首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》2001,69(2):163-172
Relationships are developed that describe the processes of node production, leaf appearance and senescence, and leaf size in pigeonpea in relation to temperature, plant density and maturity type. The rate of node production until flowering in relation to thermal time was found to be unaffected by season and plant density in the range of 4–33 plants m−2. Maturity type did not affect the rate of node production on the main stem or the rate of appearance of leaves on the plant. The rate of senescence of main-stem nodes in relation to thermal time was unaffected by plant density and growth duration. The functions developed in this paper can be used to predict the temporal changes in leaf area development in crop growth models.  相似文献   

2.
《Field Crops Research》1999,62(1):15-21
Total number of initiated leaves and duration from sowing to silking increases when photoperiod is increased during the photoperiod-sensitive phase in maize (Zea mays L.). Little is known, however, about possible other effects of photoperiod and incident photosynthetic photon flux density (PPFD) on rate of development and duration of life cycle. A study was undertaken to quantify effects of photoperiod and incident PPFD from sowing to the 15-leaf stage on rate of leaf appearance and duration of the grain-filling period. The short-season maize hybrid Pioneer 3902 was grown in growth cabinets from sowing to the 15-leaf stage with either (i) a 10 h photoperiod at high PPFD (650 μmol m−2 s−1), (ii) a 20 h photoperiod consisting of 10 h of high PPFD followed by 10 h of low PPFD (5–50 μmol m−2 s−1), or (iii) a 20 h photoperiod of high PPFD. From the 15-leaf stage to maturity the plants were placed under a 16 h photoperiod in a growth room. Increasing photoperiod from 10 to 20 h increased final number of initiated leaves and delayed silking but did not affect rate of leaf appearance. Doubling incident PPFD to a value similar to that under Ontario field conditions during the summer resulted in a 16% increase in rate of leaf appearance and in a significant increase in total number of initiated leaves. Differences in final number of initiated leaves and in rate of leaf appearance from sowing to the 15-leaf stage among treatments resulted in a 4-day difference in silking date between the 10 h photoperiod treatment and the two 20 h photoperiod treatments. Duration of the grain-filling period did not differ among the three treatments.  相似文献   

3.
《Field Crops Research》2005,93(1):64-73
Leaf area growth and nitrogen concentration per unit leaf area, Na (g m−2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84–6.0 g N pot−1) and five rates (0.5–6.0 g pot−1) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, Pmax, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (Na or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between Pmax and Na. The results confirm the ‘maize strategy’: leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the ‘potato strategy’ can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the ‘maize strategy’ for adaptation to N limitation.  相似文献   

4.
《Field Crops Research》2005,92(1):61-74
One of the main sources of considerable amounts of chloride to soils is irrigation water. The responses of tobacco (Nicotiana tabacum L.) to chloride are varied and inconsistent depending on the tobacco type, variety and methods of fertilization, cultivation and harvesting used. In this work, the impact of the interaction between four chloride levels (10, 20, 40, 80 mg L−1) in irrigation water and three nitrogen fertilizer forms (NO3–N 100%, NH4–N 100% and NO3–N 50%:NH4–N 50%) on growth, agronomic and chemical characteristics of Virginia tobacco was evaluated over 2 years (1999, 2000) in an outdoor pot experiment. The results showed that the adverse influence of chloride in irrigation water on plant height and number of leaves per plant was already substantial above 40 mg L−1, within 30 days after transplanting. In this period, visual toxicity symptoms of chloride appeared on the lower leaves of plants treated with ammonium nitrogen. In addition, the effect of chloride on flowering time, chlorophyll content of leaves, aboveground fresh weight of plant, total cured product yield and chemical characteristics, depended on the form of nitrogen, with nitrate nitrogen restricting the detrimental effects of chloride in irrigation water up to 40 mg L−1. The reduced yield of cured product at 80 mg L−1 was the result of the adverse effects of chloride on the leaves of the middle and upper stalk position. Leaf chloride concentration was highest in the upper leaves and increased linearly with the increase of chloride level in irrigation water at each leaf position on the stalk and this increase was more rapid as ammonium nitrogen percentage was increased. Chloride increased the concentration of reducing sugars in cured leaves at each leaf position, in all nitrogen forms and nicotine mainly in plants treated with nitrate nitrogen. The changes in total nitrogen and ash content are considered as minimal. We conclude that the optimum chloride level in irrigation water is below 20 mg L−1, whereas the level of 40 mg L−1 in combination with nitrate nitrogen fertilizers can be considered as the upper threshold to avoid adverse effects on Virginia tobacco.  相似文献   

