首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxic trace metals may percolate to the ground water from sewage sludge disposed onto land. Analyses are presented of the soil solution from a slightly acid loamy soil treated 7 years earlier with single applications of digested sewage sludge in amounts equivalent to 0, 150 & 330 t dry matter ha−1
These very heavy dressings correspond to 2 & 4.5 times the recommended 30–year limit. Samples of soil and soil solution from four depths to 80 cm were analysed for Al, B, Ba, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, S, Sr, V, Zn, together with the OM of the soil, and the pH, alkalinity, dissolved organic carbon, and absorbance at 350 nm of the solutions.
These very heavy sludge applications were apparently still releasing substantial quantities of NO3, and some SO4 even after 7 years. Nitrate, SO4, Mg, Ca, Sr, B, and possibly Ba are still moving through the profile, possibly to the ground water. Solution concentrations of Cu and Zn are considerably higher at all depths than those in the untreated plot, but they fall off sharply with depth. It is unlikely that any Cu or Zn is now reaching the ground water.
The paper also presents a set of published solution analyses for soils, sludge–treated soils and digested sludge, as a basis for further studies.  相似文献   

2.
Abstract

The objectives were to determine if phosphorus (P) from different organic wastes differs in availability to crops. Four materials: digested, dewatered sewage sludge (DSS); irradiated sewage sludge (DISS); irradiated and composted sewage sludge (DICSS); and composted livestock manure (CLM) were applied for two years at five rates (0, 10, 20, 30, 40 Mg#lbha‐1#lbyr‐1) with four replicates. Uptake of P was measured in lettuce [Lactuca saliva L. (cv. Grand Rapids)], bean [Phaseolus vulgaris L. (cv. Tender Green)], and petunia [Petunia hybrida Vilm. (cv. Superior Red)] in 1990, and in consecutively harvested two cuts of lettuce in 1991. Percentage of total P that was extractable by 0.5M sodium bicarbonate (NaHCO3) in CLM (30–70%) was much higher than in DSS, DISS, and DICSS (0.8–5.6%). Phosphorus uptake by crops harvested in an early stage of growth, lettuce in 1990 and first cut lettuce in 1991, and the extractable soil P linearly increased with total P applied. The lack of response in P uptake with bean pod and petunia in 1990, and the second cut lettuce in 1991, was possibly due to their advanced stage of maturity. Much larger amounts of P were applied with DSS, DISS, and DICSS than with CLM, while P uptake and extractable soil P did not increase compared to that in the treatment that received no P. The low availability of P in sludge was likely caused by iron (Fe) and aluminum (Al) which precipitated P. Sludge irradiation and/or composting had no significant effect on P availability.  相似文献   

3.
The influence of a single addition of sewage sludges to soils on the composition of fungal communities, soil pH (physical factor) and presence of Eschericha coli (sanitary factor) during 1 year was studied. Only the pH of soil treated with limed sewage sludge increased significantly from 7.01 to 7.58 after 3 months. E. coli was still present in soil 1 year after application of sewage sludge. Fungal numbers increased in the sewage-sludge-treated soil up to 6 months after application (maximum value was 7.5 times that of the control) and then decreased to reach values comparable to those of the control. Treated soils showed different fungal communities to the control with presence of keratinolytic fungi (Sporothrix schenckii, Microsporum sp.), yeasts (Geotrichum candidum, Candida sp., Rhodotorula sp. Cryptococcus sp.), and other potential pathogenic fungi (Aspergillus niger, Fusarium solani). The results indicate that fungi belonging to the genus Candida could be used as specific indicator organisms of the sanitary condition of soils treated with sewage sludge.  相似文献   

