首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT We used molecular markers to identify quantitative trait loci (QTL) that confer resistance in the field to Xanthomonas campestris pv. vesicatoria race T1, a causal agent of bacterial spot of tomato. An F(2) population derived from a cross between Hawaii 7998 (H 7998) and an elite breeding line, Ohio 88119, was used for the initial identification of an association between molecular markers and resistance as measured by bacterial populations in individual plants in the greenhouse. Polymorphism in this cross between a Lycopersicon esculentum donor of resistance and an elite L. esculentum parent was limited. The targeted use of a core set of 148 polymerase chain reaction-based markers that were identified as polymorphic in L. esculentum x L. esculentum crosses resulted in the identification of 37 markers that were polymorphic for the cross of interest. Previous studies using an H 7998 x L. pennellii wide cross implicated three loci, Rx1, Rx2, and Rx3, in the hypersensitive response to T1 strains. Markers that we identified were linked to the Rx1 and Rx3 loci, but no markers were identified in the region of chromosome 1 where Rx2 is located. Single marker-trait analysis suggested that chromosome 5, near the Rx3 locus, contributed to reduced bacterial populations in lines carrying the locus from H 7998. The locus on chromosome 5 explained 25% of the phenotypic variation in bacterial populations developing in infected plants. An advanced backcross population and subsequent inbred backcross lines developed using Ohio 88119 as a recurrent parent were used to confirm QTL associations detected in the F(2) population. Markers on chromosome 5 explained 41% of the phenotypic variation for resistance in replicated field trials. In contrast, the Rx1 locus on chromosome 1 did not play a role in resistance to X. campestris pv. vesicatoria race T1 strains as measured by bacterial populations in the greenhouse or symptoms in the field. A locus from H 7998 on chromosome 4 was associated with susceptibility to disease and explained 11% of the total phenotypic variation. Additional variation in resistance was explained by plant maturity (6%), with early maturing families expressing lower levels of resistance, and plant habit (6%), with indeterminate plants displaying more resistance. The markers linked to Rx3 will be useful in selection for resistance in elite x elite crosses.  相似文献   

2.
Bacterial spot caused by several Xanthomonas spp. is an economically important disease of tomato (Solanum lycopersicum L.). Host resistance to the disease is partially dominant or incomplete, which requires accurate assessment of disease severity for genetic studies of resistance. In the present study, three independent experiments were conducted to investigate the feasibility of using image analysis to estimate foliar disease severity of bacterial spot in tomato. The resistant line PI 114490 and the susceptible line OH 88119 were used in the first experiment, five tomato lines (PI 114490, PI 128216, Hawaii 7981, Hawaii 7998, and Fla. 7600) with a range of resistance and OH 88119 were used in the second experiment, and 439 F2 individuals from a cross between OH 88119 and PI 114490 were used in the third experiment. Tomato plants were spray-inoculated with bacterial spot race T3. Five diseased leaves from each plant were randomly collected and scanned to obtain digital images 21 days after inoculation. The disease severity (% leaf area) was measured using image analysis. The susceptible line OH 88119 showed the most severe disease. The resistant line PI 114490 showed the least severe disease, and was not significantly different to PI 128216 or Hawaii 7981. These results indicated that image analysis could be used to distinguish tomato lines with different resistance to bacterial spot. Marker-trait association analysis identified four quantitative trait loci conferring resistance to race T3 in PI 114490 using data obtained from image analysis, the Horsfall-Barratt (HB) category scale data, and HB midpoint converted values. However, the disease severity was slightly underestimated using the HB category scale and the phenotypic variation explained by each marker was overestimated using the HB category data compared to using the image analysis-measured disease severity data. Therefore, image analysis could provide a consistent, accurate and reliable method compared to the HB scale to estimate disease severity for genetic studies of foliar bacterial spot in tomato.  相似文献   