5.
《Field Crops Research》2006,99(1):24-34
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g−1 up to beginning of seed growth, and then it declined linearly to 30 mg g−1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g−1. Stem [N] decreased from 30 mg g−1 early in the season to 8 mg g−1 in senesced stems at maturity. Pod [N] was constant (35 mg g−1), but grain [N] decreased from 60 mg g−1 early in seed growth to 43 mg g−1 at maturity. Total N accumulation ranged between 9 and 30 g m−2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g−1 where total biomass was <218 g m−2 and during early growth period, but it decreased to 0.0176 g g−1 during the later growth period when total biomass was >218 g m−2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37–72% of leaf N and 12–56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.  相似文献   

6.
《Field Crops Research》2001,69(1):41-46
The effects of two mixtures of four plant growth regulators (choline chloride, gibberellin (GA3), benzyladenine (6-BA) and NaHSO3) at 20:9:5:800 mg kg−1 (H1) and 20:42:43:2350 mg kg−1 (H3) (active ingredients), respectively, were investigated on yield and fiber quality in ramie (Boehmeria nivea (L.) Gaud.). The mixtures were sprayed over the canopy at two growth stages (10 and 20 days after the previous cut) of field-grown ramie. The treatments increased raw fiber yield by 13–18%, and improved fiber fineness by 57–349 m g−1, increased number of leaves per plant, and also improved all yield components. Treatment H1 resulted in a denser distribution, smaller diameters and greater quantity of fiber cells in stem cross-section. Physiological responses included improving leaf water status, increasing net photosynthetic rate, and decreasing electrolyte exosmosis rate.  相似文献   

7.
The research of alternative crops for biomass production for energy indicates giant reed (Arundo donax L.), widespread spontaneous plant in Mediterranean regions, among the species at high aptitude for accumulation of biomass. Within the activity of an E.U. programme (CEE FAIR CT 97-2028 “Giant reed (A. donax L.) Network. Improvement, productivity and biomass quality”, germplasm of giant reed were collected to evaluate potential production and the phenotypic and genotypic variability, the heritability in order to selecting the best genotypes.In 1997 and 1998, trials were carried out in Primosole site (Piana of Catania, sea level, 37°25′N latitude; 15°30′E longitude), utilizing rhizomes of 39 clones collected in Sicily and Calabria. The rhizomes were transplanted in springtime. Phenological (date of flowering), biometrical (stem density, stem height, number of nodes per stem, diameter and thickness of stems, weight of fresh and dry biomass of leaves, stems and inflorescence) and productive (yield) data were measured. Harvest were carried out in February 1988 and 1989.Yield of 39 clones studied was, in the average, 10.6 t ha−1 of dry matter in the first year and 22.1 t ha−1 in the second one. The clone no. 4 (Piazza Armerina) and the clone no. 20 (Capo d’Orlando) maintained their high productive aptitude in both years; they yielded respectively, 13.1 and 14.1 t ha−1 in the first year and 34.2 and 26.9 t ha−1 in the second one.The yield results positively correlated to stem density, stem weight and plant height. Four characters: biomass yield, stem weight, stem density and stem height showed a significant variance among clones without significant interaction with year. Among the eleven characters measured only yield, stem weight, stem density and stem height had moderate heritability (h2), comprised between 23 and 48% showing promise for genetic improvement.  相似文献   

