首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Field Crops Research》1998,58(1):35-53
A field experiment was conducted in the dry season at Los Baños, Philippines, to assess the differences in grain yield and N utilization of 10 medium-duration (119±4 days after seeding [DAS]) genotypes and 10 long-duration (130±4 DAS) ones with varying acquisition and usage of soil and fertilizer N. Significant differences among genotypes were observed in grain yield and N uptake, efficiency and partitioning parameters (physiological N use efficiency [PNUE], agronomic N use efficiency [ANUE], apparent recovery [AR], partial factor productivity of applied N [PFPN], N productivity index [NPI], and N harvest index [NHI]). The N-efficient genotypes that produced high grain yield at both low and high levels of N were IR54790-B-B-38, BG380-2, BG90-2 (medium-duration), and IR3932-182-2-3-3-2, IR54853-B-B-318, and IR29723-88-2-3-3 (long-duration). Inefficient genotypes that produced low yields at low N levels but responded well to N application were IR58125-B-B-42, IR49457-33-1-2-2-2, and BG34-8 (medium-duration), and IR8192-200-3-3-1-1, IR21848-65-3-2-2, and PR106 (long-duration). IR20 (medium) and Palawan (long-duration) were N-inferior genotypes giving low yields at both low and high N levels. Increase in grain yield was highly correlated with N uptake (r2=0.75**). The grain yield-N uptake relationship for individual genotypes indicated significant differences in slope and in the yield obtained with soil N (GY0). Differences in GY0 were due to genotypic variation in N uptake and efficiency of use. NHI was related to both N uptake and use efficiency. NPI, which integrated both GY0 and PNUE, provided a better ranking of genotypes. The performance of efficient and inefficient genotypes over a range of soil and fertilizer N supply was consistent over three seasons of trials.  相似文献   

2.
Dense planting could be a feasible method for reducing nitrogen (N) application rates without compro-mising rice grain yield in northeast and central China. It ...  相似文献   

3.
Partial factor productivity (Pfp) from N fertilizer is the ratio of grain yield to the applied N rate. It is a parameter that includes contributions to N-use efficiency from both indigenous N of the soil-floodwater system and applied N. Experiments were conducted to quantify Pfp and the contributions of indigenous and applied N to the N efficiency of lowland rice systems. Enormous variation was found in the indigenous N supply among farmers' fields in two rice-growing domains of Central Luzon, Philippines. Fertilizer-N rates farmers applied to these fields also varied greatly, but there was no relationship between applied N rate and indigenous N supply estimated by rice N uptake. Likewise, in the same treatment plots of a long-term experiment, season-to-season variation in the contributions of indigenous and applied N were large and reflected differences in yield and N uptake in plots without applied N. These results indicate that the ability to adjust the quantity of applied N in relation to variation in the indigenous N supply is as important to increased Pfp as are the timing, placement and source of applied N. We conclude that the indigenous N supply of lowland rice systems is highly variable among fields with similar soil types and in the same field over time, that field-specific N management is required to respond to this variability, and that Pfp is a useful parameter for identifying constraints to improved fertilizer-N-use efficiency in farmers' fields.  相似文献   

4.
Breeding for improved grain yield (GY) and grain nitrogen use efficiency (NUE) is an important objective of many rice breeding programs. A better understanding of the genetics of these two complex traits and their genetic relationship is required for more efficient breeding. This study reports the results of a linkage mapping study conducted for these two traits using 127 rice recombinant inbred lines (RILs) derived from the cross of Zhanshan 97/Minghui 63. Phenotypic data were collected under two nitrogen conditions in 2006 and 2007. For NUE, four and six QTLs were identified in 2006 and 2007, respectively. These QTLs were on chromosomes 1, 2, 6, 7 and 11. For GY, nine and five QTLs were detected on chromosomes 1, 2, 7 and 11 in 2006 and 2007, respectively. The phenotypic and genetic correlations between NUE and GY are positive and highly significant. Four genomic regions, including C86-C2340 on chromosome 1, RZ599-R1738 on chromosome 2, RZ471-C1023 on chromosome 7 and R3203-RM20a on chromosome 11, were found to contain QTLs for both NUE and GY. The effects of the co-located QTLs were in the same direction for NUE and GY, providing a genetic basis for the observed positive genetic correlation between the two traits. These genomic regions might be explored for the simultaneous improvement of NUE and GY in breeding.  相似文献   