3.
ABSTRACT Until recently, tomato race 1 (T1) of Xanthomonas campestris pv. vesicatoria was the only race causing bacterial spot of tomato in Florida. In 1991, tomato race 3 (T3) was first identified in 3 of 13 tomato production fields surveyed. By 1994, T3 was observed in 21 of 28 fields and was the only race identified in 14 fields. In field studies, tomato genotypes with resistance to either T1 or T3 or susceptibility to both were co-inoculated with strains of both races. Lesions on 10 plants in each of three replications for each genotype were sampled three times during the experiment; bacterial isolations were made from each lesion, and tomato race identifications were made for each strain. At the third sampling date, T3 was isolated from 97% of the lesions on the susceptible genotype Walter and the T1-resistant genotype Hawaii 7998, while T3 was isolated from 23% of the lesions and T1 from the remaining 77% on the T3-resistant genotypes PI 128216 and PI 126932. In surface population studies done in growth rooms, suspensions of T1 and T3 were applied alone and in combination to the leaf surfaces of susceptible and resistant genotypes. T1 populations were reduced more than 10-fold when applied in combination with T3, compared with populations that developed when T1 was applied alone. T3 populations were not affected when applied in combination with a T1 strain. In greenhouse studies with the T3-resistant genotype Hawaii 7981, disease was significantly reduced in plants inoculated with T3 in combination with T1, compared with plants inoculated with T1 alone. These results clearly demonstrate the competitive nature of T3 in the presence of T1 and help explain the emergence of T3 as a prevalent race in Florida.  相似文献   

4.
Lee SH  Neate SM 《Phytopathology》2007,97(2):155-161
ABSTRACT Septoria speckled leaf blotch (SSLB) caused by Septoria passerinii is a common disease in barley. SSLB resistance genes Rsp1, Rsp2, and Rsp3 have previously been identified in the United States Department of Agriculture National Small Grains collection accessions CIho 14300, CIho 4780, and CIho 10644, respectively. Populations of 100 to 120 F(2) individuals were evaluated for SSLB resistance in the greenhouse. Inheritance was evaluated in F(2:3)-derived families in the field. Partial molecular maps for three Rsp genes were constructed on F(2) and F(2:3) families derived from crosses between Robust and the resistant accessions CIho 14300, CIho 4780, and CIho 10644. The resistant locus Rsp1 was mapped to the short arm of chromosome 3H with two flanking diversity arrays technology (DArT) markers, bPb-6978 (8.9 cM) and bPb-9945 (16.3 cM), and two random amplified polymorphic DNA (RAPD) markers, OPC2(441R) (3.0 cM) and UBC285(158R) (4.3 cM). The genes Rsp2 and Rsp3 were positioned on the short arm of barley chromosome 1H with two restriction fragment length polymorphism (RFLP), six DArT, and three RAPD markers. An RFLP marker, MWG938, and an RAPD marker, OPAH5(545C), were tightly associated with Rsp2 at a distance of 0 cM. Five DArT markers spanning the short arm of 1H surrounded Rsp3 at a distance of 2.3 and 5.8 cM, while two RAPD markers-OPBA12(314C) (2.4 cM) in coupling and OPB17(451R) (3.5 cM) in repulsion-flanked Rsp3. Molecular marker data associated with Rsp2 and Rsp3 indicated that the two genes are closely linked on chromosome 1HS. A total of 17 of 154 simple sequence repeats (SSRs) tested were associated with Rsp genes on chromosome 1H and 3H, and they were also integrated into genetic linkage maps of the three F(2) Robust populations. Knowledge about the map position of Rsp genes on barley chromosomes will be useful for breeding for SSLB resistance in barley and eventual gene cloning.  相似文献   

5.
ABSTRACT Tomato race 3 (T3) strains of Xanthomonas campestris pv. vesicatoria are antagonistic in vitro to tomato race 1 (T1) strains of the bacterium. All T1 strains and 11 strains of other X. campestris pathovars tested were inhibited by T3 strains. Sensitivity of tomato race 2 (T2) strains was variable. No strains from other bacterial genera tested were inhibited. Cell-free filtrates from T3 strains were inhibitory to sensitive strains. The inhibitory activity of these filtrates was lost after treatment at temperatures above 80 degrees C and with selected protease enzymes. However, treatment with trypsin or DNase had no effect on their activity. Seven cosmid clones from a genomic library of a T3 strain were selected for their ability to consistently inhibit a sensitive indicator strain in plate assays. Southern hybridization analysis placed these into three bacteriocin (BCN)-producing groups designated BCN-A, BCN-B, and BCN-C. The BCN-like groups could be differentiated by variations in inhibitory spectra and levels of activity in plate assays. Mutations that inactivated expression of each BCN group individually in a wild-type T3 strain had inhibitory activity confirming that multiple BCNs are present in the T3 strain. T3 strains were inhibitory to a sensitive indicator strain in tomato leaf tissue, but this effect was observed only when T3 strains were applied in advance of the sensitive strain. BCN-A was the major BCN-like substance involved in the suppression of the sensitive indicator strain in tomato leaf tissues.  相似文献   

