首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to investigate the antiproliferative effect and the mechanism of the methanol extracts of mycelia (MEM) form Antrodia camphorata in submerged culture toward HepG2 cells. The results showed that MEM-induced cell apoptosis involved up-regulation of Fas and down-regulation of Bcl-2, DR3, DR4, TNFRI, and TNFRII in HepG2 cells, while no changes on the levels of Bax, Bid, Bad, and Bak protein were observed. On the basis of these results, the involvement of the Fas/Fas ligand (FasL) death-receptor pathway, in MEM-induced apoptosis in HepG2 cells, was investigated. The apoptosis inducing activity was significantly enhanced by a Fas activator and inhibited by a Fas antagonist. To know about the effect of MEM on the activation of the apoptotic pathway, the adenovirus transfected with Bcl-2 was infected on HepG2 cells. The data showed that the percentage of apoptotic cells induced by MEM in Bcl-2-infected HepG2 (Bcl-2 overexpression) was not significantly different from that of uninfected HepG2. These results demonstrate that MEM induces HepG2 apoptosis through inhibition of cell growth and up-regulation of Fas/FasL to activate the pathway of caspase-3 and -8 cascades.  相似文献   

2.
Anthocyanidins that are reddish pigments widely distributed in fruit and vegetables have been reported to possess antioxidant and anticancer activities. To understand the molecular basis of the putative anticancer activity of anthocyanidins, we investigated the antiproliferation effects of anthocyanidins in human hepatoma cell lines. Delphinidin, cyanidin, and malvidin exhibited strong growth inhibitory effects against human hepatoma HepG(2), but were less effective against Hep3B. According to the appearance of the caspase-3 fragments and stimulated proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) in time-dependent studies, delphinidin induced apoptotic cell death characterized by internucleosomal DNA fragmentation and caused a rapid induction of caspase-3 activity. RT-PCR and Western blot data revealed that delphinidin stimulated an increase in the c-Jun and JNK phosphorylation expression at mRNA and protein levels, respectively. Moreover, delphinidin-induced apoptotic cell death was accompanied by up-regulation of Bax and down-regulation of Bcl-2 protein. Dephinidin-induced DNA fragmentation was blocked by N-acetyl-l-cysteine and catalase, suggesting that the death signaling was triggered by oxidative stress. Our experiments provide evidence that delphinidin is an effective apoptosis inducer in HepG(2) cells through regulation of Bcl-2 family moleculars and activation of c-Jun N-terminal kinase cascade. The results suggest that induction of apoptosis by anthocyanidins is a pivotal mechanism of their cancer chemopreventive functions.  相似文献   

3.
Solanum nigrum L. (SN) has been used in traditional folk medicine to treat different cancers. It is also used as a hepatoprotective and anti-inflammatory agent. In this study, we demonstrated that the extract of SN (SNE) induced a strong cytotoxic effect toward HepG2 cells but much less to Chang liver and WRL-68 cells. The mechanisms of the cytotoxic effect were concentration-dependent. High doses of SNE (2 and 5 mg/mL) induced apoptotic cell death in HepG2 cells, as evidenced by increases in the expressions of p-JNK and Bax, mitochodrial release of cytochrome c, and caspase activation. On the other hand, cells treated with low concentrations of SNE (50-1000 microg/mL) revealed morphological and ultrastructural changes of autophagocytic death under electron microscopic observation. Furthermore, these cells showed increased levels of autophagic vacuoles and LC3-I and LC3-II proteins, specific markers of autophagy. The levels of Bcl-2 and Akt that have been implicated in the down-regulation of autophagy were decreased upon SNE treatment. Taken together, these findings indicate that SNE induced cell death in hepatoma cells via two distinct antineoplastic activities of SNE, the ability to induce apoptosis and autophagocytosis, therefore suggesting that it may provide leverage to treat liver cancer.  相似文献   