4.
Background, aim, and scope  Heavy metal (HM) mobility in soil depends on the HM species in it. Therefore, knowledge of the HM speciation in soil allows the prediction of HM impact on the environment. HM speciation in soil depends on the metal chemical origin, soil texture, and other factors such as the origin and level of soil contamination. Recently, the problem of organic waste utilization is of great importance as the amount of this recyclable material is continually increasing. One of the possible ways of recycling is the use of processed organic wastes for agricultural needs. In this research, aerobically composted sewage sludge was used, the utilization of which is of essential importance. But one of the most serious restrictions is HM transfer from such material to the soil. Therefore, a prediction of HM mobility in soil and its migration in the environment is an important issue when using sewage sludge compost (SSC) in agriculture. Zn, Cu, and Pb speciation was performed according to the modified methodology of Tessier et al. (Anal Chem 51:844–851, 1979) in two different (sandy and clay) soils with background HM amounts and in soil samples amended with aerobically digested SSC to find out the predominant species of the investigated HM and to predict their potential availability. Materials and methods  The modified method of sequential extraction initially proposed by Tessier et al. (Anal Chem 51:844–851, 1979) is designed for HM speciation into five species where HM mobility decreases in the order: F1—exchangeable HM (extracted with 1 M MgCl2 at an initial pH of 7 and room temperature), F2—carbonate-bound HM (extracted with 1 M CH3COONa buffered to pH 5 at room temperature), F3—Fe/Mn oxide-bound HM (extracted with 0.04 M NH2OH·HCl at an initial pH of 2 at 96°C), F4—organic matter-complexed or sulfide-bound HM (extracted with 0.02 M HNO3 and 30% (v/v) H2O2 at a ratio of 1:1 and an initial pH of 2 at 85°C), and F5—the residual HM (digested with HNO3, HF, and HCl mixture). After digestion, HM amounts in solution were determined by atomic absorption spectrometry (AAS ‘Hitachi’). Mixtures of uncontaminated soils of different textures (clay and sandy) with SSC in ratios 20:1, 10:1, and 5:1 were used to simulate the land application with SSC. During a period of 7 weeks, changes in Zn, Cu, and Pb content within species were investigated and compared weekly in soil–SSC mixtures with their speciation in pure soil and in the SSC. Results  Results in the SSC showed that more HM were found as mobile species compared to the soils, and in sandy soil, more were found in the mobile species than in clay soil. But the HM speciation strongly depended on the metal chemical origin. According to the potential availability, HM ranked in the following order: Zn>Pb>Cu. Zinc generally occurred in the mobile species (F1 and F3), especially in sandy soils amended with SSC, and changes of the Zn speciation were insignificant at the end of the experiment. Pb transfer to insoluble compounds (F5) was evident in the SSC–soil mixtures. This confirms that Pb is extremely immobile in the soil. However, the observed increase of Pb amounts in the mobile species (F1 and F2) during the course of experiment shows a critical trend of Pb mobilization under anthropogenic influence. Copper in the soil–SSC mixtures had a trend to form compounds of low mobility, such as organic complexes and sulfides (F4) and nonsoluble compounds (residual fraction F5). Initially, the amounts of mobile Cu species (F1 and F2) increased in the soils amended with SSC, probably due to the influence of SSC of anthropogenic origin with lower pH and high organic matter content, but Cu mobility decreased nearly to the initial level again after 3–4 weeks. Hence, the soil has a great specific adsorption capacity to immobilize Cu of anthropogenic origin. Discussion  Zn mobility and environmental impact was greater than that seen for Cu and Pb, while mobility of both Cu and Pb was similar, but variable depending on soil texture and contamination level. The effect on the shift of HM mobility and potential availability was greater in sandy SSC-amended soils than in clay soils and increased with an increasing amount of SSC. Conclusions  Usage of SSC for land fertilization should be strictly regulated, especially regarding Pb amounts. Recommendations and perspectives  The influence of SSC on Cu and Zn mobility and potential availability was more significant only in the case of sandy soil with a higher SSC ratio. Nevertheless, this waste product of anthropogenic origin increased Pb mobility in all cases in spite of only moderate Pb mobility in SSC itself. Therefore, aerobic processing of sewage sludge must be strictly regulated, especially regarding Pb amounts, and SSC ratios must be in control regarding HM amounts when using it for on-land application.  相似文献   