8.
《Field Crops Research》2007,100(1):10-23
Timely sowing is critical for achieving high grain yields in winter cereals. However, inadequate seed-zone moisture for germination commonly delays sowing to reduce biomass and subsequent yield in semi-arid environments. Sowing deep to reach soil moisture is often avoided by growers of Rht-B1b and Rht-D1b semi-dwarf wheat as these wheat show poor emergence when sown deep. Their reduced cell elongation associated with insensitivity to endogenous gibberellins, results in shorter coleoptiles and smaller early leaf area. Alternative dwarfing genes responsive to endogenous gibberellins (e.g. Rht8) are available for use in wheat breeding. These reduce plant height without affecting coleoptile length and offer potential to select longer coleoptile wheat for deep sowing. Nine semidwarf (Rht8, Rht-B1b, and Rht-D1b) and seven tall (rht) wheat genotypes were sown at depths of 50, 80 and 110 mm at three locations in 2 or 3 years. Coleoptile lengths measured in a growth cabinet at four temperatures (11, 15, 19 and 23 °C) were strongly correlated with coleoptile length (rp = 0.77–0.79**) and plant number (rp = 0.49*–0.79**) in deep-sown plots in the field. Furthermore, differences in coleoptile length were genetically correlated with greater numbers of emerged seedlings (rg = 0.97**), shallower crown depth (−0.58**), greater seedling leaf area (0.59**) and seedling biomass (0.44*). Wheat containing the Rht-B1b or Rht-D1b dwarfing genes produced significantly (P < 0.01) shorter coleoptiles (97 mm) than both Rht8 (118 mm) and tall (117 mm) wheat. In turn, compared with emergence from 50 mm depth, the Rht-B1b and Rht-D1b wheat produced significantly fewer seedlings at 110 mm sowing depth (−62%) than either Rht8 (−41%) or tall (−37%) wheat. Effects of deep sowing early in the season were maintained with reductions in spike number and biomass at both anthesis and maturity. Kernel number was also reduced with deep sowing leading to reductions in grain yield. Over all entries, genotypic increases in plant number were associated with increases in fertile spike (rg = 0.61**) and kernel number (0.21*), total biomass (0.26*) and grain yield (0.28*). Reduction in spike number and grain yield with deep sowing was smallest for the Rht8 (−18 and −10%) and rht (−15 and −7%) wheat, and largest for the Rht-B1b/D1b (−39 and −16%) wheat. Plant height and coleoptile length were independent among Rht8 and tall wheat genotypes. This study demonstrates the importance of good seedling emergence in achieving high wheat yields, and the potential use of alternative dwarfing genes such as Rht8 in development of long coleoptile, reduced height wheat suitable for deep sowing.  相似文献   

9.
《Field Crops Research》2005,94(1):86-97
A 3-year field experiment in rainfed Vertisol was designed to study the effects of timing and splitting of N fertilizer on the efficiency of nitrogen in wheat (Triticum aestivum L.). A single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation. The experiment was designed as a randomized complete block with four blocks. At the same time, a 15N experiment was conducted within the main experiment area, with microplots, to quantify N uptake from fertilizer and soil. Mean wheat use of N fertilizer ranged from 14.1% when applied at sowing to 54.8% when applied as a top dressing at the beginning of stem elongation. The mean annual contribution of soil residual N and mineralization was 152 kg N ha−1, representing a considerable proportion of total wheat N uptake, ranging from 83.2% when N fertilizer was applied in the fall to 49.4% when it was applied at stem elongation. This would account for the poor and inconsistent response of grain yield and N efficiency indices, and for the importance of soil N in Vertisols for predicting wheat N fertilizer requirements, due to the carryover effect. Application of N fertilizer to wheat preferably as a top dressing, between tillering and stem elongation, is a strategy to be recommended from the standpoint both of the environment and of farmer returns.  相似文献   

10.
《Field Crops Research》2001,71(3):183-193
Light attenuation within a row crop such as maize is influenced by canopy architecture, which has to be defined in terms of the size, shape and orientation of shoot components. Cultural practices that improve the efficiency of light interception affect canopy architecture by modifying such components. Our objectives were to: (i) determine the nature and timing of leaf growth responses to plant population and row spacing; (ii) analyze light attenuation within fully developed maize canopies. Field experiments were conducted at Pergamino (33°56′S, 60°34′W) and Salto (34°33′S, 60°33′W), Argentina, during 1996/1997 and 1997/1998 on silty clay loam soils (Typic Argiudoll) that were well watered and fertilized. Four maize hybrids of contrasting plant type were grown at three plant populations (3, 9 and 12 plants m−2) and two row spacings (0.35 and 0.70 m). Plant population promoted larger changes in shoot organs than did row spacing. As from early stages of crop growth, leaf growth (V6–V8) and azimuthal orientation (V10–V11) were markedly affected by treatments. Modifications in shoot size and leaf orientation suggest shade avoidance reactions, probably triggered by a reduction in the red:far-red ratio of light within the canopy. An interaction between hybrid and plant rectangularity on leaf azimuthal distribution was determined, with one hybrid displaying a random azimuthal leaf distribution under most conditions. This type of hybrid was defined as rigid. The other hybrids showed modified azimuthal distribution of leaves in response to plant rectangularity, even at very low plant populations. These hybrids were defined as plastic. Once maximum leaf area index (LAI) was attained light attenuation did not vary among hybrids and row spacing for plant populations ≥9 plants m−2 (k coefficient: 0.55 and 0.65 for 9 and 12 plants m−2, respectively). A more uniform plant distribution increased light attenuation (k coefficient: 0.37–0.49) only when crop canopies did not reach the critical LAI.  相似文献   