6.
ABSTRACT New cultivars of the common bean (Phaseolus vulgaris) with durable resistance to anthracnose can be developed by pyramiding major resistance genes using marker-assisted selection. To this end, it is necessary to identify sources of resistance and molecular markers tightly linked to the resistance genes. The objectives of this work were to study the inheritance of resistance to anthracnose in the cultivar TO (carrying the Co-4 gene), to identify random amplified polymorphic DNA (RAPD) markers linked to Co-4, and to introgress this gene in the cultivar Rudá. Populations F(1), F(2), F(2:3), BC(1)s, and BC(1)r from the cross Rudá x TO were inoculated with race 65 of Colletotrichum lindemuthianum, causal agent of bean anthracnose. The phenotypic ratios (resistant/susceptible) were 3:1 in the F(2) population, 1:1 in the BC(1)s, and 1:0 in the BC(1)r, confirming that resistance to anthracnose in the cultivar TO was monogenic and dominant. Six RAPD markers linked to the Co-4 gene were identified, four in the coupling phase: OPY20(830C) (0.0 centimorgan [cM]), OPC08(900C) (9.7 cM), OPI16(850C) (14.3 cM), and OPJ01(1,380C) (18.1 cM); and two in the repulsion phase: OPB03(1,800T) (3.7 cM) and OPA18(830T) (17.4 cM). OPY20(830C) and OPB03(1,800T), used in association as a codominant pair, allowed the identification of the three genotypic classes with a high degree of confidence. Marker OPY20(830C), which is tightly linked to Co-4, is being used to assist in breeding for resistance to anthracnose.  相似文献   

7.
Several black rot-resistant varieties of Brassica oleracea showed a race-specific hypersensitive response (HR) to inoculation with Xanthomonas campestris pv. campestris isolates of different races. In progenies of cabbage line PI436606, Portuguese kale ISA454 and Chinese kale SR1 the HR to race 1 of the pathogen was controlled by a dominant gene named R1, when a recessive gene r5 was responsible for the HR to race 5. Genes with a similar race-specific reaction were assumed on the basis of gene-for-gene interaction in black rot-resistant Japanese cabbage cultivars and double haploid lines obtained from them. Homology of gene r5 in cabbage lines PI436606, Fujiwase 01 and kale ISA454 was postulated in crosses between those lines or their progenies. In a cross between SR1 and PI436606, interaction between resistance to race 1 and non-specific resistance localized in the stem vascular system was found. On the basis of pedigree information and homology of resistance genes in the cultivars of East-Asian cabbage and Portuguese kales, the probable origin of race-specific resistance to black rot of cole crops was suggested to be in heading Mediterranean kale. Some evidence was found for a gene conferring resistance to race 4 in B. oleracea.  相似文献   

8.
应用RAPD方法获得与番茄ToMV抗性基因Tm2nv连锁的分子标记   总被引:15,自引:0,他引:15  
运用 RAPD技术 ,在番茄 To MV抗性基因 Tm2 nv的 F2 代群体中采用混合分组分析法 ( bulkedsegregant analysis,BSA)进行分子标记研究 ,找到了一个与 Tm2 nv基因连锁的分子标记 OPD2 0 170 0 ,其遗传距离为 7.0 67c M,L OD值为 16.768  相似文献   

9.
辣椒、番茄细菌性疮痂病及生理小种鉴定   总被引:7,自引:0,他引:7  
 近3年,从北京、山西、内蒙、新疆和云南等地的辣椒和番茄病株上分离到19个菌株,经致病性测定和细菌学鉴定,确定这19个菌株为甘蓝黑腐黄单胞菌疮痂致病变种(Xanthomonas campestris pv.vesicatoria(Doidge) Dye,1978)。供试19个菌株在国内首次采用国际标准鉴别寄主进行了生理小种鉴定。其中,3个菌株为番茄小种1(XcvT race1),仅存在于北京地区,其它16个菌株均属于辣椒-番茄小种3(XcvPT race3),分布广,为我国优势小种。  相似文献   