5.
连续施用无害化污泥堆肥对沙质潮土肥力的影响   总被引:1,自引:1,他引:1  
【目的】 研究连续施用无害化污泥堆肥对土壤肥力和环境质量的影响,为无害化污泥资源化利用提供理论依据和技术支撑。 【方法】 通过2013—2015年田间定位试验,每年按照当地农民施肥量在小麦和玉米季分别施用N 225 kg/hm2、P2O5 86 kg/hm2和K2O 113 kg/hm2 (CK) 基础上,施用无害化污泥堆肥15 t/hm2 (W1)、30 t/hm2 (W2) 和45 t/hm2 (W3),共四个处理,每个处理3次重复。小麦、玉米收获后,采集0—20 cm土层样品,测定常规土壤理化性质、重金属含量以及微生物量碳氮 (SMBC、SMBN)。采用内梅罗指数法计算土壤pH、有机质、全氮、有效磷和速效钾分肥力系数IFIi,以及土壤综合肥力指数 (integrated fertility index,IFI)。 【结果】 1)施用污泥堆肥处理IFI在试验的第三年 (2015年) 玉米季达到最大值,与CK相比,W1、W2和W3处理IFI分别显著提升了57.3%、95.2%和127.5% (P < 0.05),说明连续施用污泥堆肥可以有效提高土壤肥力水平,其中W3处理效果最明显。2) SMBC和SMBN含量随污泥堆肥施用时间增加而增加。相同作物同一污泥堆肥施用量处理,第三年 (2015年) 的SMBC和SMBN含量均显著高于第一年 (2013年)。W1、W2和W3处理SMBC含量在2015年小麦季达到最大值,较CK分别显著提高了109.9%、176.2%和216.8% ( P < 0.05);W1、W2和W3处理SMBN含量在2015年玉米季达到最大值,较CK分别显著提高了55.6%、100.5%和162.3% ( P < 0.05)。3)施污泥堆肥处理的土壤和植物籽粒中重金属含量分别低于国家环境质量二级标准 (GB15618—1995) 和国家农产品质量安全规定的限量值。根据土壤肥力分级参考标准 (NY/T 391—2000),2015年玉米季W2和W3处理的土壤肥力已经达到I级,培肥作用显著,但长期大量施用导致的土壤重金属累积风险还需长期监测。 【结论】 施用重金属含量达到国家标准的无害化污泥堆肥,可以在短期内有效提升沙质潮土的土壤肥力质量,改善土壤微生物学特性。本试验条件下,连续施用45 t/hm2污泥堆肥效果最显著,沙质潮土的土壤肥力质量在第三年就达到I级,此时土壤和作物籽粒中重金属含量均低于国家相关标准限值。长期大量施用是否会带来重金属累积还需继续监测。   相似文献   

6.
This work sets out to verify whether the application of municipal solid waste compost (MSWC) or treated urban sewage sludge (USS) organic amendments efficiently promote organic matter (OM) increases in a Haplic Podzol (PZha) and in a Calcic Vertisol (VRcc). For that purpose, carbon (C) mineralization and C kinetic parameters were studied, using a laboratory experimental incubation setup. The results showed that the addition of the amendments to the soils increased their mineralization capacities, and that the highest C mineralization rate was reached at the end of the first 2 d of incubation. The different characteristics of the soils seem to have influenced the C mineralization rates during the 28-d incubation. The USS induced higher C mineralization than the MSWC, and the PZha soil gave rise to higher C mineralization than VRcc. For all treatments, C mineralization adjusted well to an exponential plus linear kinetic model, suggesting that the organic C of the amendments was made up of two organic pools of differing degrees of stability. With the exception of the application of USS 60 t ha−1, all the treatments increased the OM content on both soils, or at least the OM remained constant throughout the incubation.  相似文献   