4.
Capsaicin was reported to inhibit cancer cell growth. The aim of this study was to evaluate the antitumor potential of capsaicin by studying antitumor activity in vitro as well as in vivo. The in vitro studies are to examine the effects of capsaicin on human colon cancer colo 205 cells after exposure to capsaicin. The results showed that capsaicin induced cytotoxic effects in a time- and dose-dependent manner and increased reactive oxygen species (ROS) and Ca(2+) but decreased the level of mitochondrial membrane potential (ΔΨ(m)) in colo 205 cells. Data from Western blotting analysis indicated that the levels of Fas, cytochrome c, and caspases were increased, leading to cell apoptosis. Capsaicin decreased the levels of anti-apoptotic proteins such as Bcl-2 and increased the levels of pro-apoptotic proteins such as Bax. Capsaicin-induced apoptosis in colo 205 cells was also done through the activations of caspase-8, -9 and -3. In vivo studies in immunodeficient nu/nu mice bearing colo 205 tumor xenografts showed that capsaicin effectively inhibited tumor growth. The potent in vitro and in vivo antitumor activities of capsaicin suggest that capsaicin might be developed for the treatment of human colon cancer.  相似文献   

5.
Caffeic acid phenethyl ester (CAPE) is an active component isolated from propolis. The aim of this study was to investigate the mechanism of CAPE-induced apoptosis in human leukemic HL-60 cells. It was found that CAPE entered HL-60 cells very quickly and then inhibited their survival in a concentration- and time-dependent manner. CAPE induced characteristic DNA fragmentation and morphological changes typical of apoptosis in these cells. Estimation of the apoptotic percentage showed a time-dependent increase after CAPE (6 microg/mL) treatment (up to 66.7 +/- 2.0% at 72 h). Treatment with CAPE caused rapid activation of caspase-3 after 4 h, down-regulation of Bcl-2 expression after 6 h, and up-regulation of Bax expression after 16 h. These results suggest that CAPE is a potent apoptosis-inducing agent; its action is accompanied by activation of caspase-3, down-regulation of Bcl-2, and up-regulation of Bax in human leukemic HL-60 cells.  相似文献   

6.
This study demonstrated that ergocalciferol was able to inhibit leukemia cell growth in a concentration-dependent manner. Exploration of the acting mechanisms involved this event revealed that ergocalciferol induced DNA fragmentation and increased sub-G1 DNA contents in HL-60 cells, both of which are hallmarks of apoptosis. Analysis of the integrity of mitochondria demonstrated that ergocalciferol caused loss of mitochondrial membrane potential with release cytochrome c to cytosol, generation of reactive oxygen species (ROS), and depletion of glutathione (GSH), suggesting that ergocalciferol may induce apoptosis in HL-60 cells through a ROS-dependent pathway. Further results show that caspases-2, -3, -6, and -9 were all activated by ergocalciferol, together with cleavage of the downstream caspase-3 targets, DNA fragmentation factor (DFF-45), and poly(ADP-ribose) polymerase. In addition, ergocalciferol led to the increase in pro-apoptotic factor Bax accompanied with the decrease in anti-apoptotic member Mcl-1, and the reduced Mcl-1 to Bax ratio may be a critical event concerning mitochondrial decay by ergocalciferol. Furthermore, ergocalciferol also led to induction of Fas death receptor closely linked to caspase-2 activation, suggesting the involvement of a Fas-mediated pathway in ergocalciferol-induced apoptosis. Totally, these findings suggest that ergocalciferol causes HL-60 apoptosis via a modulation of mitochondria involving ROS production, GSH depletion, caspase activation, and Fas induction. On the basis of anticancer activity of ergocalciferol, it may be feasible to develop chemopreventive agents from edible mushrooms or hop.  相似文献   

7.
Dietary polyphenols have been associated with reduced risk of chronic diseases, but the precise molecular mechanisms of protection remain unclear. This work was aimed at studying the effect of (-)-epicatechin (EC) and chlorogenic acid (CGA) on the regulation of apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). EC or CGA treatment for 18 h had a slight effect on cell viability and decreased reactive oxygen species formation, and EC alone promoted cell proliferation, whereas CGA increased glutathione levels. Phenols neither induced the caspase cascade for apoptosis nor affected expression levels of Bcl-xL or Bax. A sustained activation of the major survival signals AKT/PI-3-kinase and ERK was shown in EC-treated cells, rather than in CGA-exposed cells. These data suggest that EC and CGA have no effect on apoptosis and enhance the intrinsic cellular tolerance against oxidative insults either by activating survival/proliferation pathways or by increasing antioxidant potential in HepG2.  相似文献   