5.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

6.
《Field Crops Research》2006,97(1):53-65
In Northern China, high-yielding aerobic rice varieties are released to farmers to grow rice as a supplementary-irrigated upland crop to cope with water scarcity. If the key factors contributing to the high yield of these varieties are understood, rapid advancements can be made in developing aerobic rice varieties for water-scarce environments in other parts of Asia. In 2001–2002, we conducted experiments with aerobic varieties HD502 and HD297 and lowland variety JD305 under aerobic and flooded conditions. Five irrigation treatments were implemented in aerobic soil to create different soil moisture regimes. Under flooded conditions, all three varieties had comparable radiation use (RUE) efficiencies of 2.09–2.26 g dry matter (DM) MJ−1 in 2001 and 2.40–2.53 g DM MJ−1 in 2002, and harvest indices (HI) of 0.38–0.40 in both years. Differences in yield among the varieties are explained by differences in growth duration. Under aerobic conditions, mean RUE over water treatments dropped to 1.70–1.72 g DM MJ−1 for all three varieties in 2001, and to 1.62 for HD502, 1.71 for HD297 and 1.86 for JD305 in 2002. With increasing dryness of the soil, the amount of intercepted light decreased at about the same rate for all varieties, but RUE decreased faster in the lowland than in the two aerobic varieties. The HI of JD305 decreased dramatically with increasing soil dryness and reached values of 0.19–0.21 in 2002. In contrast, the HI of both aerobic varieties remained relatively high under aerobic conditions, with lowest values of 0.27–0.28 for HD297 and 0.34–0.35 for HD502 in 2002. The relatively high HI of the aerobic varieties compensated for their relatively short growth duration so that their yields were higher than that of JD305 in all treatments. A high percentage filled grains is a key factor contributing to the high HI of the aerobic varieties under aerobic conditions.  相似文献   

7.
8.
Nitrogen (N) fertilization plays a central role for improving yield in wheat and high N use efficiency (NUE) is desired to protect ground and surface waters. Several studies showed that sulfur (S) fertilization may increase NUE, but no attempts have been made to explain whether this increase is due to greater recovery efficiency (RE), an enhanced internal efficiency (IE) or by an improvement of both efficiencies. The aim of this study was to analyze the effects of different N and S fertilizer rates, and their interaction on N uptake, its partition at maturity, NUE and its main components. Field experiments were carried out during two consecutive growing seasons in the Argentinean Pampas using a single bread-wheat genotype grown under different combinations of N and S fertilizer rates. Additional experiments were performed in farmer fields using N and S fertilization evaluating different genotypes in order to analyze the components of NUE in other environmental conditions. Plant N uptake increased linearly in response to N addition until rates of ca. 80 kg N ha−1. Sulfur addition showed no effect at the lowest N fertilizer rate, but N uptake was increased when S was applied at the highest N rate, revealing a synergism between both nutrients. At the lowest S rate RE was 42%, and increased to 70% when S fertilizer was added. No changes in IE in response to S fertilization were observed. These results were also observed in farmer field experiments, in genotypes that showed different IE. This study showed that S addition increased NUE mainly by increasing the N recovery from the soil. Thus, the concurrent management of N and S is important for reducing the potential pollution of residual soil nitrate by increasing N recovery from the soil while sustaining high nitrogen use efficiency.  相似文献   

9.
Polymer-coated urea (PCU) is an important alternative to uncoated urea for improving nitrogen (N) use efficiency (NUE). Only a few studies discuss their utility for lowland rice systems. A 2-year field study was conducted to examine if nitrogen loading is reduced in lowland rice ecosystem by using mixture of PCU and uncoated urea without sacrificing yield. Five treatments involving two mixtures of PCU with 50 and 70% coated urea each at 70 and 50% of recommended dose (80 kg N ha−1) and one with uncoated urea at 100% recommended dose were laid out in a completely randomized design. Selected plant growth parameters and plant available N contents (NH4–N plus NO3–N) in soil solution and ponded water were measured over a period of 65 days after transplanting. Results showed no significant difference for vegetative and yield parameters among different treatments suggesting that treatments receiving lower doses of nitrogen exhibited higher NUE. Analysis of partial factor of productivity (PFP) for N suggested that the total N dose may be reduced by 50% using mixtures of coated and uncoated urea. Similarly, statistically similar PFP values for treatments receiving the same amount of total N for both years and for both total N dose suggested that the proportion of coated urea may also be reduced to as low as 50% without sacrificing yield. Correlation analysis on nitrogen contents in ponded water and soil solutions and the analysis of water productivity and PFP showed that soil water regime could also significantly influence the nitrogen status in soil even when PCU are applied. In turn, both the water regime and N contents in soil ultimately influences grain yield. Although the constant release of N from coated fertilizer ensures adequate N supply for plant uptake, it may not completely avoid N deficit condition especially during heavy rainfall. Analysis of the developed production function suggested that 55–65% polymer coating and about 100 cm total water input may be ideal for achieving maximum yield. The production function was developed for PCU treatments using data observed in treatments receiving 70% recommended N dose. The range of water input in these treatments was 86.5–174.0 cm.  相似文献   