7.
《Applied soil ecology》2002,19(3):237-248
Recycling of organic wastes within agriculture may help maintain soil fertility via effects on physical, chemical and biological properties. Efficient use, however, requires an individual assessment of waste products, and effects should be compared with natural variations due to climate and soil type. An 11-month incubation experiment was conducted between April 1998 and March 1999, in which a sandy loam without or with anerobically digested sewage sludge (4.2 t dry matter (DM) ha−1) or household compost (17 t DM ha−1) was incubated under constant laboratory conditions at 10 °C, as well as in the field. The following properties were monitored: wet-stability of soil aggregates, clay dispersibility, hot-water extractable carbohydrates, resin-extractable Pi, inorganic N, biomass C and N, PLFA profiles, FDA hydrolysis activity, β-glucosidase activity and CO2 evolution. In general, effects of waste amendment were positive, but moderate compared to the dynamics observed in unamended soil, and mainly occurred in the first several weeks after amendment. The temporal dynamics of inorganic N, FDA hydrolysis activity, biomass C and PLFA composition appeared to be faster under the fluctuating climatic conditions in the field. To evaluate accumulated effects of repeated waste applications, soil was also sampled from a field trial, in which the sewage sludge and household compost had been applied at the same rates as in the incubation study for three consecutive years. Sampling took place after the final harvest, i.e. 5 months after the final waste application. Compost amendment had increased potentially mineralizable N by a factor of 1.8, and sludge amendment had increased the amount of resin-extractable Pi by a factor of 1.6. However, there were no accumulated effects of waste amendment on the fraction of soil in wet-stable aggregates, or on the microbiological properties tested, which supported the observation from the incubation study that effects of organic wastes were transient.  相似文献   

8.
目前关于污泥及其生物质堆肥的土地利用过程中土壤性质变化和温室气体排放数据十分缺乏,难以满足农田土壤氮素保存和温室气体减排的需求。该研究通过在番茄种植过程中添加800 kg/hm2新鲜污泥(S-H)、400 kg/hm2新鲜污泥(S-L)、800 kg/hm2秸秆堆肥(VM-S)和800 kg/hm2猪粪堆肥(VM-M),开展土壤性质、无机氮形态、作物生长以及N2O排放特征的研究。结果表明:堆肥处理显著增加了土壤电导率(electric conductivity,EC)(P0.05),其中猪粪堆肥时土壤EC值最大。添加污泥和堆肥都使土壤p H值显著上升(P0.05),最终趋于中性,且VM-M对土壤酸化的抑制效果略优于VM-S。污泥和堆肥处理时土壤NO3--N浓度显著高于对照,且各处理组NO3--N浓度均随时间逐渐下降,NO3--N主要被番茄吸收,部分NO3--N从土壤上层淋溶至下层;NH4+大多数被氧化为NO3-,部分NH4+被植物吸收。在施入的无机氮量相等情况下,VM-M、VM-S、S-H处理组中番茄地上部分生物量分别为1 515、1 383、1 103 g/株,株高分别为56.8、54.5、51.3 cm,对番茄生长的促进效果为VM-MVM-SS-H,而S-H比S-L多施入的氮肥对番茄生长并未起到明显促进作用(P0.05)。与对照相比,污泥或生物质堆肥都显著提高了土壤N2O的排放(P0.05),各处理组N2O的排放均集中于施肥后的前20天,且土壤N2O的排放通量大小顺序为S-L(0.76 kg/(hm2·a))VM-M(0.95 kg/(hm2·a))VM-S(1.19 kg/(hm2·a))S-H(1.71 kg/(hm2·a))。因此,在进行污泥及其生物质堆肥的土地利用时,应考虑有机肥的种类及其施用量,以在提高作物产量的同时改善土壤并减少温室气体排放,在进行污泥的农田利用时可先将污泥与畜禽粪堆肥。  相似文献   

9.
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha−1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied.  相似文献   

