1.3+/-0.8 L/kg, with clearances of 50+/-15 and 67+/-20 mL/kg/min. Steady-state plasma concentrations ranged from 93 to 180 ng/mL and 45 to 80 ng/mL in the high and low doses, respectively. Respiratory rate increased significantly, pulse oximetry remained>95% and body temperature decreased significantly during both infusions. No vomition or neuroexcitation occurred. Sedation and mechanical antinociception were both mild during the lower infusion rate, and mild to moderate during the higher infusion rate. In conclusion, morphine pharmacokinetics was not altered by increasing infusion rates, producing stable, long-lasting plasma concentrations.  相似文献   

19.
OBJECTIVE: To determine the specificity and sensitivity of plasma and urinary trypsinogen activation peptide (TAP) concentrations in diagnosing pancreatitis in dogs. DESIGN: Retrospective analysis of clinical cases. PROCEDURE: Dogs were classified into three groups: healthy animals, dogs with confirmed pancreatitis and dogs with nonpancreatic disease, which clinically or biochemically resembled pancreatitis. This last group was further subdivided into dogs with renal and those with nonrenal disease. The plasma and urinary TAP concentration was determined by a competitive enzyme immunoassay. Clinical cases additionally had serum trypsin-like immunoreactivity concentration measured, as well as radiography and ultrasound of the abdomen and further diagnostic procedures. Nonparametric analysis of variance (Kruskal-Wallis test) was performed using Statistix 4.0 program. RESULTS: There was a wide range of urinary TAP concentration in healthy dogs (mean 52.30 nmol/L, standard deviation 55.25) that made interpretation of urinary TAP concentrations difficult in the other groups. There was a narrow reference range for plasma TAP (mean 2.67 nmol/L, standard deviation 0.93). Plasma and urinary TAP concentrations, as well as urinary TAP to creatinine ratio, were all increased in dogs that died with necrotising pancreatitis. Values were not increased in mild, interstitial pancreatitis. Increased plasma TAP concentrations were also present in dogs with severe renal disease. CONCLUSION: Plasma TAP concentration is a good prognostic indicator in naturally occurring pancreatitis in dogs. The failure of TAP to increase in mild pancreatitis, and the increase present in severe renal disease, suggests its measurement has limited application as a sole diagnostic tool for canine pancreatitis. Further investigations are required in order to explain the large variability of urinary TAP concentration and the presence of circulating TAP in healthy dogs.  相似文献   

20.
Eight healthy dogs undergoing elective ovariohysterectomy were anesthetized with a standard protocol and received a low-dose medetomidine constant rate infusion during surgery. Cardiorespiratory parameters, including non-invasive cardiac output, were measured at various times. This protocol resulted in acceptable and stable cardiovascular performance, allowed low isoflurane concentrations, and provided smooth recoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号