11.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

12.
13.
《Field Crops Research》2001,69(3):267-277
The potential rate of plant development and biomass accumulation under conditions free of environmental stress depends on the amount of radiation absorption and the efficiency of utilizing the absorbed solar energy to drive photosynthetic processes that produce biomass materials. Salinity, as a form of soil and water stress, generally has a detrimental effect on plant growth, and crops such as soybean are usually sensitive to salinity. Field and greenhouse experiments were conducted to determine soybean growth characteristics and the relative impact of salinity on radiation absorption and radiation-use efficiency (RUE) at a whole plant level. Cumulative absorption of photosynthetically active radiation (∑APAR) was estimated using hourly inputs of predicted canopy extinction coefficients and measured leaf area indices (LAI) and global solar radiation. On 110 days after planting, soybean plants grown under non-saline conditions in the field accumulated 583 MJ ∑APAR m−2. A 20% reduction in ∑APAR resulted from growing the plants in soil with a solution electrical conductivity (EC) of about 10 dS m−1. Soybeans grown under non-saline conditions in the field achieved a RUE of 1.89 g MJ−1 ∑APAR for above-ground biomass dry materials. The RUE reached only 1.08 g MJ−1 ∑APAR in the saline soil, about a 40% reduction from the non-saline control. Salinity also significantly reduced ∑APAR and RUE for soybeans in the greenhouse. The observed smaller plant and leaf sizes and darker green leaves under salinity stress were attributed to reductions in LAI and increases in unit leaf chlorophyll, respectively. Reductions in LAI exceeded small gains in leaf chlorophyll, which resulted in less total canopy chlorophyll per unit ground area. Analyzing salinity effect on plant growth and biomass production using the relative importance of ∑APAR and RUE is potentially useful because APAR and total canopy chlorophyll can be estimated with remote sensing techniques.  相似文献   

14.
The dynamics of flowering and pod set of soybean (Glycine max (L.) Merrill) was evaluated in two greenhouse experiments with a girdled node system. Plants (cv. Elgin 87) were grown in 3.0 l pots filled with a soil–vermiculite mixture (2:1, v/v) and the main stem below node seven (node one was node with unifolioliate leaves) (one-node treatment) or node five (three-node treatment) was girdled when the first flower opened at node seven. The main stem above node seven was removed as were the leaves at nodes five and six on the three-node treatment. Flower production, from daily counts of open flowers, followed a bi-modal distribution with the first cohort representing flowers on the main raceme while the second cohort contained flowers from sub-branches. Pods ≥10 mm long were marked with acrylic paint and the color was changed every 2 or 3 days to define at maturity when the surviving pods were initiated. The initiation of surviving pods followed the same pattern as flowers, and pods in the first cohort had nearly 100% survival while second cohort generally had survival rates <60%. Initial development of pods in the second cohort coincided with lower concentrations of stem sugars and a rapid increase in pods with ≥3 mm seeds. The three-node treatment had more flowers and pods in the first cohort and more pods at maturity. Utilization of large amounts of assimilate by rapidly growing early pods may contribute to the high levels of abortion of late developing flowers and pods. Thus, synchronous flowering may increase pod set by decreasing this competition between early and late developing pods.  相似文献   

15.
《Field Crops Research》2001,69(3):227-236
Grindelia chiloensis (Corn.) Cabr. is a shrub native to Patagonia, Argentina and can accumulate as much as 25% resin in its leaves, with net primary productivity between 90 and 170 g per year per plant when growing in native stands. Under cultivation, 67.4 g of resin per plant have been produced (about 2.24 Mg ha−1). The objective of this study was to assess the effect of irrigation regime on biomass and resin production on G. chiloensis. In order to achieve this objective, four irrigation treatments were performed during 1996–1997 and 1997–1998: (i) weekly irrigation (7d), (ii) irrigation at 20-day intervals (20d), (iii) irrigation at 40-day intervals (40d), (iv) non-irrigated (N-I). It was found that the intermittent water supply at 40d was sufficient to promote canopy development, and increase water use efficiency (WUE) and resin production per plant (RP) with highest resin production (approximately 5.12 Mg ha−1 in 1997). In order to achieve high levels of RP, above ground biomass was maximized at the expense of a reduction in WUE. A concomitant increase in WUE (at the leaf level; WUEL) and leaf resin content with water stress and time was found. This result supports the hypothesis that epicuticular resin could influence water transpiration (E), as it represents an additional barrier to gas diffusion from the epidermis and through the stomatal pores.  相似文献   

