共查询到20条相似文献,搜索用时 15 毫秒
1.
Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods 总被引:3,自引:0,他引:3
The premise of this paper is that the key to effective water resources management is understanding that the water cycle and land management are inextricably linked: that every land use decision is a water use decision. Gains in agricultural water productivity, therefore, will only be obtained alongside improvements in land use management. Expected increases in food demands by 2050 insist that agricultural production - and agricultural water use - must increase. At the same time, competition for water between agricultural and urban sectors will also increase; and the problem is further compounded by land degradation. A global survey suggests that 40% of agricultural land is already degraded to the point that yields are greatly reduced, and a further 9% is degraded to the point that it cannot be reclaimed for productive use by farm level measures. Soil erosion, nutrient depletion and other forms of land degradation reduce water productivity and affect water availability, quality, and storage. Reversing these trends entails tackling the underlying social, economic, political and institutional drivers of unsustainable land use. This paper is based on a review of global experiences, and its recommendations for improving water management by addressing land degradation include focusing on small scale agriculture; investing in rehabilitating degraded land to increase water productivity; and enhancing the multifunctionality of agricultural landscapes. These options can improve water management and water productivity, while also improving the livelihoods of the rural poor. 相似文献
2.
3.
David Molden Theib Oweis Prem Bindraban Jacob Kijne 《Agricultural Water Management》2010,97(4):528-535
In its broadest sense, water productivity (WP) is the net return for a unit of water used. Improvement of water productivity aims at producing more food, income, better livelihoods and ecosystem services with less water. There is considerable scope for improving water productivity of crop, livestock and fisheries at field through to basin scale. Practices used to achieve this include water harvesting, supplemental irrigation, deficit irrigation, precision irrigation techniques and soil-water conservation practices. Practices not directly related to water management impact water productivity because of interactive effects such as those derived from improvements in soil fertility, pest and disease control, crop selection or access to better markets.However, there are several reasons to be cautious about the scope and ease of achieving water productivity gains. Crop water productivity is already quite high in highly productive regions, and gains in yield (per unit of land area) do not necessarily translate into gains in water productivity. Reuse of water that takes place within an irrigated area or a basin can compensate for the perceived losses at the field-scale in terms of water quantity, though the water quality is likely to be affected. While crop breeding has played an important role in increasing water productivity in the past, especially by improving the harvest index, such large gains are not easily foreseen in the future. More importantly, enabling conditions for farmers and water managers are not in place to enhance water productivity. Improving water productivity will thus require an understanding of the biophysical as well as the socioeconomic environments crossing scales between field, farm and basin.Priority areas where substantive increases in water productivity are possible include: (i) areas where poverty is high and water productivity is low, (ii) areas of physical water scarcity where competition for water is high, (iii) areas with little water resources development where high returns from a little extra water use can make a big difference, and (iv) areas of water-driven ecosystem degradation, such as falling groundwater tables, and river desiccation. However, achieving these gains will be challenging at least, and will require strategies that consider complex biophysical and socioeconomic factors. 相似文献
4.
Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture 总被引:1,自引:0,他引:1
Charlotte de Fraiture David Molden Dennis Wichelns 《Agricultural Water Management》2010,97(4):495-501
The authors of the recently completed Comprehensive Assessment of Water Management in Agriculture (CA) concluded that there are sufficient water resources to produce food for a growing population but that trends in consumption, production and environmental patterns, if continued, will lead to water crises in many parts of the world. Only if we act to improve water use will we meet the acute fresh water challenge. Recent spikes in food prices, partially caused by the increasing demand for agricultural products in non-food uses, underline the urgent need to invest in agricultural production, of which water management is a crucial part. The world experienced similar pressure on per capita food supplies and food prices in the 1960s and 1970s, but the challenges now are different than those we experienced 50 years ago. The world's population is substantially larger, there are many more people living in poverty, and the costs of many agricultural inputs are much higher. The current situation and the long-term outlook require a fresh look at approaches that combine different elements such as the importance of access to water for the poor, providing multiple ecosystem services, rainwater management, adapting irrigation to new needs, enhancing water productivity, and promoting the use of low-quality water in agriculture. This special issue highlights the analysis behind a number of policy options identified by the CA, a five-year multi-disciplinary research program involving 700 scientists. This introductory article sets the background and context of this special issue, introduces the key recommendations from the CA and summarizes the papers in this issue. 相似文献
5.
Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries 总被引:1,自引:0,他引:1
Given current demographic trends and future growth projections, as much as 60% of the global population may suffer water scarcity by the year 2025. The water-use efficiency techniques used with conventional resources have been improved. However, water-scarce countries will have to rely more on the use of non-conventional water resources to partly alleviate water scarcity. Non-conventional water resources are either generated as a product of specialized processes such as desalination or need suitable pre-use treatment and/or appropriate soil–water–crop management strategies when used for irrigation. In water-scarce environments, such water resources are accessed through the desalination of seawater and highly brackish groundwater, the harvesting of rainwater, and the use of marginal-quality water resources for irrigation. The marginal-quality waters used for irrigation consist of wastewater, agricultural drainage water, and groundwater containing different types of salts. In many developing countries, a major part of the wastewater generated by domestic, commercial, and industrial sectors is used for crop production in an untreated or partly treated form. The protection of public health and the environment are the main concerns associated with uncontrolled wastewater irrigation. The use of saline and/or sodic drainage water and groundwater for agriculture is expected to increase. This warrants modifications in the existing soil, irrigation, and crop management practices used, in order to cope with the increases in salinity and sodicity that will occur. 相似文献
6.
Understanding and managing groundwater and salinity in a tropical conjunctive water use irrigation district 总被引:2,自引:0,他引:2
Agricultural production around the world is increasingly being constrained by hydrological factors—such as over-extraction of groundwater in some locations, rising water tables in others, and worsening groundwater quality in general. One such area is the Lower Burdekin irrigation area in northern tropical Australia, where rising watertable levels and increasing salinity concentrations within alluvial deposits are causing concern. The aim of this study was to improve understanding of the processes driving trends in groundwater quantity and quality in Mona Park, a conjunctive water use irrigation district in the Lower Burdekin. The analysis is intended to enable land and water managers to explore alternative policy and management practices to help support the reversal in current trends, and to improve water table conditions in terms of both water quantity and quality. Key lessons that are applicable to the development of new irrigation schemes in wet-dry tropical regions elsewhere in the world are emphasised.This study demonstrated that simple qualitative methods that link historical developments and observed climatic and hydrological trends can support development of a robust understanding of groundwater behaviour. The results showed that to minimise groundwater accessions in wet-dry tropical regions, a large soil water deficit should be maintained in the unsaturated zone prior to the onset of the wet season to buffer against potentially large wet season recharge events, and that this strategy should be implemented from when irrigation is first commenced. It is very clear that groundwater systems under or down gradient from irrigated areas need to be managed adaptively, such that: (1) timely decisions are made in response to changes in watertable level and groundwater quality; and (2) suitable mechanisms are in place to ensure farmers have the financial incentives and flexibility to respond in the short-term. The work also demonstrated that the establishment of good baseline data prior to irrigation development, and long-term analysis (>30 years) involving various combinations of wet and dry periods, are required in order to build a comprehensive understanding of potential groundwater behaviour and adaptive management needs. 相似文献
7.
8.
We assessed the basin-scale crop water productivity (CWP) on staple grain crops, i.e. rice, wheat, maize, soybean, at major breadbasket basins of China over time periods of 1997-2004. The multiple-year average CWP was 1.06 kg m−3 for the selected basins (equivalents of 946 m3 water consumption in producing 1 metric ton of crop economic yield), varying from 0.97 kg m−3 to 1.18 kg m−3. Of all the water consumed in crop production, irrigation water contributes 28-41%, while soil-stored precipitation contributes 59-72%, confirming the crucial yet hitherto under-estimated role played by green water in total crop yield formation. The blue water depletion rate ranges from 0.48 to 0.87, with most of the basins exceeding 0.50, while the green water depletion rate from 0.39 to 0.85, with the majority of basins being beyond 0.60. We conclude that both blue and green water shortage will contribute to water scarcity in grain crop production. The mission of ensuring China's food security will entail multiple trade-offs among water security, ecosystem conservation, environment protection, and human development with increasing challenges in the years to come. However, increasing water productivity through research innovation and technological upgrades at river basin scale is a key to mitigating water stress that may be caused by increasing food production in the coming decades. 相似文献
9.