10.
Modern potato cultivars (Solanum tuberosum L.) require high rates of fertilizer nitrogen (N). This practice is costly and can pose a serious threat to surface and groundwater. Previous evaluation of wild potato germplasm demonstrated the existence of species capable of producing high total biomass under low N conditions, with the ability to make maximum use of added N. Therefore, a two-year field experiment was conducted in 1994 and 1995 to investigate the response of selected wild potato accessions and their hybrids with the haploid USW551 (USW) to low and high N environments. The haploid USW and cultivars Russet Burbank, Red Norland, and Russet Norkotah were also included in the study. Uniform propagules and seedlings from the variousSolanum species were transplanted to a Hubbard loamy sand (Udic Haploboroll) at Becker, Minn. and were subjected to two N treatments: 0 and 225 kg N ha-1. At harvest, total dry biomass of wild and hybrid potato germplasm was equal to or higher than that of the cultivars. However, cultivar biomass partitioning was 1% to roots, 15% to shoots, 0% to fruits, and 84% to tubers, whereas wild potato species partitioned 18% to roots plus nontuberized stolons, 52% to shoots, 23% to fruits, and only 7% to tubers. Hybrids were intermediate, allocating 9% of their biomass to roots plus nontuberized stolons, 39% to shoots, 14% to fruits, and 38% to tubers. Nitrogen use efficiencies for many of the species and crosses were comparable to that for Russet Burbank and greater than those for Red Norland and Russet Norkotah. Of the wild species tested,S. chacoense accessions had the highest biomass accumulation and N uptake efficiencies and may be the best source of germplasm for improving NUE in a potato breeding program.  相似文献   

11.
ABSTRACT

In sub-Saharan Africa (SSA), rice production from smallholder farms is challenged because of a lack of fertilizer inputs and nutrient-poor soils. Therefore, improving nutrient efficiency is particularly important for increasing both fertilizer use and rice yield. This review discusses how to improve the return from fertilizer input in terms of agronomic N use efficiency (AEN), that is, the increase in grain yield per kg of applied N, for rice production in SSA. The AEN values we summarized here revealed large spatial variations even within small areas and a certain gap between researcher-led trials and smallholder-managed farms. Experimental results suggest AEN can be improved by addressing spatial variations in soil-related factors such as P, S, Zn, and Si deficiencies and Fe toxicity in both irrigated and rainfed production systems. In rainfed production systems, differences in small-scale topography are also important which affects AEN through dynamic changes in hydrology and variations in the contents of soil organic carbon and clay. Although empirical evidence is further needed regarding the relationship between soil properties and responses to fertilizer inputs, recent agricultural advances have generated opportunities for integrating these micro-topographical and soil-related variables into field-specific fertilizer management. These opportunities include UAV (unmanned aerial vehicle) technology to capture microtopography at low cost, database on soil nutrient characteristics at high resolution and more numbers of fertilizer blending facilities across SSA, and interactive decision support tools by use of smartphones on site. Small-dose nursery fertilization can be also alternative approach for improving AEN in adverse field conditions in SSA.

ABBREVIATIONS: AEN: agronomic nitrogen use efficiency; FISP: farm input subsidy program; VCR: value cost ratio; SOC: soil organic carbon; SSA: sub-Saharan Africa; UAV: unmanned aerial vehicle  相似文献   

12.
Unbalanced and excessive use of N-fertilizers causes environmental pollution, lodging of plants and increased pest pressure, in addition to increased cost to farmers from excessively applied fertilizers and pesticides. N application at the right time and in right amount is critical for healthy plant and environment. Rice leaf color intensity is directly related to leaf chlorophyll content and leaf nitrogen status. The concept for the use of leaf color as an indicator to apply N in rice was crystallized during 1990s. The International Rice Research Institute and the Philippine Rice Research Institute developed a leaf color chart (LCC) that helps guide farmers for real-time nitrogen management in rice farming. The technology is inexpensive, and easily affordable by most resource poor rice farmers. In 2003 we initiated a farmer-participatory research to validate real-time N management in rice by the use of LCC in West Bengal state of India. After 3 years of validation research, a survey was conducted to assess the adoption and impact of LCC. The survey was conducted in both intervention and adjacent control villages and data were collected from 20% farm households selected randomly. In this paper, we report findings of the study on the determinants of adoption of LCC, and its effect on fertilizer and pesticides use.  相似文献   