8.
Acacetin (5,7-dihydrocy-4'-methoxy flavone), which is a flavonoid compound, possesses anti-peroxidative and anti-inflammatory effects. The effects of acacetin on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that acacetin was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Acacetin-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of acacetin-induced apoptosis was also investigated. Treatment with acacetin caused induction of caspase-3 activity in a time-dependent manner, but not caspase-1 activity, and induced the degradation of DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Cell death was completely prevented by a pancaspase inhibitor, Z-Val-Ala-Asp-fluoromethyl ketone. Furthermore, treatment with acacetin caused a rapid loss of mitochondrial transmembrane potential, stimulation of reactive oxygen species (ROS), release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. Antioxidants such as N-acetylcysteine and catalase, but not superoxide dismutase, allopurinol, or pyrrolidine dithiocarbamate, significantly inhibited acacetin-induced cell death. In addition, it was found that acacetin promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in acacetin-induced apoptosis. On the other hand, the results showed that acacetin-induced apoptosis was accompanied by up-regulation of Bax and p53, down-regulation of Bcl-2, and cleavage of Bad. Taken together, these results suggest that ROS production and a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to acacetin-induced apoptosis in AGS cells. The induction of apoptosis by acacetin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

9.
This study examined the growth inhibitory effects of the structurally related beta-diketones compounds in human cancer cells. Here, we report that 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB) induces growth inhibition of human cancer cells and induction of apoptosis in A431 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of HMDB-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that HMDB induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bad and p21; down-regulation of Bcl-2, Bcl-XL, Bid, p53, and fatty acid synthase; and cleavage of Bax were found in HMDB-treated A431 cells. Glutathione and N-acetylcysteine (NAC) suppress HMDB-induced apoptosis. HMDB markedly enhanced growth arrest DNA damage inducible gene 153 (GADD153) mRNA and protein in a time- and concentration-dependent manner. NAC prevented up-regulation of GADD153 mRNA expression caused by HMDB. These findings suggest that HMDB creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in A431 cells.  相似文献   

10.
Benzyl isothiocyanates (BITC), a member of the isothiocyanate (ITC) family, inhibits cell growth and induces apoptosis in many types of human cancer cell lines. The present study investigated mechanisms underlying BITC-induced apoptosis in A375.S2 human melanoma cancer cells. To observe cell morphological changes and viability, flow cytometric assays, cell counting, and a contrast-phase microscopic examination were carried out in A375.S2 cells after BITC treatment. Cell cycle distribution and apoptosis were assessed with the analysis of cell cycle by flow cytometric assays, DAPI staining, propidium iodide (PI), and annexin V staining. Apoptosis-associated factors such as reactive oxygen species (ROS) formation, loss of mitochondrial membrane potential (ΔΨ(m)), intracellular Ca(2+) release, and caspase-3 activity were evaluated by flow cytometric assays. Abundance of cell cycle and apoptosis associated proteins was determined by Western blotting. AIF and Endo G expression was examined by confocal laser microscope. Results indicated that (1) BITC significantly reduced cell number and induced cell morphological changes in a dose-dependent manner in A375.S2 cells; (2) BITC induced arrest in cell cycle progression at G(2)/M phase through cyclin A, CDK1, CDC25C/Wee1-mediated pathways; (3) BITC induced apoptosis and increased sub-G(1) population; and (4) BITC promoted the production of ROS and Ca(2+) and loss of ΔΨ(m) and caspase-3 activity. Furthermore, BITC induced the down-regulation of Bcl-2 expression and induced up-regulation of Bax in A375.S2 cells. Moreover, BITC-induced cell death was decreased after pretreatment with N-acetyl-l-cysteine (NAC, a ROS scavenger) in A375.S2 cells. In conclusion, the results showed that BITC promoted the induction of G(2)/M phase arrest and apoptosis in A375.S2 human melanoma cells through ER stress- and mitochondria-dependent and death receptor-mediated multiple signaling pathways. These data suggest that BITC has potential as an agent for the treatment of melanoma.  相似文献   