10.
Soil properties may affect the decomposition of added organic materials and inorganic nitrogen (N) production in agricultural soils. Three soils, Potu (Pu), Sankengtzu (Sk) and Erhlin (Eh) soils, mixed with sewage sludge compost (SSC) at application rates of 0 (control), 25, 75 and 150 Mg ha−1 were selected from Taiwan for incubation for 112 days. The aim of the present study was to examine the effects of SSC application rates on the carbon decomposition rate, N transformation and pH changes in three soils with different initial soil pH values (4.8–7.7). The results indicated that the highest peaks of the CO2 evolution rate occurred after 3 days of incubation, for all treatments. The Pu soil (pH 4.8) had a relatively low rate of CO2 evolution, total amounts of CO2 evolution and percentage of added organic C loss, all of which resulted from inhibition of microbial activity under low pH. For the Pu and Sk soils, the concentration of NH4+-N reached its peak after 7–14 days of incubation, which indicated that ammonification might have occurred in the two soils with low initial pH values. NO3-N rapidly accumulated in the first 7 days of incubation in the Eh soil (pH 7.7). The direction and extent of the soil pH changes were influenced by the N in the SSC and the initial soil pH. Ammonification of organic N in the SSC caused the soil pH to increase, whereas nitrification of mineralized N caused the soil pH to decline. Consequently, the initial soil pH greatly affected the rate of carbon decomposition, ammonification and nitrification of SSC.  相似文献   

11.
Core lysimeters containing undisturbed coarse sandy soil (from grassland) were amended with a high rate of anaerobically digested sewage sludge (equivalent to >1,000 t ha–1). Water, at a rate equivalent to the mean weekly rainfall for the soil, was applied to amended and control lysimeters for 30 weeks and the leachate analysed for anions and cations. Lysimeters were also destructively sampled at intervals throughout the experiment and soil samples were analysed for extractable NH4+-N, NO3-N and PO43–-P. Ammonium N leached for about 11 weeks from the amended lysimeters, then abruptly stopped. A similar amount of NO3-N leached, but leaching was continuing when the experiment finished. The control lysimeters leached as much NO3-N as those that were amended, but no NH4+-N. The amended lysimeters also leached NO2-N. Negligible PO43–-P, but large amounts of SO42– were leached from the amended lysimeters. Concentrations of extractable NH4+-N and PO43–-P were very high in the amended soils, but NO3-N concentrations remained low throughout the experiment, indicating that nitrification rates were low and/or that denitrification rates were high.  相似文献   

12.
 An incubation experiment lasting 120 days was carried out to ascertain the effect on the soil microbial activity and organic matter mineralization of adding a sewage sludge compost contaminated with two different levels of Cd to an arid soil. Two composts, with a low (2 mg kg–1) and high (815 mg kg–1) Cd content, respectively, were used in this experiment. Both composts increased the total organic C, humic substance and water-soluble C contents, the beneficial effects still being noticeable after 120 days of incubation. The most labile C fraction (water-soluble C) was the most sensitive to the high Cd content. The high Cd concentration decreased soil microbial biomass C and stimulated the metabolic activity of the microbial biomass, the metabolic quotient (qCO2) revealing itself to be a very sensitive index of the stress that the incorporation of a Cd-contaminated sewage sludge compost causes in a soil. The effect of Cd contamination on enzyme activities (urease, protease that hydrolyse N-α-benzoil-l-arginamide, phosphatase, and β-glucosidase) depended on the enzyme studied. Received: 10 September 1997  相似文献   