13.
《Field Crops Research》2005,92(1):17-33
The inclusion of grain legumes in rainfed lowland rice farming systems provides an opportunity to increase food production, household income, and human nutrition of impoverished rice farmers in Asia. We examined the effect of rice establishment method on the performance of wet season rice (Oryza sativa L.) and post-rice crops of either chickpea (Cicer arietinum L.) or moong [Vigna radiata (L.) Wilczek] on an Udic Haplustalf in the drought-prone, rainfed lowlands of eastern India. Rice was either direct seeded in lines on moist soil immediately after the onset of wet season rain or transplanted after sufficient rainwater accumulated for soil submergence. Crop establishment method had no effect on rice performance in a season (2001) with normal rainfall. In a drought season (2002), direct seeding resulted in mean rice grain yield of 2.3 t ha−1, whereas the transplanted rice crop failed. The agronomic efficiency of N fertilizer applied to direct-seeded rice was comparable for the 2 years (18 and 24 kg grain per kg N applied). Topsoil inorganic N was markedly higher following chickpea and moong than following a post-rice fallow. Direct-seeded rice had higher yield and accumulation of N following a post-rice legume than following fallow, but transplanted rice derived no such benefit from the legume. Direct-seeded rice was established 1–2 months before transplanted rice, and direct-seeded rice matured before transplanted rice by 8 days in the favorable season and by 26 days in the drought season. The soil nitrate present after legumes and fallow rapidly disappeared, presumably by denitrification, following the onset of rains and soil flooding prior to transplanting. A portion of this accumulated soil nitrate was taken up by the direct-seeded rice before it could be lost. But transplanted rice did not benefit from this inorganic N derived from legumes because virtually all soil nitrate was lost before transplanting. Direct seeding of rice ensured better use of residual and applied N, reduced risk due to drought, and favored intensification with post-rice legumes in drought-prone lowland systems.  相似文献   

14.
15.
Background: Nitrogen(N) is a required macronutrient for cotton growth and productivity. Excessive N fertilizers are applied in agriculture for crop yield maximization, which also generates environmental pollution. Improving crop N use efficiency(NUE) is the most economical and desirable way of reducing fertilizer application and environmental pollution. NUE has been an important issue in cotton. So far there is no report on cotton NUE improvement via transgenic approach. Nin-like proteins(NLP) a...  相似文献   

16.
Water and nutrient availability are two major constraints in most rice-based rainfed shallow lowland systems of Asia. Both stresses interact and contribute to the low productivity and widespread poverty in this environment. The objective of this study was to improve the understanding of interaction between the two factors and to identify varietal characteristics beneficial for productivity in a water- and nutrient-limited rice environment. For this purpose, we screened 19 rice genotypes adapted to different rice environments under two water and two nutrient treatments during the wet season of 2004 and 2005 in southern Luzon, Philippines. Across all genotypes tested and in comparison with the irrigated control, rainfed conditions reduced grain yield of the treatment without N application by 69% in 2004 and by 59% in 2005. The mean nitrogen fertilizer response was highest in the dryer season of 2004 and the rainfed treatment, indicating that water stress had no effect on fertilizer response. Nitrogen application reduced the relative yield loss to 49% of the irrigated treatment in 2004 and to 52% of the irrigated treatment in 2005. Internal efficiency of N (IEN) and recovery efficiency of applied N (REN) were significantly different between genotypes, but were not affected by water availability (REN) or by water and nutrient availability (IEN). In contrast, grain yield and total N uptake were affected by cultivar, N and water availability. Therefore, germplasm for rainfed environments should be screened under conditions of limited and good nitrogen and water supplies. The four best cultivars, CT6510-24-1-2, IR55423-01, IR72, and IR57514-PMI5-B-1-2, performed well across all treatments and both years. Except for IR72, they were all characterized by medium height, medium duration, high early vigor, and a moderate level of drought tolerance. This combination of characteristics seems to enable the optimal use of limited water and nutrient resources occurring in many shallow rainfed lowlands. We also concluded that moderate drought stress does not necessarily affect the response to moderate N rates, provided that drought does not induce high spikelet sterility and that fertilizer N is properly managed.  相似文献   

