首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

2.
3.
4.
5.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

6.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

7.
《Field Crops Research》2005,93(1):64-73
Leaf area growth and nitrogen concentration per unit leaf area, Na (g m−2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper reports on the effect of N limitation on leaf area production and photosynthetic capacity in maize, a C4 cereal. Maize was grown in two experiments in pots in glasshouses with three (0.84–6.0 g N pot−1) and five rates (0.5–6.0 g pot−1) of N. Leaf tip and ligule appearance were monitored and final individual leaf area was determined. Changes with leaf age in leaf area, leaf N content and light-saturated photosynthetic capacity, Pmax, were measured on two leaves per plant in each experiment. The final area of the largest leaf and total plant leaf area differed by 16 and 29% from the lowest to highest N supply, but leaf appearance rate and the duration of leaf expansion were unaffected. The N concentration of expanding leaves (Na or %N in dry matter) differed by at least a factor 2 from the lowest to highest N supply. A hyperbolic function described the relation between Pmax and Na. The results confirm the ‘maize strategy’: leaf N content, photosynthetic capacity, and ultimately radiation use efficiency is more sensitive to nitrogen limitation than are leaf area expansion and light interception. The generality of the findings is discussed and it is suggested that at canopy level species showing the ‘potato strategy’ can be recognized from little effect of nitrogen supply on radiation use efficiency, while the reverse is true for species showing the ‘maize strategy’ for adaptation to N limitation.  相似文献   

8.
9.
Premature ripening (PR) is one of the most important diseases of sunflower in France since the 90s. Previous results indicated that girdling canker of the stem base, caused by Phoma macdonaldii was its primary cause but elucidation of critical environmental factors involved is crucial for better control of the disease. A field study was conducted in three contrasting cropping seasons (2006–2008) and investigated the effect of N fertilization (0, 75 and 150 kg N ha?1) and water regime (rainfed, irrigated) on two cultivars with artificial inoculation (AI) and natural infection (NI). Disease assessment was recorded weekly to calculate the area under disease progress curve (AUDPC) and the final percentage of PR plants. Data showed that high levels of N fertilization led to significantly (P < 0.05) more PR than non-fertilization. Water deficit conditions were significantly (P < 0.05) involved in disease severity, and AUDPC and PR were increased when dry conditions were associated with high N supply. This was true for two cultivars which differed in their susceptibility to the disease but cv. Heliasol RM was significantly (P < 0.05) more affected than cv. Melody, partially resistant to PR. Despite contrasting weather patterns, these results demonstrated a clear role of crop management and environmental conditions on the incidence and severity of stem base attacks responsible for the PR syndrome. These findings suggest that sunflower crop husbandry should be adapted to minimize premature ripening induced by P. macdonaldii.  相似文献   

10.
《Field Crops Research》1999,63(3):237-246
Using data from large, grower-managed fields we investigated the variation in yield of dryland soybean in an area with low and variable summer rainfall, and soils that are variable in depth and poor in phosphorus (P). First, using data from unfertilised, wide-row (0.7 m) crops grown under standard management between 1989 and 1992 (Series 1), we quantified the relationship between yield and W, a rainfall-based estimate of water availability during the period of pod and grain set. Separate functions were established for deep (depth  1 m) and shallow soils (0.75 m  depth  0.5 m). Second, we partially tested these functions using two independent data sets (Series 2 and 3). Third, we evaluated the effects on yield of large (18 kg P ha−1, Series 4) or moderate doses of P fertiliser (8–12 kg P ha−1) in narrow-row crops (0.35 m, Series 5). To investigate water × management interaction we (i) calculated ΔY, the difference between actual yield in Series 4 and 5 and yield calculated with the functions derived from Series 1, and (ii) tested the association between ΔY and actual W. In a set of 24 crops (Series 1), yield varied between 2.1 and 3.1 t ha−1 in deep soils and between 1.3 and 2.6 t ha−1 in shallow soils; non-linear functions described fairly well, the response of yield to W. Fertilisation with 18 kg P ha−1 increased yield by 0.6 t ha−1 irrespective of water availability. The combination of narrow rows and a moderate dose of fertiliser increased yield in 73% of crops in deep soil but only in 53% of crops in shallow soil. There was a positive association between ΔY and W in deep soil but no relationship between these variables in shallow soil. Yield responses to management were thus differentially affected by rainfall in deep and shallow soils.  相似文献   

