首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rapid visco analysis (RVA) system was used to measure rheological behaviour in 20% (w/v) gluten-in-water suspensions upon applying temperature profiles. The temperature profiles included a linear temperature increase, a holding step, a cooling step with a linear temperature decrease to 50 °C, and a final holding step at 50 °C. Temperature and duration of the holding phase both affected RVA viscosity and protein extractability. Size-exclusion and reversed-phase HPLC showed that increasing the temperature (up to 95 °C) mainly decreased glutenin extractability. Holding at 95 °C resulted in polymerisation of both gliadin and glutenin. Above 80 °C, the RVA viscosity steadily increased with longer holding times while the gliadin and glutenin extractabilities decreased. Their reduced extractability in 60% ethanol showed that γ-gliadins were more affected after heating than α-gliadins and ω-gliadins. Enrichment of wheat gluten in either gliadin or glutenin showed that both gliadin and glutenin are necessary for the initial viscosity in the RVA profile. The formation of polymers through disulphide bonding caused a viscosity rise in the RVA profile. The amounts of free sulphydryl groups markedly decreased between 70 and 80 °C and when holding the temperature at 95 °C.  相似文献   

2.
The rapid visco analysis (RVA) system was used to measure rheological behaviour in 20% (w/v) gluten-in-water suspensions upon applying temperature profiles. The temperature profiles included a linear temperature increase, a holding step, a cooling step with a linear temperature decrease to 50 °C, and a final holding step at 50 °C. Temperature and duration of the holding phase both affected RVA viscosity and protein extractability. Size-exclusion and reversed-phase HPLC showed that increasing the temperature (up to 95 °C) mainly decreased glutenin extractability. Holding at 95 °C resulted in polymerisation of both gliadin and glutenin. Above 80 °C, the RVA viscosity steadily increased with longer holding times while the gliadin and glutenin extractabilities decreased. Their reduced extractability in 60% ethanol showed that γ-gliadins were more affected after heating than α-gliadins and ω-gliadins. Enrichment of wheat gluten in either gliadin or glutenin showed that both gliadin and glutenin are necessary for the initial viscosity in the RVA profile. The formation of polymers through disulphide bonding caused a viscosity rise in the RVA profile. The amounts of free sulphydryl groups markedly decreased between 70 and 80 °C and when holding the temperature at 95 °C.  相似文献   

3.
Lesquerella is a developing hydroxy oilseed crop suitable for rotation in the arid Southwestern United States. The hydroxy oil of lesquerella makes it suitable for esterification into triglyceride estolides. The estolide functionality imparts unique physical properties that make this class of materials suitable for functional fluid applications. Lesquerella and castor hydroxy triglycerides were converted to their corresponding estolides by reacting the oils with saturated fatty acids (C2–C18) in the presence of a tin 2-ethylhexanoate catalyst (0.1 wt.%) and utilizing the condensation of hydroxy with corresponding anhydride or heating under vacuum at 200 °C. Two homologous series of estolides for each triglyceride were synthesized for comparison, mono-capped (one hydroxy functionality per triglyceride molecule) and full-capped (all hydroxy functionalities per triglyceride molecule). Physical properties (pour point, cloud point, viscosity, and oxidative stability) were compared for this estolide series. The longer chain saturate capped estolides (C14–C18) had the highest pour points for both mono-capped (9 °C, C18:0) and full-capped (24 °C, C18:0) lesquerella estolides. Castor mono-capped (9 °C) and full-capped (18 °C) triglyceride estolides gave similar properties. However, pour points improved linearly when the shorter saturated fatty acid capping chain lengths were esterified with the hydroxy triglycerides. Lesquerella capped with a C6:0 fatty acid had pour points of −33 °C for the mono-capped and −36 °C for the full-capped and castor had −36 and −45 °C, respectively. Oxidative stabilities of the estolides were compared for oleic, lauric and lauric-hydrogenated mono- and full-capped materials by rotating bomb oxygen test (RBOT). RBOT times for oleic and lauric capped estolides were low and similar with times centered around 15 min. However, when antioxidant (4 wt.%) was added the RBOT times increased to 688 min for the hydrogenated full-capped lesquerella lauric estolide. The antioxidant had little effect on RBOT times when 2 wt.% or less antioxidant was added for all the estolides except those that were hydrogenated. The hydrogenated estolides showed improvements in oxidative stability at all concentrations of antioxidant tested. Viscosity index ranged from 130 to 202 for all estolides with the shorter chain length capped estolides gave the lower viscosity index values. Viscosity at 100 °C ranged from 13.9 to 26.6 cSt and the 40 °C viscosity ranged from 74.7 to 260.4 cSt where the longer chain length capped estolides gave the highest viscosities.  相似文献   