11.
The bitter acids of hops (Humulus lupulus L.) mainly consist of alpha-acids, beta-acids, and their oxidation products that contribute the unique aroma of the beer beverage. Hop bitter acids displayed a strong growth inhibitory effect against human leukemia HL-60 cells, with an estimated IC(50) value of 8.67 microg/mL, but were less effective against human histolytic lymphoma U937 cells. Induction of apoptosis was confirmed in HL-60 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by dissipation of mitochondrial membrane potential, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of PARP and DFF-45 were accompanied with activation of caspase-9 and -3 triggered by hop bitter acids in HL-60 cells. The change in the expression of Bcl-2, Bcl-X(L), and Bax in response to hop bitter acids was studied, and the Bcl-2 protein level slightly decreased; however, the Bcl-X(L) protein level was obviously decreased, whereas the Bax protein level was dramatically increased, indicating that the control of Bcl-2 family proteins by hop bitter acids might participate in the disruption of mitochondrial integrity. In addition, the results showed that hop bitter acids promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in hop bitter acids-induced cells. Taken together, these findings suggest that a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to cell death induced by hop bitter acids. The induction of apoptosis by hop bitter acids may offer a pivotal mechanism for their chemopreventive action.  相似文献   

12.
Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.  相似文献   

13.
研究Caspase家族与Bcl-2家族参与调控苏云金芽胞杆菌(Bacillus thuringiensis,Bt)Bt9875杀虫晶体蛋白对人急性髓细胞性白血病细胞HL-60的影响.本实验采用MTT法检测了杀虫晶体蛋白诱导HL-60细胞凋亡后的Caspase家族的活性和Caspase凋亡酶抑制剂对杀虫晶体蛋白诱导HL-60细胞凋亡的影响;采用Western blot检测了杀虫晶体蛋白诱导多聚ADP-核糖聚合酶(PARP)降解、Bcl-2/Bax调控和细胞色素C的释放.研究结果表明,杀虫晶体蛋白作用HL-60细胞后,激活了Caspase-3、Caspase-8和Caspase-9,在48 h内Caspase家族抑制剂(Z-VAD-FMK)、Caspase-3抑制剂(z-DEVD-FMK)和Caspase-9抑制剂(Z-LEHD-FMK)均可显著抑制杀虫晶体蛋白诱导的细胞凋亡;杀虫晶体蛋白可明显上调促凋亡蛋白Bax的表达,同时下调抗凋亡蛋白BCl-2的表达,并观察到胞浆中细胞色素C的释放.初步证明了Bt9875杀虫晶体蛋白诱导的HL-60细胞凋亡是由Caspase家族和Bcl-2家族共同调控的,线粒体途径在诱导细胞凋亡过程中起着重要作用.  相似文献   

14.
Antiproliferative activity and apoptosis induction of ethyl acetate of Eucalyptus citriodora resin (EAEER), and its major bioactive compound in melanoma B16F10 cells were investigated. 6-[1-(p-Hydroxy-phenyl)ethyl]-7-O-methyl aromadendrin (HEMA), a flavanol derivative, was isolated from EAEER and identified on the basis of its mass and NMR spectra. The results from MTT assay showed high antiproliferative effects of EAEER and HEMA on B16F10 cells. Moreover, EAEER- and HEMA-induced cell apoptosis was association with the decrease in the mitochondrial transmembrane potentials (Δψ(m)), increase in Bax/Bcl-2 ratio, and activation of caspase-3. Cells treated with EAEER and HEMA generated intracellular reactive oxygen species (ROS) and nitric oxide (NO), indicating that ROS and RNS play important roles in the induction of apoptosis in B16F10 cells. Taken together, EAEER and its major bioactive compound, HEMA, inhibited the proliferation of B16F10 cells via apoptosis and may be a potential antimelanoma agent.  相似文献   