16.
Steam-distilled dill (Anethum graveolens L.) oil yield and composition varies with the relative amount of vegetative and reproductive tissue and the maturity of the plant material distilled. The characteristics of the dill plant at harvest may be manipulated through production practices. A study was conducted in western Montana to determine the effects of crop maturity and plant density on dill plant growth and on oil production and quality. The crop was harvested at intervals from early fruit formation through fruit pigmentation. Oil yield declined with fruit maturity over the sampling period, particularly after the completion of fruit ripening and “seed” shatter. The carvone content of the oil increased and α-phellandrene decreased as the plant progressed from flowering to fruit ripeness. The highest oil yields with maximum carvone levels were obtained when most of the fruits on primary umbels were pigmented but had not become dry and fully mature. The balance between carvone and phellandrene in the oil was a function of the proportion of mature umbel tissue to vegetative and immature umbel tissue. Seeding rates of 2.2–17.9 kg ha−1 resulted in average plant densities of 100–474 plants m−2. Total biomass production and oil yield were generally unaffected by plant density, but plant population influenced plant architecture and oil composition. Plants grown at low density had a more extensive development of umbellate fruiting structures and a lower proportion of leaf and stem tissue than did plants at high density. Carvone was higher in oil from widely spaced plants, while phellandrene, α-pinene, and dill ether (3,9-epoxy-1-p-menthene) were lower. Harvest date and plant density affected oil composition in a complementary manner. An early harvest or high plant density is preferable if herbaceous oil characteristics are desired, while a late harvest or low plant density is suitable when growing dill for seed or for a high-carvone oil.  相似文献   

17.
《Field Crops Research》1999,63(1):19-34
Two modelling approaches were used to quantify photoperiod and temperature responses of time from emergence to visible flower buds in nine quinoa (Chenopodium quinoa Willd.) cultivars. The first, non-interactive model, considers temperature and photoperiod responses as independent, and the threshold photoperiod, critical photoperiod, and base temperatures as constants. The second, interactive model, considers these attributes as variable, and allows for interaction between photoperiod and temperature responses. Controlled-environment experiments with a factorial combination of temperature and photoperiod provided information on responses, and data from field experiments were utilized in tests of the predictive capacity of the models.The two models were very similar in their goodness of fit and predictive capacity, but testing revealed that some assumptions about the interactive model were not fulfilled, whereas the non-interactive model is more consistent with the data. Both the models failed to predict dates of visible flower buds when average temperatures during the phase were >20°C; it is proposed that interaction between irradiance receipt and high temperature in controlled environments result in lower optimum temperatures there than in the field. Differences between field data and predicted values were eliminated when predictions were recalculated assuming no optimum for the temperature response.All nine cultivars examined are short-day plants. A juvenile sub-phase was observed in the six cultivars for which it was tested; and its duration was negatively associated with the latitude of origin of the lines (R2 = 0.9, p < 0.05). Photoperiod sensitivity was negatively associated with the latitude of origin of the lines (R2 = 0.55, p < 0.05) and positively associated with duration of the basic vegetative phase (minimal time between emergence and visible flower buds) (R2 = 0.55, p < 0.05) using the non-interactive model. Photoperiod and temperature response parameters were not significantly associated with the latitude of origin for the interactive model (p > 0.05).  相似文献   