4.
Biodegradable, vegetable oil-based lubricants must have better low temperature properties as well as comparable cost to petroleum oils before they can become widely acceptable in the marketplace. The low temperature property usually measured is the pour point (pp), the minimum temperature at which the material will still pour. Viscosity and viscosity index also provide information about a fluid's properties where a high viscosity index denotes that a fluid has little viscosity change over a wide temperature range. Lesquerella oil is a good candidate for its development into a biodegradable lubricant as it is being developed as an alternative crop for the southwestern U.S. The hydroxy site on the fatty acid (FA) makes it a suitable site for esterification to yield estolides. Castor and lesquerella FA esters were combined with different types of saturated, unsaturated, and branched FAs to produce estolides. Castor and lesquerella estolide esters had the best cold temperature properties when capped with oleic (pp = −54 °C for castor and pp = −48 °C for lesquerella) or capped with a branched material, 2-ethylhexanoic acid (pp = −51 °C for castor and pp = −54 °C for lesquerella). As the saturation was increased in the estolide, pour and cloud points also increased. The increased saturation such as in stearic capped estolides allowed for sufficient alkyl stacking of these long saturated chains producing higher pour points. Oxidative stability of the estolides was compared between the oleic-castor estolide 2-ethylhexyl ester and the coco-castor estolide 2-ethylhexyl ester by the rotating bomb oxidation test (RBOT). The RBOT times for both estolides were low with a similar time of about 15 min. However, when the antioxidant package (3.5 wt.%) was added, the RBOT times increased to 403 min for the coco-castor estolide 2-ethylhexyl ester while still retaining its outstanding cold temperature properties, (pp = −36 °C and cp = −30 °C). The viscosity index ranged from 164 to 200 for these new hydroxy FA derived estolide 2-ethylhexyl esters. These oleic-castor and lesquerella estolide esters have displayed far superior low temperature properties (pp = −54 °C) than any other estolides reported to date. Due to the lack of solvent and catalysts, the cost of these estolides should be reasonable and more suitable as a base stock for biodegradable lubricants and functional fluids than current commercial materials.  相似文献   

5.
The feasibility of producing biodiesel from Idesia polycarpa var. vestita fruit oil was studied. A methyl ester biodiesel was prepared from refined I. polycarpa fruit oil using methanol and potassium hydroxide (KOH) in an alkali-catalyzed transesterification process. The experimental variables investigated in this study were catalyst concentration (0.5–2.0 wt.% of oil), methanol/oil molar ratio (4.5:1 to 6.5:1), temperature (20–60 °C) and reaction time (20–60 min). A maximum yield of over 99% of methyl esters in I. polycarpa fruit oil biodiesel was achieved using a 6:1 molar ratio of methanol to oil, 1.0% KOH (% oil) and reaction time for 40 min at 30 °C. The properties of I. polycarpa fruit oil methyl esters produced under optimum conditions were also analyzed for specifications for biodiesel as fuel in diesel engines according to China Biofuel Systems Standards. The fuel properties of the I. polycarpa fruit oil biodiesel obtained are similar to the No. 0 light diesel fuel and most of the parameters comply with the limits established by specifications for biodiesel.  相似文献   

6.
Approximately all simmondsin and oil can be easily removed in one step by repeated extraction with water at 90 °C from ground jojoba seeds. The optimum time and temperature of extraction were respectively 1.5 h and 90 °C. Quantitative analysis of simmondsin was made by HLPC method using adenosine as internal standard.  相似文献   

7.
An experimental design was performed to study the influence of process variables (135–175 °C for temperature, 60–120 min for pulping time and 15–25% for active alkali) on the properties of pulps (yield, Kappa index, viscosity, 1% NaOH solubles, alcohol–benzene extractives holocellulose, lignin and α-cellulose contents and brightness) and paper sheets (stretch index, burst index, and tear index) obtained from olive trimming residues. Obtaining pulps with acceptably high physical and chemical properties entails operating at a temperature of 175 °C for 90 min and 25% of active alkali. The paper sheets obtained from olive trimming residues pulps that were produced in different degrees of refining are characterised for their stretch index, burst index, and tear index. An increase in the different parameters for the paper sheet upon increasing the degree of refining is found. All pulps reached between 33 and 39 kN m/kg in the stretch index, between 1.5 and 2 kN/g for the burst index and 0.7–2.5 N m2/g for the tear index and not in excess of the refining degree (<45 °SR).  相似文献   