13.
This paper evaluated, in a laboratory incubated soil, the properties of digestate as a nitrogen fertilizer in comparison with sewage sludge, compost and urea, this last as a typical mineral fertilizer. The incubation period lasted for 90 d and during this time, pH, CO2 and evolution were measured. The maximum concentration of nitrate was reached in the incubated microcosm fertilized by urea (133 mg kg−1 after 62 d), and that of digestate was very similar (113 mg kg−1). Soil treated with compost showed a slower nitrate evolution. A significantly negative correlation was detected between cumulative nitrogen nitrified at the end of the trial, and the values of the C:N ratio of the biomasses used (compost, sludge and digestate) (mg kg−1 vs . C:N, r = –0.94, n = 3, p < 0.05), and between the alkyl‐C content at the end of the experiment (mg kg−1 vs . alkyl‐C, r = –0.95, n = 3, p < 0.05). As expected, pH decreases and soil respiration (CO2 evolution) were also well correlated with the content of nitrate. Considering that about 90% of the nitrogen content in the digestate is short acting, the results obtained indicate that the nitrogen rate of mineralization in digestate is very similar to that of urea, confirming that digestate could replace traditional mineral fertilizers.  相似文献   

14.
15.
Summary The effect of fly ash on N mineralization in sewage sludge was studied during a 5-week aerobic incubation of soil-waste mixtures at different loading rates under controlled conditions. Periodically, the mixtures were leached with distilled water and the inorganic N released was determined in the percolates. The data were tested by an analysis of variance with repeated measures. Significant differences were found among different incubation periods and also between different treatments. The net N mineralization, expressed as a percentage of organic N added in the sludge, was drastically reduced when higher rates (500 Mg ha-1) of fly ash were added.  相似文献   

16.
Abstract

The volcanic ash of the Mount Pinatubo in Philippines is used in this study. The major drawbacks of this volcanic ash for growing agricultural crops are nitrogen (N) and iron (Fe) deficiencies with low organic matter contents. The objective of this study is to investigate the effect of sewage sludge compost on wheat through shoot and root development as well as dry matter production by pot culture. Either oxamide or polyolefinresin‐coated urea (PORCU) along with potash and phosphate fertilizers is applied to each pot containing volcanic ash. Application of sewage sludge compost in oxamide treatment yield a better plant height with an extended root length and high dry matter production compared to PORCU. However, statistical analysis of the data on plant height shows significant level (p<0.001, n=36), while those on root growth and dry matter production show no significant difference (p<0.335 and 0.564, n=36). Thus it is concluded that the coupling effect of oxamide and sewage sludge compost has a greater impact on plants, while growing on this ash.  相似文献   

17.
Soil properties are one of the most important factors explaining the different toxicity results found in different soils. Although there is knowledge about the role of soil properties on the toxicity of individual chemicals, not much is known about its relevance for sewage sludge amendments. In particular little is known about the effect of soil properties on the toxicity modulation of these complex wastes. In addition, in most studies on sewage sludges the identity of the main substances linked to the toxicity and the influence of soil properties on their bioavailability remains unknown.In this study, the toxicity of a sewage sludge to the soil collembolan Folsomia candida was assessed in nine natural soils from agricultural, grassland and woodland sites, together with the OECD soil. Correlations between the relative toxicity of sludge for collembolans in the different soils and their physical and chemical soil properties were assessed in order to identify the main compounds responsible for the effects observed. Furthermore, the relationships between the toxic effects to collembolans and water-soluble ions released by sludge, pH and electric conductivity were also assessed, together with the modulating effects of soil properties.Sludge toxicity was directly linked to the water extractable ammonium, which explained most of the mortality of the collembolans, and part of the inhibition of reproduction. For the last endpoint, nitrite also contributed significantly to the inhibition observed. The varied levels in water extractable ammonium in the different soils at equal dosages seem to be, in turn, modulated by some soil properties. Higher organic carbon contents were associated with lower toxicity of sludge, both for survival and reproduction, probably related to its higher ammonium sorption capacity. In addition, for reproduction, increasing the C/N ratio and pH appeared to increase the toxicity, probably due to both the greater difficultly in nitrification and the known unsuitability of alkaline soils for this species.  相似文献   

18.

Purpose

In mine soils, especially from arid or semiarid areas, the use of low-quality water for irrigation is a usual practice. Therefore to fill this gap, different experiments have been carried out to evaluate the effect of compost, pesticide and wastewater on the growth of tomato plants in a mine soil located at an iron extraction area.