10.
ABSTRACT Three F(2) populations derived from crosses between the resistant cultivar AB 136 and the susceptible cultivar Michelite (MiA), and one F(2) population derived from a cross between AB 136 and Mexico 222 (MeA), were used to identify markers linked to anthracnose resistance genes present in cultivar AB 136. Primer OPZ04 produced a DNA band (OPZ04(560)) linked in coupling phase to the resistance gene for pathotype 89 (8.5 +/- 0.025 cM) in one population derived from the cross MiA. In the same population, primer OPZ09 produced one band (OPZ09(950)) linked in repulsion phase (20.4 +/- 0.014 cM) to the same resistance gene. The simultaneous use of markers in coupling and in repulsion phases allowed the identification of the three genotypic classes. In the other two populations from cross MiA, OPZ04(560) was linked in coupling phase to resistance genes for pathotypes 73 (2.9 +/- 0.012 cM) and 81 (2.8 +/- 0.017 cM). In population MeA, OPZ04(560) was linked in coupling phase (7.5 +/- 0.033 cM) to resistance to pathotype 64. These data suggest that a single gene or complex locus of linked resistance genes present in cultivar AB 136 confers resistance to all four pathotypes of C. lindemuthianum.  相似文献   

11.
应用RAPD方法获得与番茄ToMV抗性基因Tm2nv连锁的分子标记   总被引:1,自引:0,他引:1  
 运用RAPD技术,在番茄ToMV抗性基因Tm2nv的F2代群体中采用混合分组分析法(bulkedse gregant analysis,BSA)进行分子标记研究,找到了一个与Tm2nv基因连锁的分子标记OPD201700,其遗传距离为7.067cM,LOD值为16.768。  相似文献   

12.
 利用RAPD技术,以随机引物对我国棉花枯萎菌的3个生理小种(3、7、8号小种)共26个菌株进行PCR扩增,从产生的140个RAPD分子标记中寻找到了不同小种的特征性条带,O PF-10513(3号小种)、OPF-08371(7号小种)及OPF-12703(8号小种)。将其纯化后克隆到pGEM-TEasy质粒载体上,并获得了DNA特异性片段的核酸序列。  相似文献   

13.
Ten haploid prototrophic recombinant isolates (HPRs) were obtained from each of 15 parasexual crosses between complementary autotrophs derived from nine tomato isolates and one eggplant isolate of V. dahliae , including those identified as race 1 and race 2. These HPRs were tested for pathogenicity to the tomato cultivar Roma which is susceptible to both races. HPRs from a 'selfed' race 2 × race 2 cross were as pathogenic as the wild-type parent. The pathogenicity of HPRs derived from all other crosses was variable, and generally lower than the parental mean. A particularly marked reduction in pathogenicity, compared with the parental mean, was observed for HPRs recovered from two crosses between isolates belonging to different heterokaryon compatibility groups. The results suggest that pathogenicity to cv. Roma is controlled by complex interactions between genes at numerous loci.  相似文献   

14.
Broadening of the genetic base for identification and transfer of genes for resistance to insect pests and diseases from wild relatives of rice is an important strategy in resistance breeding programs across the world. An accession of Oryza nivara, International Rice Germplasm Collection (IRGC) accession number 105710, was identified to exhibit high level and broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. In order to study the genetics of resistance and to tag and map the resistance gene or genes present in IRGC 105710, it was crossed with the bacterial blight (BB)-susceptible varieties 'TN1' and 'Samba Mahsuri' (SM) and then backcrossed to generate backcross mapping populations. Analysis of these populations and their progeny testing revealed that a single dominant gene controls resistance in IRGC 105710. The BC(1)F(2) population derived from the cross IRGC 105710/TN1//TN1 was screened with a set of 72 polymorphic simple-sequence repeat (SSR) markers distributed across the rice genome and the resistance gene was coarse mapped on chromosome 7 between the SSR markers RM5711 and RM6728 at a genetic distance of 17.0 and 19.3 centimorgans (cM), respectively. After analysis involving 49 SSR markers located between the genomic interval spanned by RM5711 and RM6728, and BC(2)F(2) population consisting of 2,011 individuals derived from the cross IRGC 105710/TN1//TN1, the gene was fine mapped between two SSR markers (RMWR7.1 and RMWR7.6) located at a genetic distance of 0.9 and 1.2 cM, respectively, from the gene and flanking it. The linkage distances were validated in a BC(1)F(2) mapping population derived from the cross IRGC 105710/SM//2 × SM. The BB resistance gene present in the O. nivara accession was identified to be novel based on its unique map location on chromosome 7 and wider spectrum of BB resistance; this gene has been named Xa33. The genomic region between the two closely flanking SSR markers was in silico analyzed for putatively expressed candidate genes. In total, eight genes were identified in the region and a putative gene encoding serinethreonine kinase appears to be a candidate for the Xa33 gene.  相似文献   