8.
In the present work, thermogravimetric analysis of 17 organosolv lignin samples was carried out to determine their thermal stability and calculate the kinetic parameters of their pyrolysis. The thermal stability has been estimated by the measurement of the degradation temperature (Td), calculated according to the maximum reaction rate. In addition, degradation temperature at 10% of conversion (T10%) has been obtained in order to compare the initial stability of the samples with Td for all samples. The values of Td are comprised between 262 and 389 °C and the average value is 340 °C. The range for T10% is 251–320 °C and the average value is 270 °C. The ashes content of the samples has been analyzed and all the residues presented values lower than 4 wt%. Kinetic parameters of lignin pyrolysis were calculated by Borchardt–Daniels’ method assuming nth order reaction. The activation energy values obtained are comprised between 17.9 and 42.5 kJ/mol and the average value is 28.1 kJ/mol. These results are in agreement with the bibliography.  相似文献   

9.
This study identified the role of milling and parboiling on arsenic (As) content and its species in large numbers of rice samples. Total As contents were 108 ± 33 μg/kg in polished rice grains (PR), 159 ± 46 μg/kg in unpolished rice grains (UR), 145 ± 42 μg/kg in parboiled polished rice grains (PPR) and 145 ± 44 μg/kg in parboiled unpolished rice grains (PUR). The percentages of inorganic As (iAs) were 66% ± 8% in PR and from 72% to 77% in other grain categories. The polishing process reduced the As content in the rice grains, removing outer part of the UR with high amount of As, whereas the parboiling technique transferred the semimetal content within the grain. Total As and iAs contents were not significantly different in UR, PPR and PUR, homogenizing its distribution inside the grains. The results allowed to understand how different operations affect As fate and its chemical forms in grains.  相似文献   

10.
Fast protein liquid chromatography has been developed for purification of high-molecular-weight glutenin subunits HMW-GSs from wheat flour. Flour samples from four wheat cultivars with different HMW-GS alleles at Glu-A1, Glu-B1 and Glu-D1 loci were used to establish the method. The column material used was Resource™ Phe, and the optimal elution was with a gradient formed with buffer A [0.05 M Tris–HCl containing 4 M urea and 0.25 M (NH4)2SO4, pH 8.0] and buffer B [0.05 M Tris–HCl containing 4 M urea (pH 8.0)] at a flow rate of 0.5 ml/min. A pure single 1Dx-, 1Bx- HMW-GS, and all the y-type HMW-GSs present in one genotype can be reliably separated in a single step.  相似文献   

11.
This study is the small part of the big project related to the metallic contamination in foodstuff. The work presented here allowed determination the level of iron, copper, zinc, lead and cadmium in bread samples obtained from 20 bakeries in Ankara and Samsun, Turkey. The atomic absorption spectrophotometry method was used to determine these metals. The mean values of iron, copper, zinc, lead, and cadmium levels were found as 19·2±8·1 mg/kg-dry weight (dw), 2·1±1·0 μg/kg-dw, 10·0±3·0 μg/kg-dw, 86·8±176·0 μg/kg-dw, and 12·2±6·1 μg/kg-dw, respectively. No significant differences were found in copper and lead levels of samples obtained from bakeries in general, and in copper and cadmium levels of the samples from different provinces (P>0·05), while they were considered significant in iron, zinc, and cadmium levels of samples in general, and in iron, zinc and lead levels of samples from different provinces (P<0·05).  相似文献   

12.
The color (L*, a*, b* parameters), the total phenols content and the global chemical composition (moisture, protein, fat, carbohydrates and ash) of four fresh varieties of olive leaves (Chemlali, Chemchali, Zarrazi and Chetoui) were determined. Fresh olive leaves are characterized by a green color (greenness parameter, a*, varying from ?5.01 ± 0.26 to ?9.14 ± 1.21), an intermediate moisture content (0.85 to 1.00 g/g dry matter, i.e. 46 to 50 g/100 g fresh matter) and a variable amount of total phenols according to the olive leaf variety (from ≈2.32 to ≈1.40 g caffeic acid/100 g dry matter).Fresh leaves were submitted to blanching and/or infrared drying at 40, 50, 60 and 70 °C in order to be stabilized by reducing their moisture contents. The impact of IR drying temperature on some quality attributes (color, total phenols and moisture rate removal) was evaluated. Nevertheless, the effect of prior blanching treatment on the quality attributes of dried leaves is less significant and it depends on the olive leaf variety. The infrared drying induces a considerable moisture removal from the fresh leaves (more than 85%) and short drying durations (varying from ≈162 at 40 °C to 15 min at 70 °C). IR drying temperature showed a significant effect of on total phenols content and the color of the leaves whatever the leaf variety. In fact, total phenols content of dried olive leaves increased if compared to fresh ones. For example, total phenols of Chemlali leaves increased from 1.38 ± 0.02 (fresh leaves) to 2.13 ± 0.29 (dried at 40 °C) and to 5.14 ± 0.60 g caffeic acid/100 g dry matter (dried at 70 °C). IR drying allows preserving the greenness color of fresh leaves and enhancing their luminosity. It could be suggested for preserving olives leaves before their use in food or cosmetic applications.  相似文献   