17.
Eight field-plot experiments were carried out on established grassland swards between 1984 and 1988 to examine the effects of date and rate of application of calcium ammonium nitrate (CAN) on herbage dry matter (DM) yield and apparent efficiency of nitrogen (N) use at first-cut silage.
CAN application significantly increased ( P <0 ·001) the mean yields of herbage and N uptakes by herbage in all experiments. Herbage yields were similar ( P > 0·05) with N rates of 100 kg ha−1, 125 kg ha−1 or 150 kg ha−1 in five experiments but in the other three there were increases above 100 kg ha−1. Date of N application had a significant effect on DM yield in three experiments; this effect was inconsistent for both single and split dressings. Lower production was associated with reduced uptake of N, a trend that primarily reflected lower DM yields and not wide herbage N content variation.
It is concluded that selection of the date on which to apply fertilizer N in early spring to obtain optimum herbage yields at first-cut silage often required little precision. The use of fertilizer N rates >100 kg ha−1 should be questioned where there are likely to be appreciable quantities of available N derived from non-fertilizer sources.  相似文献   

18.
Groundnut as a pre-rice crop is usually harvested 1–2 months before rice transplanting. During this lag phase much of N in groundnut residues could be lost due to rapid N mineralization. Mixing of abundantly available rice straw with groundnut residues may be a means for reducing N and improve subsequent crop yields. The objectives of this experiment were to investigate the effect of mixing groundnut residues and rice straw in different proportions on (a) growth and yield of succeeding rice, (b) groundnut residue N use efficiency and (c) N lost (15N balance) from the plant–soil system and fate of residue N in soil fractions. The experiment consisted of six treatments: (i) control (no residues), (ii) NPK (at recommended rate, 38 kg N ha−1), (iii) groundnut residues 5 Mg ha−1 (120 kg N ha−1), (iv) rice straw 5 Mg ha−1 (25 kg N ha−1), (v) 1:0.5 mixed (groundnut residues 5 Mg: rice straw 2.5 Mg ha−1), and (vi) 1:1 mixed (groundnut residues 5 Mg: rice straw 5 Mg ha−1). After rice transplanting, samples of the lowland rice cultivar KDML 105 were periodically collected to determine growth and nutrient uptake. At final harvest, dry weight, nutrient contents and 15N recovery of labeled groundnut residues were evaluated.  相似文献   

19.
The overuse of nitrogen(N) fertilizer in fields has increased production costs and raised environmental concerns. Increasing the N use efficiency(NUE) of rice varieties is crucial for sustainable agriculture.Here we report the cloning and characterization of OsNPF3.1, a gene that controls rice NUE. An amino acid mutation in the OsNPF3.1 coding region caused different NUEs in wild and cultivated rice. OsNPF3.1,which is expressed mainly in the aerial parts of rice, also affects rice plant height, ...  相似文献   

20.
To compare N uptake and use efficiency of rice among different environments and quantify the contributions of indigenous soil and applied N to N uptake and use efficiency, field experiments were conducted in five sites in five provinces of China in 2012 and 2013. Four cultivars were grown under three N treatments in each site. Average total N uptake was 10–12 g m?2 in Huaiji, Binyang, and Haikou, 20 g m?2 in Changsha, and 23 g m?2 in Xingyi. Rice crops took up 54.6–61.7% of total plant N from soil in Huaiji, Binyang, and Haikou, 64.3% in Changsha, and 63.5% in Xingyi. Partial factor productivity of applied N and recovery efficiency of applied N in Changsha were higher than in Huaiji, Binyang, and Haikou, but were lower than in Xingyi. Physiological efficiency of soil N and fertilizer N were lower in Changsha than in Huaiji, Binyang, and Haikou, while the difference in them between Changsha and Xingyi were small or inconsistent. Average grain yields were 6.5–7.5 t ha?1 (medium yield) in Huaiji, Binyang, and Haikou, 9.0 t ha?1 (high yield) in Changsha, and 12.0 t ha?1 (super high yield) in Xingyi. Our results suggest that both indigenous soil and applied N were key factors for improving rice yield from medium to high level, while a further improvement to super high yield indigenous soil N was more important than fertilizer N, and a simultaneous increasing grain yield and N use efficiency can be achieved using SPAD-based practice in rice production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号