15.
ABSTRACT Barley lines Hor 2596 and Triumph are the sources of leaf rust resistance genes Rph9 and Rph12, respectively. An allelism test was performed with F(2) progeny of the cross Triumph/Hor 2596 inoculated with Puccinia hordei. No recombinants were found in a population of 3,858 progeny, indicating Rph9 and Rph12 are alleles. Molecular and morphological markers were used to identify the chromosomal location of these genes in the crosses Bowman/Hor 2596 and Triumph/I91-533-va. A linkage was detected between Rph9 and the flanking sequence-tagged site (STS) markers ABC155 and ABG3 on chromosome 7(5H) at a distance of 20.6 and 20.1 centimorgans (cM), respectively, and to the microsatellite marker dehydrin-9 (HVDHN9) at a distance of 10.2 cM in the Bowman/ Hor 2596 cross. Analysis of isozymes in bulks of the same population showed that Rph9 may be closely linked to the Est9 locus on chromosome 7(5H). The Rph12 locus was linked to the morphological trait locus va (controlling variegated leaf color) on chromosome 7(5H) at a distance of 22.6 cM in the Triumph/I91-533-va cross. Rph12 also was linked with STS marker ABC155 (24.4 cM) and RAPD marker OPA19 (1.5) (17.8 cM). These data indicate that Hor 2596 and Triumph carry a leaf rust resistance gene at the same locus on the long arm of chromosome 7(5H) of barley.  相似文献   

16.
 M852-1是由柔软滨麦草和普通小麦7182经杂交和回交培育的易位系。苗期抗病性鉴定结果表明,M852-1对CYR29、CYR31、CYR32、CYR33、Su11-4、Su11-7和V26等7个中国小麦条锈菌主要生理小种或新的致病类型均表现免疫至高抗,是一个较好的抗条锈资源材料。用条锈菌流行小种CYR33对M852-1与铭贤169杂交F1、F2、F3和BC1代进行抗性鉴定与遗传分析,发现M852-1对CYR33的抗条锈性由1对隐性基因控制,暂定名为YrElm。以F2代分离群体构建作图群体,利用集群分离分析法,筛选到与YrElm连锁的5个SSR标记:Xcfd35、Xgwm161、Xwmc630、Xgwm533和Xcfd34,并将YrElm定位于小麦染色体3DS上。YrElm两侧最近2个SSR标记Xcfd35与Xgwm161的遗传距离分别为6.5 cM和4.2 cM。抗锈性鉴定、系谱分析以及分子标记检测结果表明,该抗病基因来源于柔软滨麦草。综合基因来源、分子检测及染色体位点等方面的分析,认为YrElm可能是一个新的抗条锈病基因。用该基因两侧最近两个标记Xcfd35和Xgwm161 检测68个甘肃和黄淮麦区小麦品种(系),10个(14.7%)品种能扩增出与M852-1相同的条带。进一步进行抗病性及系谱分析表明,这10个品种均不含YrElm。本研究结果为利用YrElm进行分子标记辅助育种和进一步的精细定位奠定了基础。  相似文献   

17.
ABSTRACT Crown rust of barley, caused by Puccinia coronata var. hordei, occurs sporadically and sometimes may cause yield and quality reductions in the Great Plains region of the United States and Canada. The incompletely dominant resistance allele Rpc1 confers resistance to P. coronata in barley. Two generations, F(2) and F(2:3), developed from a cross between the resistant line Hor2596 (CIho 1243) and the susceptible line Bowman (PI 483237), were used in this study. Bulked segregant analysis combined with random amplified polymorphic DNA (RAPD) primers were used to identify molecular markers linked to Rpc1. DNA genotypes produced by 500 RAPD primers, 200 microsatellites (SSRs), and 71 restriction fragment length polymorphism (RFLP) probes were applied to map Rpc1. Of these, 15 RAPD primers identified polymorphisms between resistant and susceptible bulks, and 62 SSR markers and 32 RFLP markers identified polymorphisms between the resistant and susceptible parents. The polymorphic markers were applied to 97 F(2) individuals and F(2:3) families. These markers identified 112 polymorphisms and were used for primary linkage mapping to Rpc1 using Map Manager QT. Two RFLP and five SSR markers spanning the centromere on chromosome 3H and one RAPD marker (OPO08-700) were linked with Rpc1 and, thus, used to construct a 30-centimorgan (cM) linkage map containing the Rpc1 locus. The genetic distance between Rpc1 and the closest marker, RAPD OPO08-700, was 2.5 cM. The linked markers will be useful for incorporating this crown rust resistance gene into barley breeding lines.  相似文献   