15.
The objective of this study was to investigate the antiproliferative effect and the mechanism of trypsin inhibitor (TI) from sweet potato [Ipomoea batatas (L.) Lam. 'Tainong 57'] storage roots on NB4 promyelocytic leukemia cells. The results showed that TI inhibited cellular growth of NB4 promyelocytic leukemia cells in a time-dependent and dose-dependent manner, and treatment for 72 h induced a marked inhibition of cellular growth, showing an IC50 of 57.1 +/- 8.26 microg/mL. TI caused cell cycle arrest at the G1 phase as determined by flow cytometric analysis and apoptosis as shown by DNA laddering. TI-induced cell apoptosis involved p53, Bcl-2, Bax, and cytochrome c protein in NB4 cells. P53 and Bax proteins were accumulated, and antiapoptotic molecule Bcl-2 was decreased in the tested cells in a time-dependent manner during TI treatment. TI also induced a substantial release of cytochrome c from the mitochondria into the cytosol. Hence, TI induced apoptosis in NB4 cells through a mitochondria-dependent pathway, which was associated with the activation of caspase-3 and -8. These results demonstrated that TI induces NB4 cell apoptosis through the inhibition of cell growth and the activation of the pathway of caspase-3 and -8 cascades.  相似文献   

16.
It was recently shown that compound K (CK), an intestinal bacterial metabolite of ginseng saponin, exhibits antihepatocellular carcinoma (HCC) activity, and Bid is a potential drug target for HCC therapy. This paper reports a novel mechanism of CK-induced apoptosis of HCC cells via Bid-mediated mitochondrial pathway. CK dramatically inhibited HCC cells growth in concentration- and time-dependent manners, and a high dose of CK could induce HCC cell apoptotic cell death. Furthermore, the effective dose of CK potently attenuated the subcutaneous tumor growth and spontaneous HCC metastasis in vivo. At the molecular level, immunohistochemical staining revealed that Bid expression in subcutaneous tumor and liver metastasis tissues decreased dramatically in CK-treated groups compared to untreated controls, which also implies that Bid may play a critical role in the growth and progression of HCC. Further study shows that translocation of full-length Bid to the mitochondria from nuclei during cytotoxic apoptosis was associated with the release of cytochrome c from mitochondria, indicating that full-length Bid is sufficient for the activation of mitochondrial cell death pathways in response to CK treatment in HCC cells. Taken together, the results not only reveal a Bid-mediated mitochondrial pathway in HCC cells induced by CK but also suggest that CK may become a potential cytotoxic drug targeting Bid in the prevention and treatment of HCC.  相似文献   

17.
Garcinol, a polyisoprenylated benzophenone, was purified from Garcinia indica fruit rind. The effects of garcinol and curcumin on cell viability in human leukemia HL-60 cells were investigated. Garcinol and curcumin displayed strong growth inhibitory effects against human leukemia HL-60 cells, with estimated IC(50) values of 9.42 and 19.5 microM, respectively. Garcinol was able to induce apoptosis in a concentration- and time-dependent manner; however, curcumin was less effective. Treatment with garcinol caused induction of caspase-3/CPP32 activity in a dose- and time-dependent manner, but not caspase-1 activity, and induced the degradation of poly(ADP-ribose) polymerase (PARP). Pretreatment with caspase-3 inhibitor inhibited garcinol-induced DNA fragmentation. Treatment with garcinol (20 microM) caused a rapid loss of mitochondrial transmembrane potential, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. The cleavage of D4-GDI, an abundant hematopoietic cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. Of these, Bcl-2, Bad, and Bax were studied. The level of expression of Bcl-2 slightly decreased, while the levels of Bad and Bax were dramatically increased in cells treated with garcinol. These results indicate that garcinol allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA and induces DFF-45 (DNA fragmentation factor) degradation. It is suggested that garcinol-induced apoptosis is triggered by the release of cytochrome c into the cytosol, procaspase-9 processing, activation of caspase-3 and caspase-2, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by garcinol may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

