首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Field Crops Research》2006,97(1):77-86
A large-scale backcross breeding project has been undertaken to improve drought tolerance in rice. Over 160 donor cultivars from 25 countries have been used in this project, representing a significant proportion of the genetic variation in cultivated rice. These cultivars were evaluated in field experiments in the Philippines to assess their responses to drought in terms of plant height, heading date, and grain yield. Drought was imposed near heading stage, in experiments that were established either in lowland (anaerobic) fields or upland (aerobic) soil. Despite the poor adaptation of some cultivars to the tropics, it was possible to identify significant variation in plant response to drought treatments, and contrasting effects on flowering delay and growth. Subsequently, 325 BC2F2 bulk populations, developed by backcrossing many of these donors to one of three elite recurrent parents, were screened under drought in lowland or upland nurseries. Stress levels were managed to eliminate almost all seed set in recurrent parents, and those progeny that produced grain were selected as being putatively drought-tolerant. The selection intensity varied across years and in selection environments with more severe stress, higher selection intensity could be imposed. The number of plants selected within a population was not associated with the per se drought response of the donors in the direct evaluation, indicating the wide presence of cryptic genetic variation for drought tolerance in the apparently drought-susceptible cultivars. The genetic background of the recurrent parent affected the number of plants selected, as did the selection environment (upland versus lowland nurseries). These drought-selected introgression lines represent a useful genetic resource to develop improved cultivars for farmers in rainfed or water-scarce rice-growing regions, and also to improve our understanding of the genetic and molecular basis of drought tolerance in rice. Genetic analysis of the selected lines, reported elsewhere, indicated specific regions of high introgression. Yield evaluations of the selected lines are now underway across a range of drought scenarios.  相似文献   

2.
Submergence tolerance and jasmine-like cooking quality are desirable for rice varieties grown in rainfed and irrigated lowland ecosystems in the Mekong region of Southeast Asia. Hybridization between varieties IR57514 and Kao Dawk Mali 105 (KDML105) was initiated with the goal of producing an ideotype that combines submergence tolerance and jasmine-like cooking quality. Through the single seed descent (SSD) method, a large population of recombinant inbred lines (RILs) was developed, and we demonstrated the potential of using marker-assisted selection (MAS) in the identification of the ideotype from the offspring. Four markers, R10783Indel, Waxy, Aromarker and GT11, were used to select the favored alleles of the Sub1, Wx, badh2 and SSIIa loci, respectively. The ideotype was classified into two groups: ideotype1 (ID1), carrying the Sub1IR, badh2KD, WxKD and SSIIaKD alleles and consisting of 66 RILs and ideotype2 (ID2), carrying the Sub1IR, badh2KD, WxKD and SSIIaIR alleles and consisting of 31 RILs. Submergence tolerance, cooking quality, grain quality and agronomic characteristics of the IDs were evaluated and compared with those of the parents. All of the ID1 lines exhibited submergence tolerance and jasmine-like cooking quality and displayed a low amylose content, a fragrance and a high alkali spreading value, whereas the ID2s showed the same characteristics as ID1, except for a low alkali spreading value, which was inherited from IR57514. A wide range of agronomic characteristics was observed in both of the ID groups, and some of the IDs were superior in the yield component, as compared to their parents. This study provides further support that the precision of markers used in MAS can enhance the development of ideotypes in rice.  相似文献   

3.
4.
Experiment was conducted in E.I.D Parry(In-dia) LTD,Agritech Res Center(N12.5°,E78°) in Rabi season,1998.Chinese indica cy-toplasmic male sterile lines (CMS) ZS97A,V20A,Jing 23A,You-IA,and D297A,andtropical CMS IR68902A,IR69616A,andIR58025A were sowed on Feb 6 and trans-planted on Mar 1.Each CMS was planted tworows(24 plants),with one plant per hill and aspace of 18cm×18cm.No replication wasdesigned.Observations were taken on Jun 8on the following traits:plant height,paniclelength,days from sowing to 5% floweringtime(SFT),un-exsertion panicle rate(per-centage of length of panicle that wrapped byflag leaf),spikelet numbers of main panicle,  相似文献   