18.
ABSTRACT Xanthomonas axonopodis pv. glycines is the causal agent of bacterial pustule disease of soybeans. A transposon insertional mutant (KU-P-M670) of X. axonopodis pv. glycines derived from wild-type strain KU-P-34017 lost the ability to induce the hypersensitive response (HR) on tobacco and pepper but retained its HR induction capacity on cucumber, sesame, and tomato. The mutation also resulted in loss of ability to cause a potato soft rot and express pectolytic activity at pH 6.5. An approximate 1.4-kb DNA fragment carrying the transposon insertion contained a single open reading frame that showed high homology with PSTRU-3, a pectate lyase gene in X. axonopodis pv. malvacearum. Complemented KU-P-M670 regained HR induction on tobacco and also pectolytic activity. Treatment of plants with inhibitors of eukaryotic metabolism blocked HR induction by wild-type strains and by complemented KU-P-M670. The presence of the pectate lyase homolog, which we designated xagP, in 26 X. axonopodis pv. glycines strains was highly correlated with their ability to induce an HR on tobacco. To our knowledge, this is the first study indicating a role for a functional pectate lyase in induction of a plant HR.  相似文献   

19.
The causal agent of bacterial spot of capsicum and tomato grown in different regions in Yugoslavia was investigated. Isolations were made from diseased material collected in recent years. The biochemical and physiological characteristics of isolated bacteria were studied by standard bacteriological tests. The race of the pathogen was determined on differential cultivars of capsicum and tomato. The causal agent of the disease was identified according to the concepts of the time as Xanthomonas campestris pv. vesicatoria. Strains isolated from diseased capsicum were non-pectolytic and non-amylolytic, and did not infect tomato plants. According to the reaction of capsicum cv. Early Calwonder and its isogenic lines, these strains belonged to'pepper races'1 and 3 of X. vesicatoria. Tomato strains showed pectolytic and amylolytic activity and were not pathogenic to capsicum. Accordingly, the capsicum strains could now be considered to be X. axonopodis pv. vesicatoria and the tomato strains X. vesicatoria.  相似文献   

20.
Tomato bacterial spot is caused by Xanthomonas euvesicatoria, Xvesicatoria, Xperforans and Xgardneri. In order to determine the distribution, frequency of occurrence, and diversity of these species in the Brazilian commercial tomato fields, a survey was conducted between 2009 and 2012. In this period, 204 strains were obtained from 33 counties (22 with processing tomatoes and 11 with fresh‐market tomatoes). Pathogenicity tests, BOX‐PCR, PCR with species‐specific primers, and sequence analysis of the avirulence gene avrXv3 were performed in order to identify the strains at species and race level. Xanthomonas perforans predominated among the strains (92%) and was present in most counties. In addition, this species was prevalent in most areas of both fresh‐market tomatoes (63.6% of counties surveyed) and processing tomatoes (95.4% of counties surveyed). Fifteen strains (7.5%) were identified as Xgardneri, which was found mostly in fresh‐market fields located at regions with altitude higher than 900 m, and only one strain of Xeuvesicatoria (0.5%) was found in a processing tomato field. High genetic diversity was observed within Xperforans, with 137 BOX‐PCR haplotypes. Race T3 prevailed (97.5%), but reported here for the first time is the occurrence of five strains identified as race T4 in fresh‐market fields in the state of São Paulo. The race T4 phenotype of these strains resulted from the presence of an 859 bp insertion in the avirulence gene avrXv3. This insertion is related to amino acid sequences of a transposase found in X. gardneri, and to amino acid sequences of X. campestris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号