18.
《Field Crops Research》1998,58(3):187-196
Shallow sowing and in ridges are common practices in the west-Asia north-Africa (WANA) region in rain-fed cereal farming. Soil water is often limited in the top soil layer at the optimum sowing time, and stands of wheat may be established poorly and have low yields unless sowing is delayed until later rainfall. Sowing more deeply may enhance establishment due to higher soil water content in the seed zone, leading to better germination and emergence of seedling. Otherwise, a grain yield reduction will occur due to the delay in sowing after the optimum time. In a 2-year field experiment at Tel Hadya, Syria, the optimum time of sowing for rainfed cereals was between early November and early December. The establishment of plants sown 3, 9, and 12 cm deep and in ridges was poorer than that of plants sown at 6 cm, causing reductions in tiller numbers, leaf area index (LAI) and yield. Grain yield from ridge planting was 40% lower on average than from sowing at 6 cm. At this depth, yields declined by 5% per week with delay in sowing after the optimum time at 6 cm depth, but by lesser amounts for other depths, and varied little for the ridge method of planting. To maximize yield in this environment, i.e., 2.5 t ha−1, it is important that crops are sown early at the appropriate depth, even when pre-sowing rainfall is less than enough to wet the profile fully.  相似文献   

19.
《Field Crops Research》2006,95(2-3):171-181
The importance of root systems in acquiring water has long been recognized as crucial to cope with drought conditions. This investigation was conducted to: (i) evaluate the variability on root length density (RLD) of chickpea in the vegetative growth stage; (ii) estimate the effect of RLD on seed yield under terminal drought conditions; and (iii) set up a procedure to facilitate the screening of chickpea genotypes with large RLD. Twelve diverse chickpea genotypes were grown in tall PVC cylinders with two different soil water treatments in 2000 and 2001, and in field under water deficit conditions during 2000/2001 and 2001/2002. In field trials, the mean RLD at 35 days after sowing showed a significant positive correlation with seed yield in both years. Similarly, the RLD in the 15–30 cm soil depth had significant positive effects to the seed yield in both years. The importance of the root trait was particularly relevant in 2001/2002, a more severe drought year, when the RLD in deeper soil layer, 30–60 cm depth, showed a significant positive relationship with seed yield. Also, the RLD at deeper soil layer, 30–60 cm depth, was higher in 2001/2002 than in 2000/2001, in particular in tolerant genotypes. The PVC cylinder trials were set up to facilitate the screening of chickpea genotypes with large RLD. RLD of plants grown in cylinders with 70% field capacity was correlated with RLD in the field trials (r = 0.731; p = 0.01). This work highlights the importance of roots in coping with terminal drought in chickpea. The cylinder system offers a much easier procedure to screen chickpea genotypes with large RLD.  相似文献   

20.
Reduced plant biomass and increased plant-to-plant variability are expected responses to crowding in monocultures, but the underlying processes that control the onset of interplant interference and the establishment of hierarchies among plants within a stand are poorly understood. We tested the hypothesis that early determined plant types (i.e. dominant and dominated individuals) are the cause of the large variability in final kernel number per plant (KNP) usually observed at low values of plant growth rate (PGR) around silking in maize (Zea mays L.). Two hybrids (DK696 and Exp980) of contrasting response to crowding were cropped at different stand densities (6, 9 and 12 plants m−2), row spacings (0.35 and 0.70 m), and water regimes (rainfed and irrigated) during 1999/2000 and 2001/2002 in Argentina. The onset of interplant competition started very early during the cycle, and significant differences (P<0.05) in estimated plant biomass between stand densities were detected as soon as V4–6 (DK696) and V6–7 (Exp980). Plant population and row spacing treatments did not modify the onset of the hierarchical growth among plants, but did affect (P<0.02–0.08) the dynamic of the process. For both hybrids, the rate of change in relative growth between plant types was larger at 9 and 12 plants m−2 (ca. 0.12 g/g per 100 °C day) than at 6 plants m−2 (ca. 0.07 g/g per 100 °C day). For all treatments, the largest difference in estimated shoot biomass between plant types took place between 350 (V7) and 750 °C day (V13) from sowing, and remained constant from V13 onwards. Dominant plants always had more kernels per plant (P<0.05) than the dominated ones, but differences between plant types in PGR around silking were significant (P<0.05) only at 12 plants m−2. Our research confirmed the significant (P<0.01) curvilinear response of KNP to PGR around silking, but also determined a differential response between plant types: the mean of residual values were significantly (P<0.01) larger for dominant than for dominated individuals. Estimated ear biomass at the onset of active kernel growth (R3) reflected the variation in KNP (r2≥0.62), and was significantly (P<0.01) related to estimated plant biomass at the start of active ear growth (ca. V13). This response suggested that the physiological state of each plant at the beginning of the critical period had conditioned its reproductive fate. This early effect of plant type on final KNP seemed to be exerted through current assimilate partitioning during the critical period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号