5.
6.
Biotic and abiotic stresses are major limiting factors for high crop productivity worldwide. A landrace collection consisting of 380 durum wheat(Triticum turgidum L. var. durum) entries originating in several countries along with four check varieties were evaluated for biotic stresses:yellow rust(Puccinia striiformis Westendorf f. sp. tritici) and wheat stem sawfly(WSS) Cephus cinctus Norton(Hymenoptera: Cephidae), and abiotic stresses: cold and drought. The main objectives were to(i) quantify phenotypic diversity and identify variation in the durum wheat landraces for the different stresses and(ii) characterize the agronomic profiles of landraces in reaction to the stresses. Significant changes in reactions of landraces to stresses were observed.Landraces resistant to each stress were identified and agronomically characterized.Percentage reduction due to the stresses varied from 11.4%(yellow rust) to 21.6%(cold stress) for 1000-kernel weight(TKW) and from 19.9(yellow rust) to 91.9%(cold stress) for grain yield. Landraces from Asia and Europe showed enhanced genetic potential for both grain yield and cold tolerance under highland rainfed conditions of Iran. The findings showed that TKW and yield productivity could be used to assess the response of durum wheat landraces to different stresses. In conclusion, landraces showed high levels of resistance to both biotic and abiotic stresses, and selected landraces can serve in durum wheat breeding for adaptation to cold and drought-prone environments.  相似文献   

7.
In rainfed lowland rice ecosystem, rice plants are often exposed to alternating recurrences of waterlogging and drought due to erratic rainfall. Such soil moisture fluctuation (SMF) which is completely different from simple or progressive drought could be stressful for plant growth, thereby causing reduction in yield. Root plasticity is one of the key traits that play important roles for plant adaptation under such conditions. This study aimed to evaluate root plasticity expression and its functional roles in dry matter production and yield under SMF using Nipponbare, KDML 105 and three backcross inbred lines (BILs) and to identify QTL(s) associated with root traits in response to SMF at two growth stages using Nipponbare/KDML105 F2 plants. A BIL, G3-3 showed higher shoot dry matter production and yield than Nipponbare due to its greater ability to maintain stomatal conductance concomitant with greater root system development caused by promoted production of nodal and lateral roots under SMF. QTLs were identified for total nodal root length, total lateral root length, total root length, number of nodal roots, and branching index under SMF at vegetative and reproductive stages. The QTLs detected at vegetative and reproductive stages were different. We discuss here that relationship between root system of G3-3 and the detected QTLs. Therefore, G3-3 and the identified QTLs could be useful genetic materials in breeding program for improving the adaptation of rice plants in target rainfed lowland areas.  相似文献   

8.
DREB类蛋白属于AP2/ERF转录因子家族的一个亚家族,在植物非生物胁迫抗性调控中具有重要功能。为了挖掘花生逆境胁迫相关功能基因AhDREB3,从已公布的花生基因中找到干旱应答元件结合蛋白3(AhDREB3)的编码基因全序列,做编码蛋白的进化分析。根据已知序列设计引物,通过荧光定量PCR检测了该基因在低温、高盐和干旱胁迫下及对外源ABA响应和表达。荧光定量PCR结果显示,AhDREB3基因在花生的叶片和根中对低温没有响应,对高盐(叶片和根)和干旱(根)胁迫有较大响应,说明它可能参与了花生对高盐和干旱胁迫的适应性调控。此外,AhDREB3基因的表达在花生叶片和根中对外源ABA响应变化小,暗示了该基因在花生中可能通过不依赖于ABA的方式起作用。  相似文献   

9.
Drought is a major production constraint in rainfed rice (Oryza sativa L.). Lack of effective selection criteria is a major limitation hampering progress in breeding for drought tolerance. In an earlier report, we showed in two populations that one cycle of direct selection was effective in increasing grain yield under stress. In the present study, we retested the efficiency of direct selection for grain yield under drought stress in rice using four populations derived from crossing upland-adapted, drought-tolerant varieties (Apo, Vandana) to high-yielding, lowland-adapted, drought-susceptible varieties (IR64, IR72). Each population was subjected to two cycles of divergent selection either under drought stress in upland or under nonstress conditions in lowland conditions. Following selection, approximately 40 high-yielding lines selected under each protocol from each population, along with a set of unselected lines, were evaluated in a series of selection response trials over a range of moisture levels. Significant response to direct selection under stress was realized in 9 out of 15 combinations of populations and stress environments, and in 6 of the 7 severe stress trials. Averaging over all the populations and stress environments, the stress-selected lines had a yield advantage of 25 and 37% over nonstress-selected and random lines, respectively. In contrast to this, under nonstress, the nonstress-selected lines had an average yield advantage of only 7 and 13% over stress-selected and random lines, respectively. Direct selection in managed stress trials during dry seasons gave significant response (25% on average relative to indirect selection in nonstress conditions) under naturally occurring wet season stress. In addition, direct selection under stress in upland gave an average gain of 16 and 45% over nonstress-selected and random lines, respectively, under stress in lowland. The yield advantage of the stress-selected lines appears to result mainly from maintenance of higher harvest index. These results show that direct selection for grain yield under stress is effective and does not reduce yield potential. Overall, this is the first report in rice demonstrating that (a) selection under managed drought stress in the dry season can result in yield gains under natural stress in the wet season, and (b) that selection under upland drought stress can, at least under the conditions of the present study, result in gains under lowland drought conditions.  相似文献   