11.
《Field Crops Research》1999,61(1):23-35
Field experiments were conducted to investigate the performance of temperate legume species in rice-based cropping systems in a warm-temperate environment in Nepal. Over the period 1994–1996, various legume species were grown during the winter season (October–May) in the Kathmandu valley (27° N, 1350 m asl) with the aim of evaluating their biomass production and N fixation. A wide range of legume species including food, feed and green manure crops proved to be very well adapted to the winter growing conditions in this environment. The cultivation of temperate legume crops therefore, constitutes an alternative to traditional cropping practices such as growing wheat or leaving the land fallow. The temperate species appeared to capitalise on generally favourable growing conditions such as long growing season, low pest and disease pressure, high radiant energy receipt and cool night temperatures. However, performance varied greatly between species and years. Total dry matter yields ranged from 2 to 20 t ha−1 obtained with lentil (Lens culinaris Medic) and bitter lupin (Lupinus mutabilis), respectively. Highest seed yields were produced by fababean (Vicia faba) (5 t ha−1) and field pea (Pisum sativum var. arvense) (3 t ha−1) in the first season. Nitrogen yields and quantities of N fixed ranged from 18 to 481 kg ha−1 and from 0 to 463 kg ha−1, respectively. Large amounts of N were fixed by species such as fababean, Persian clover (Trifolium resupinatum) and bitter lupin. Early sowing in autumn was shown to be beneficial for some crops such as fababean, vetch (Vicia benghalensis) and Persian clover. In these cases, it is, therefore, important to reduce the turn-around interval after rice. Further research is required to fully determine the potential of temperate legume species in these environments with particular emphasis given to the identification of the most adapted cultivars and to reduce the need for irrigation of these winter crops.  相似文献   

12.
13.
14.
Miscanthus × giganteus is one of the most promising biomass crops for non-food utilisation. Taking into account its area of origin (Far East), its temperature and rainfall requirements are not well satisfied in Mediterranean climate. For this purpose, a research was carried out with the aim of studying the adaptation of the species to the Mediterranean environment, and at analysing its ecophysiological and productive response to different soil water and nitrogen conditions. A split plot experimental design with three levels of irrigation (I1, I2 and I3 at 25%, 50% and 100% of maximum evapotranspiration (ETm), respectively) and three levels of nitrogen fertilisation (0 kg ha−1: N0, 60 kg ha−1: N1 and 120 kg ha−1: N2 of nitrogen) were studied. The crop showed a high yield potential under well-watered conditions (up to 27 t ha−1 of dry matter). M. × giganteus, in Mediterranean environment showed a high yield potential even in very limited water availability conditions (more than 14 t ha−1 with a 25% ETm restoration). A responsiveness to nitrogen supply, with great yield increases when water was not limiting, was exhibited. Water use efficiency (WUE) achieved the highest values in limited soil water availability (between 4.51 and 4.83 g l−1), whilst in non-limiting water conditions it decreased down to 2.56 and 3.49 g l−1 (in the second and third year of experiment, respectively). Nitrogen use efficiency (NUE) decreased with the increase of water distributed (from 190.5 g g−1 of I0 to 173.2 g g−1 of I2); in relation to N fertilisation it did not change between the N fertilised treatments (N1 and N2), being much higher in the unfertilised control (177.1 g g−1). Radiation use efficiency (NUE) progressively declined with the reduction of the N fertiliser level (1.05, 0.96 and 0.86 g d.m. MJ−1, in 1994, and 0.92, 0.91 and 0.69 g d.m. MJ−1, in 1995, for N2, N1 and N0, respectively).  相似文献   

15.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

16.
《Field Crops Research》2004,86(1):53-65
Deceleration in rice (Oryza sativa L.) yield over time under fixed management conditions is a concern for countries like Bangladesh, where rice is the primary source of calories for the human population. Field experiments were conducted from 1990 to 1999 on a Chhiata clay loam soil (Hyperthermic Vertic Endoaquept) in Bangladesh, to determine the effect of different doses of chemical fertilizers alone or in combination with cow dung (CD) and rice husk ash (ash) on yield of lowland rice. Two rice crops—dry season rice (December–May) and wet season rice (July–November) were grown in each year. Six treatments—absolute control (T1), one-third of recommended fertilizer doses (T2), two-thirds of recommended fertilizer doses (T3), full doses of recommended fertilizers (T4), T2+5 t CD and 2.5 t ash ha−1 (T5) and T3+5 t CD and 2.5 t ash ha−1 (T6) were compared. The CD and ash were applied on dry season rice only. The 10-year mean grain yield of rice with T1 was 5.33 t ha−1 per year, while the yield with T2 was 6.86 t ha−1 per year. Increased fertilizer doses with T3 increased the grain yield to 8.07 t ha−1 per year, while the application of recommended chemical fertilizer doses (T4) gave 8.87 t ha−1 per year. The application of CD and ash (T5 and T6) increased rice yield by about 1 t ha−1 per year over that obtained with chemical fertilizer alone (T2 and T3, respectively). Over 10 years, the grain yield trend with the control plots was negative, but not significantly, both in the dry and wet seasons. Under T3 through T6, the yield trend was significantly positive in the dry season, but no significant trend was observed in the wet season. The treatments, which showed positive yield trend, also showed positive total P uptake trend. Positive yield trends were attributed to the increasing P supplying power of the soil.  相似文献   