13.
14.
Saturated mono-estolide methyl esters and enriched saturated mono-estolide 2-EH esters were synthesized from oleic and different saturated fatty acids under three different synthetic routes. Estolide numbers (EN), the average number of fatty acid units added to a base fatty acid, varied with synthetic conditions. The attempts at obtaining saturated mono-estolide 2-EH esters, EN = 1, via distillation proved to be challenging, which lead to estolide samples with EN > 1 and the pour point values followed the same trend as the high EN estolides. The other synthetic routes provided saturated mono-estolide methyl esters with EN = 1. The resulting pour point values showed a linear relationship between the saturated capping chain length and pour point. As the saturated capping chain length increased the pour points also increased (higher temperatures): C-2 capped ?30 °C, C-10 capped ?12 °C, and C-18 capped 3 °C.The saturated mono-estolide methyl ester viscosities also showed an increase in viscosity at 40 and 100 °C as the saturated chain lengths increased. The viscosities for the C-4 saturated mono-estolide methyl ester was 9.5 cSt at 40 °C and 2.6 cSt at 100 °C, while medium chain length derivations (C-10 saturated mono-estolide methyl ester) were 19.7 cSt at 40 °C and 4.2 cSt at 100 °C, and at the longer chain length derivations (C-18 mono-estolide methyl esters) were 27.6 cSt at 40 °C and 10.7 cSt at 100 °C. In general, a new series of saturated oleic mono-estolide methyl esters were synthesized and physical properties were collected. The physical property data indicated that both chain length and EN affect low temperature properties.  相似文献   

15.
Hard red spring wheat (Triticum aestivum cv Butte86) was grown under controlled environmental conditions and grain produced under 24/17 °C, 37/17 °C or 37/28 °C day/night regimens with or without post-anthesis N supplied as NPK. Flour proteins were analyzed and quantified by differential fractionation and RP-HPLC, and endosperm proteins were assessed by two-dimensional gel electrophoresis (2-DE). High temperature or NPK during grain fill increased protein percentage and altered the proportions of S-rich and S-poor proteins. Addition of NPK increased protein accumulation per grain under the 24/17 °C but not the 37/28 °C regimen. However, flour protein composition was similar for grain produced with NPK at 24/17 °C or 37/28 °C. 2-DE of gluten proteins during grain development revealed that NPK or high temperature increased the accumulation rate for S-poor proteins more than for S-rich proteins. Flour S content did not indicate S-deficiency, however, and addition of post-anthesis S had no effect on protein composition. Although, high-protein flour from grain produced under the 37/28 °C regimen with or without NPK had loaf volumes comparable to flour produced at 24/17 °C with NPK, mixing tolerance was decreased by the high temperature regimen.  相似文献   

16.
In this work, the forward extraction of defatted wheat germ protein (DWGP) by reverse micelles was studied. The reverse micellar systems were formed by sulphosuccinic acid bis (2-ethylhexyl) ester sodium salt (AOT), isooctane and KCl solution. The effects of AOT concentration, pH, KCl concentration, extraction time, the amounts of defatted wheat germ flour (DWGF), W0 (the molar ratio of water to surfactant, i.e. W0 = [H2O]/[AOT]) and temperature on the forward extraction efficiency of DWGP were tested. On the basis of single-factor experiments, the optimum extraction was achieved by response surface methodology (RSM). The experimental results lead to the conclusion that the highest forward extraction efficiency of DWGP was reached at the AOT concentration 0.06 g/mL, pH 8, KCl concentration 0.1 mol/L, time 30 min, the amounts of DWGF 0.500 g, W0 25 and temperature 36 °C. Under these conditions, the forward extraction efficiency of DWGP achieved 37%.  相似文献   