10.
野生稻资源研究及其在水稻育种上利用现状   总被引:6,自引:0,他引:6  
1 野生稻资源类型及分布 1.1 世界野生稻类型及分布 对世界上稻属(Oryza L.)的种类众说不一,综合各学者的观点,普遍认为,稻属常见的有22个种,其中包括亚洲栽培稻(O. sativa L.)、非洲栽培稻(O. glaberrima Steud.)和20个种的野生稻类型(表1).  相似文献   

11.
12.
A backcross inbred line population derived from a cross between Koshihikari and Kasalath was used to dissect the genetic relationship among chalkiness, protein content, and paste viscosity properties in rice in three environments. A total of 11 traits (or parameters) were analyzed, including percentage of grains with chalkiness (PGWC), protein content (PC) and protein index (PI), and eight parameters from the viscosity profile. PGWC, PC and PI were significantly correlated with the paste viscosity parameters. We identified 39 QTLs in three environments; ten QTL clusters emerged. Eight QTLs were consistently detected across the three environments and further confirmed using a set of chromosome segment substitution lines (CSSLs) where Kasalath was used as the donor parent and Koshihikari as the recurrent parent. One and two major clusters on chromosome 6 corresponded to the Wx and Alk loci, respectively. The former was responsible for PGWC and most of the viscosity parameters, and the latter for PI and some viscosity parameters. Particularly, QTL qPI-6.1 was linked with both the Wx and Alk loci. The co-locations of QTLs for PGWC and viscosity parameters and the linkage of qPI-6.1 and qBDV-6 at the Wx locus could be largely responsible for the phenotypic correlations between these traits.  相似文献   

13.
We identified a gibberellin-induced gene frag- ment in rice elongation by using differentialdisplay(DD)of mRNA.The rice seedlingscarried the eui(elongated)gene,named Zhen- chang A,were used,which were sensitive toGA_3 and elongated rapidly after application ofGA_3. The total RNA were extracted fromseedlings treated for 0,3,8,16,and 24 hwith GA_3(20mg/L),and the RNA of 8 hwere used to conduct mRNA DD assay.A to-tal of 44 DD cDNA fragments were obtained,which were induced or inhibited by GAs from100 combinations of anchor and arbitraryprimers in DD-PCR display(Fig 1).Of the 44DD fragments,GA15b cDNA fragment in- duced by GA_3 was cloned and sequenced.Thisfragment was 673bp in length and was accept-ed by GenBank with the accession number ofAF038894.GA15b gene encodes homology ofextension-like protein,a class of structural by-droxyproline rich glycoprotein of the plant ex-  相似文献   

14.
15.
16.
17.
18.
19.
20.

Background

Cadmium (Cd) accumulation in rice followed by transfer to the food chain causes severe health problems in humans. Breeding of low Cd accumulation varieties is one of the most economical ways to solve the problem. However, information on the identity of rice germplasm with low Cd accumulation is limited, particularly in indica, and the genetic basis of Cd accumulation in rice is not well understood.

Results

Screening of 312 diverse rice accessions revealed that the grain Cd concentrations of these rice accessions ranged from 0.12 to 1.23?mg/kg, with 24 accessions less than 0.20?mg/kg. Three of the 24 accessions belong to indica. Japonica accumulated significantly less Cd than indica (p < 0.001), while tropical japonica accumulated significantly less Cd than temperate japonica (p < 0.01). GWAS in all accessions identified 14 QTLs for Cd accumulation, with 7 identified in indica and 7 identified in japonica subpopulations. No common QTL was identified between indica and japonica. The previously identified genes (OsHMA3, OsNRAMP1, and OsNRAMP5) from japonica were colocalized with QTLs identified in japonica instead of indica. Expression analysis of OsNRAMP2, the candidate gene of the novel QTL (qCd3–2) identified in the present study, demonstrated that OsNRAMP2 was mainly induced in the shoots of high Cd accumulation accessions after Cd treatment. Four amino acid differences were found in the open reading frame of OsNRAMP2 between high and low Cd accumulation accessions. The allele from low Cd accumulation accessions significantly increased the Cd sensitivity and accumulation in yeast. Subcellular localization analysis demonstrated OsNRAMP2 expressed in the tonoplast of rice protoplast.

Conclusion

The results suggest that grain Cd concentrations are significantly different among subgroups, with Cd concentrations decreasing from indica to temperate japonica to tropical japonica. However, considerable variations exist within subgroups. The fact that no common QTL was identified between indica and japonica implies that there is a different genetic basis for determining Cd accumulation between indica and japonica, or that some QTLs for Cd accumulation in rice are subspecies-specific. Through further integrated analysis, it is speculated that OsNRAMP2 could be a novel functional gene associated with Cd accumulation in rice.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号