18.
This study examined the growth inhibitory effects of structurally related polymethoxylated flavones in human cancer cells. Here, we report that 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF) induces growth inhibition of human cancer cells and induction of apoptosis in HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 5-OH-HxMF-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that 5-OH-HxMF induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bax was found in 5-OH-HxMF-treated HL-60 cells. In addition, a caspase-independent pathway indicated by endonuclease G also contributed to apoptosis caused by 5-OH-HxMF. Antioxidants suppress 5-OH-HxMF-induced apoptosis. 5-OH-HxMF markedly enhanced growth arrest DNA damage-inducible gene 153 (GADD153) protein in a time-dependent manner. N-acetylcysteine (NAC) and catalase prevented up-regulation of GADD153 expression caused by 5-OH-HxMF. These findings suggest that 5-OH-HxMF creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in HL-60 cells. Meanwhile, ROS were proven an important inducer in this apoptotic process. The C-5 hydroxyl on the ring of 5-OH-HxMF was found to be essential for the antiproliferative and apoptosis-inducing activity. Our study identified the novel mechanisms of 5-OH-HxMF-induced apoptosis and indicated that these results have significant applications as potential chemopreventive and chemotherapeutic agents.  相似文献   

19.
Currently, at the beginning of the 21st century, obesity has become the leading metabolic disease in the world. It is a serious health problem in industrialized countries. Previous research has suggested that decreased preadipocyte differentiation and proliferation and decreased lipogenesis are mechanisms to reduce obesity. In the present study, the effects of capsaicin on the induction of apoptosis and inhibition of lipid accumulation in 3T3-L1 preadipocytes and adipocytes were investigated. The results demonstrated that capsaicin decreased cell population growth of 3T3-L1 preadipocytes, assessed with the MTT assay. Flow cytometric analysis of 3T3-L1 preadipocytes exposed to capsaicin showed that apoptotic cells increased in a time- and dose-dependent manner. Treatment with capsaicin decreased the number of normal cells and increased the number of early apoptotic and late apoptotic cells in a dose-dependent manner. The treatment of cells with capsaicin caused the loss of mitochondria membrane potential (delta psi m). The induction of apoptosis in 3T3-L1 preadipocytes by capsaicin was mediated through the activation of caspase-3, Bax, and Bak, and then through the cleavage of PARP and the down-regulation of Bcl-2. Moreover, capsaicin significantly decreased the amount of intracellular triglycerides and glycerol-3-phosphate dehydrogenase (GPDH) activity in 3T3-L1 adipocytes. Capsaicin also inhibited the expression of PPARgamma, C/EBPalpha, and leptin, but induced up-regulation of adiponectin at the protein level. These results demonstrate that capsaicin efficiently induces apoptosis and inhibits adipogenesis in 3T3-L1 preadipocytes and adipocytes.  相似文献   

20.
Shikonin is a main constituent of the roots of Lithospermum erythrorhizon that has antimutagenic activity. However, its other biological activities are not well-known. Shikonin displayed a strong inhibitory effect against human colorectal carcinoma COLO 205 cells and human leukemia HL-60 cells, with estimated IC(50) values of 3.12 and 5.5 microM, respectively, but were less effective against human colorectal carcinoma HT-29 cells, with an estimated IC(50) value of 14.8 microM. Induce apoptosis was confirmed in COLO 205 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by loss of mitochondrial membrane potential, reactive oxygen species (ROS) generation, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of poly(ADP-ribose) polymerase (PARP) and DNA fragmentation factor (DFF-45) were accompanied by activation of caspase-9 and -3 triggered by shikonin in COLO 205 cells. Here, we found that shikonin-induced apoptotic cell death was accompanied by upregulation of p27, p53, and Bad and down-regulation of Bcl-2 and Bcl-X(L), while shikonin had little effect on the levels of Bax protein. Taken together, we suggested that shikonin-induced apoptosis is triggered by the release of cytochrome c into cytosol, procaspase-9 processing, activation of caspase-3, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by shikonin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号