Materials and methods

Soils proceeded from Alquife mine wastes whose most outstanding characteristics are alkaline conditions, low organic matter and electrical conductivity and high As concentration. The compost of sewage sludge (CSL) used to amend this soil had a slightly acid pH (6.8), EC 3.0?±?0.07 dS m-1 (1/10 ratio, m/V) and 10 % organic carbon (OC) content. Irrigation was performed with distilled water (DW) or wastewater (WW) and two pesticides, the insecticide thiacloprid and the fungicide fenarimol, were applied to the soil. Tomato was grown directly from seeds on each pot. Four treatments with addition of pesticides were considered. For comparison purposes, two additional treatments without pesticides were also included.

Results and discussion

Addition of compost of sewage sludge led to a significant and sustained increase of soil OC content and dehydrogenase activity, while irrigation with wastewater had a slight or negligible effect on both properties. The plant species responded negatively to wastewater irrigation when this practice was undertaken with the application of both pesticides. No detectable amounts of thiacloprid, a relatively unstable and polar insecticide, were found in soil. The concentration of fenarimol in soil was higher after amendment with compost, but was not modified by irrigation with wastewater. In tomato shoots, the amounts of both pesticides were inversely correlated with final soil organic carbon, indicating that this soil property is relevant for their plant uptake. Besides, fenarimol concentrations in the soil and the tomato shoots were inversely related (r?=??0.836).

Conclusions

Tomato was not able to grow healthy in Alquife mine soil without compost addition. The irrigation with wastewater only reduced plant growth when used in combination with pesticides. Uptake of both pesticides by tomato plants was negligible according to the low bioaccumulation factor values, but was almost doubled for wastewater irrigation. Caution should be taken with the use of treated wastewater, because it may reduce plant growth in tomato that is a species sensitive to salinity.
  相似文献   

19.
To reclaim a limestone quarry, 200 and 400 Mg/ha of municipal sewage sludge were mixed with an infertile calcareous substrate and spread as mine soil in 1992. Soil samples were taken 1 week later and again after 17 yr of mine soil rehabilitation so as to assess changes in the amount and persistence of soil organic carbon (SOC). Sludge application increased SOC as a function of the sludge rate at both sampling times. Seventeen years after the sludge amendments, the nonhydrolysable carbon was increased in the 400 Mg/ha of sludge treatment. The recalcitrance of SOC was less in sludge‐amended soils than in the control treatment at the initial sampling, but 17 yr later this trend had reversed, showing qualitative changes in soil organic carbon. The CO2‐C production had not differed between treatments, yet the percentage of mineralized SOC was less in the high sludge dose. When the size of active (Cactive) and slow (Cslow) potentially mineralizable C pools was calculated by curve fitting of a double‐exponential equation, the proportion of Cactive was observed to be smaller in the 400 Mg/ha sludge treatment. Soil aggregate stability, represented by the mean weight diameter of water‐stable soil aggregates, was significantly greater in mine soil treated with the high dose of sludge (18.5%) and SOC tended to be concentrated in macro‐aggregates (5–2 mm). Results suggest that SOC content in sludge‐amended plots was preserved due by (i) replacement of the labile organic carbon of sludge by more stable compounds and (ii) protection of SOC in aggregates.  相似文献   

20.
Sewage sludge in doses of 200 and 400 Mg ha−1 (dry weight) were applied in an experimental rehabilitation of a limestone quarry to improve soil physical condition. The effect of this organic waste on soil aggregation and structural stability has been tested measuring aggregate size distribution by dry- and wet-sieving procedures over a period of 28 months. We discuss the influence of the organic components of aggregates on soil structure. The main effect of sewage sludge was to increase aggregate stability to raindrop impact (splash) just after application of the former but one year later this effect decreased notably. Organic matter is distributed in different ways between macro- and microaggregates, and this parameter seems to be responsible for the structure changes observed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号