17.
Soybean oil cake (SOC) has been studied to produce bio-oil in a fixed-bed pyrolysis unit. The effect of pyrolysis parameters on the product yields and compositions were investigated. The highest bio-oil yield of a ca 25.8 wt.% was obtained at 400 °C pyrolysis temperature with a heating rate of 50 °C/min for particles of 0.425–0.600 mm in size. The various characteristics of bio-oil acquired under these conditions were identified. The empirical formula of bio-oil with a calorific value of 33.6 MJ/kg was established as CH1.37O0.15N0.14. The chemical characterization studies showed that the bio-oil obtained from SOC might be a potentially valuable source as renewable fuel and chemical feedstocks.  相似文献   

18.
An efficient and economical oil expression system that can operate on solar power in rural areas of underdeveloped and developing countries is needed. Recent improvements in both oil extraction and solar energy technologies have indicated the possibilities for fabricating oil extraction equipment. Thus, the objective of our study was to develop a simple oil expression unit capable of producing high quality oil based on solar energy in remote rural areas. A photovoltaic (PV), batch operated, low-pressure oil press, using a 190 W, 12 V dc motor, was designed, fabricated, and tested using coconut and groundnut as the raw material. Samples used in the study were ground to particle size between 500 μm and 2 mm and were pressed at 12 ± 1% moisture content. The press was evaluated based on the oil extraction efficiency (OEE), power consumption, and oil quality. The press had an average OEE of 73% for coconuts and 70% for groundnuts after 12 min of pressing. The oil expression efficiency was characterized by three main stages namely delayed, rapid, and retarded. The power consumption was affected greatly by the pressing time, with power consumption increasing with an increase in the pressing time. The specific energy consumption was found to increase significantly after 8 min of pressing and correlated with the compaction of the cake, which resulted in more power being required to express the entrapped oil. The expressed oil was fresh, free from foots, and of high quality with an average moisture content of 0.015% for coconut oil and 0.019% for groundnut. Analyses showed that the viscosities were 42.1 MPa s (coconut oil) and 59.1 MPa s (groundnut oil), at 25 °C. Overall, the press performed well and was comparable in performance to other types of presses.  相似文献   

19.
This work deals with the alkaline hydrolysis of brewer's spent grain (BSG) for the extraction of ferulic and p-coumaric acids, compounds of considerable interest for applications in the food, health, cosmetic, and pharmaceutical industries. A 23 full factorial design with three replicates at the center point was used to investigate the simultaneous effects of the variables: NaOH concentration (1.0, 1.5 and 2.0%, w/v), temperature (80, 100 and 120 °C), and reaction time (30, 60 and 90 min), on the alkaline hydrolysis. The assays were performed using a solid:liquid ratio of 1:20 (w/w). The Student's t-test revealed a positive influence (p < 0.05) of all the studied variables on the ferulic and p-coumaric acids extraction from BSG. Linear models were well fitted (R2 > 0.90) to the experimental data to describe the extraction of these acids as a function of the operational variables employed. The best alkaline hydrolysis conditions consisted in using a 2% NaOH concentration, at 120 °C for 90 min. Under these conditions, a liquor containing 145.3 mg/l ferulic acid and 138.8 mg/l p-coumaric acid was obtained. These values corresponded to 9.65 mg ferulic acid and 9.22 mg p-coumaric acid per gram of solubilized lignin.  相似文献   

20.
Effect of pressing time on physical and mechanical properties of phenolic-impregnated bamboo strips was evaluated. Bamboo strips (Gigantochloa scortechinii) were impregnated with low molecular weight phenol formaldehyde (LMwPF) resin. Samples were submerged in LMwPF resin using a vacuum chamber of 750 mmHg for 1 h before it was released within 1.5 h. Treated strips were dried in an oven with a temperature of 60 °C within 6–9 h. It was hot pressed at 14 kg m?2 and a temperature of 140 °C for 5, 8, 11, 14 and 17 min. The physical and mechanical properties of the test indicated that the properties of phenolic-treated strips have significantly increased as compared to control samples. Dimensional stability (water absorption, thickness swelling and linear expansion) of the phenolic-treated properties were significantly lower than control after 5-min pressing time. The antishrink efficiency (ASE) of phenolic-treated strips increased when pressing time were extended from 5 to 17 min. The mean value of modulus of rupture (MOR) for the control samples (177 N mm?2) showed a significant difference with phenolic-treated strips after 17-min pressing time (224 N mm?2). However, there is no significant difference in compression parallel to grain. The MOE of phenolic-treated strips was 21,777 N mm?2 and for control was 18,249 N mm?2, whereas the compression parallel to grain values for phenolic-treated and control samples were 94 and at 77 N mm?2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号