17.
《Field Crops Research》2003,80(2):147-155
Soybean (Glycine max (L.) Merr.) is one of the most important food and cash crops in China and a key protein source for the farmers in northern China. Previous experiments in both the field and greenhouse have shown that N2 fixation alone cannot meet the N requirement for maximizing soybean yield, and that N top-dressing at the flowering stage was more efficient than N top-dressing at the vegetative stages. However, the effect of N fertilizer application at other reproductive stages of soybean is unknown. Thus, a field experiment was conducted to study the effects of N applications at various reproductive stages on growth, N2 fixation and yield of three soybean genotypes. The results showed that starter N at 25 kg ha−1 resulted in minimum yield, total N accumulation and total amount of N2 fixed in all three genotypes. N top-dressing at 50 kg ha−1 at either the V2 or R1 stages, significantly increased N accumulation, yield and total amount of N2 fixed in all three genotypes. However, N top-dressing at the same rate at either the R3 or R5 stage did not show this positive effect in any of the three genotypes. Thus, the best timing for N top-dressing during reproduction is at the flowering stage, which increased seed yield by 21% for Wuyin 9, 27% for You 91-19, and 26% for Jufeng, respectively, compared to the treatment without N top-dressing.  相似文献   

18.
As part of a large programme [Scottish Executive Rural Affairs Department Programme of Agricultural, Biological and Related Research: Exploitation of Novel and Known Lectins in Agricultural and Biological Research—an Interdisciplinary Approach to Improve Crop Protection and Productivity, Animal (Including Human) Welfare and Health (Project No. FF821). Scottish Executive Rural Affairs Department (http://www.scotland.gov.uk/abrg/docs/pabr-00.asp)] concerned with the discovery and development of new and existing plant lectins, a screening exercise for novel mannose binding lectins (MBLs) was initiated. Common agricultural and horticultural crops were screened and of the 50 species initially screened, 15 were shown to be putative sources of MBLs. Following isolation by mannose-affinity and phenyl-Sepharose™ chromatographies the proteins were characterised with regard to their structure and functionality. The species within the Amaryllidacea and Liliaceae had the MBLs present at the greatest levels (≤6000 μg [g fresh wt.]−1). The novel MBLs were present at relatively low levels (15–60 μg [g fresh wt.]−1). All the MBLs exhibited monomer molecular weights in the range 11–13 kD whilst the native molecular weights were indicative of dimer or tetramer formation.The linkage preferences of the MBLs were determined by inhibiting the MBL-yeast mannan precipitation reaction by the addition of oligomannans with defined linkages. The preference for α(1–3) and α(1–6) linkages was predominant throughout the known and novel MBLs. Evidence of binding to α(1–2) and α(1–4) linked ligands was seen but the relative affinity for these was low with the exception of the MBL from leafbeet (Beta vulgaris ssp. cicla). The MBL from celeriac (Apium graveolens) did bind β-linked ligands but this was most probably due to a lack of specificity rather than a different specificity. Overall the relative binding affinity of the MBLs increased with increasing complexity of the ligands.  相似文献   

19.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

20.
《Field Crops Research》2004,85(2-3):135-148
Seed N concentration is one of the main quality parameters in grain legume crops. Since few studies have aimed at modelling both seed and vegetative parts N concentrations, our objective was to model N partitioning between vegetative parts and filling seeds for pea (Pisum sativum L.) in field situations where both N nutrition and the plant genotype varied. A crop model component predicting the time courses of vegetative and seed N concentrations was built using knowledge concerning N partitioning during the seed filling period, which include a previously demonstrated relationship between the rate of individual seed N accumulation and the N availability within plants. A greenhouse experiment where assimilate availability was non-limiting was conducted with two genotypes. This experiment demonstrated the genotypic variability of one of the crop model component parameters, the maximum rate of individual seed N accumulation (SNRmax), allowing introduction of this parameter in the crop model component for the studied genotypes. Field experiments spanning 3 years and comprising various crop N nutrition and four genotypes were conducted to evaluate the crop model component. Observed seed and vegetative parts N concentrations ranged at harvest from 19.3 to 39.1 mg g−1 and from 3.6 to 18.4 mg g−1, respectively. N partitioning was well-simulated by the crop model component except when crops had deficient N nutrition. These results suggest that the parameter “NCn-remob” (proportion of N in vegetative parts which is not available for remobilization to filling seeds), which is taken as constant in the crop model component, could depend upon the crop nutrition level. A sensitivity analysis highlights the need for a precise calibration of the parameters “NCn-remob” and “SNRmax”. When the crop N nutrition level and further genotypic variability of these parameters are incorporated in the proposed crop model component, it will become a useful part of a pea crop model predicting yield and seed N concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号