Food security is a high priority issue on the Chinese political agenda. China’s food security is challenged by several anthropogenic, sociopolitical and policy factors, including: population growth; urbanization and industrialization; land use changes and water scarcity; income growth and nutritional transition; and turbulence in global energy and food markets. Sustained growth in agricultural productivity and stable relations with global food suppliers are the twin anchors of food security. Shortfalls in domestic food production can take their toll on international food markets. Turbulence in global energy markets can affect food prices and supply costs, affecting food security and poverty. Policy safeguards are needed to shield food supply against such forces. China must make unremitting policy responses to address the loss of its fertile land for true progress towards the goal of national food security, by investing in infrastructure such as irrigation, drainage, storage, transport, and agricultural research and institutional reforms such as tenure security and land market liberalization. The links between water and other development-related sectors such as population, energy, food, and environment, and the interactions among them require reckoning, as they together will determine future food security and poverty reduction in China. Climate change is creating a new level of uncertainty in water governance, requiring accelerated research to avoid water-related stresses. 相似文献
10.
Crop consumptive water use and productivity are key elements to understand basin water management performance. This article presents a simplified approach to map rice (Oryza sativa L.) water consumption, yield, and water productivity (WP) in the Indo-Gangetic Basin (IGB) by combining remotely sensed imagery, national census and meteorological data. The statistical rice cropped area and production data were synthesized to calculate district-level land productivity, which is then further extrapolated to pixel-level values using MODIS NDVI product based on a crop dominance map. The water consumption by actual evapotranspiration is estimated with Simplified Surface Energy Balance (SSEB) model taking meteorological data and MODIS land surface temperature products as inputs. WP maps are then generated by dividing the rice productivity map with the seasonal actual evapotranspiration (ET) map. The average rice yields for Pakistan, India, Nepal and Bangladesh in the basin are 2.60, 2.53, 3.54 and 2.75 tons/ha, respectively. The average rice ET is 416 mm, accounting for only 68.2% of potential ET. The average WP of rice is 0.74 kg/m3. The WP generally varies with the trends of yield variation. A comparative analysis of ET, yield, rainfall and WP maps indicates greater scope for improvement of the downstream areas of the Ganges basin. The method proposed is simple, with satisfactory accuracy, and can be easily applied elsewhere. 相似文献
11.
Yashvir S. Chauhan 《Agricultural Water Management》2010,97(3):457-464
The growing demand for maize (Zea mays L.) in intensive livestock and other industries has opened up fresh opportunities for further expansion of the maize industry in Australia, which could be targeted in relatively water rich semi-arid tropical (SAT) regions of the country. This crop simulation study assessed the potential productivity and water requirements of maize peanut (Arachis hypogaea L.) rotations for the SAT climatic zone of Australia using the Agricultural Production Systems Simulator (APSIM) model. APSIM was configured to simulate maize (Pioneer hybrid 3153) either in the dry (May-October) or wet season (November-April) and peanut (cv. Conder) in the following season for three soils found at Katherine (14.48°S, 132.25°E) from 1957 to 2008. The simulated mean total yield potential of the dry season maize and wet season peanut (DMWP) rotation (15-19.2 t/ha) was about 28% greater than the wet season maize-dry season peanut (WMDP) rotation because of the higher yield potential of maize in the dry season compared to in the wet season. These high yields in the DMWP rotation have been achieved commercially. The overall simulated irrigation water requirement for both rotations, which varied from 11.5 to 13.8 ML/ha on different soils, was similar. The DMWP rotation had 21% higher water use efficiency. Similar yield and water use efficiency advantages of the DMWP rotation were apparent for eight other agriculturally important locations in the Northern Territory, Western Australia and Queensland. The simulations for Katherine also suggested that the irrigation requirement of the two rotations could increase by 17.5% in El-Nino years compared to La-Nina years for only a small gain in yield, which has implications for climate change scenarios. 相似文献
12.
《Agricultural Systems》1998,58(3):441-464
This article analyzes the determinants of animal traction adoption, and for traction and non-traction groups, the levels of land and labor productivity in Burkina Faso. There are three main conclusions. First, non-farm income was found to be an important indirect determinant of farm productivity, and ability to intensify production, via its effect on animal traction adoption. This was, in particular, the case for the zone where agriculture commercialization is occurring (the Guinean zone). Second, in a region where farmers were traditionally and even today thought to be tied to safety-first, subsistence strategies, our findings show that improved capital and variable inputs—traction and fertilizer and manure, and even labor and best quality land—are applied on cash crops, not on subsistence crops. Third, animal traction greatly improves land and labor productivity, particularly in more favorable agroclimatic zones such as Burkina's Guinean zone, and in the `intensification crops' that are also the main cash crops (maize and cotton). Traction farmers have an advantage in the quest to intensify farming in a region where population density is increasing rapidly. 相似文献
13.
In most parts of Iran, water scarcity has been intensifying and posing a threat to the sustainability of agricultural production. Wheat is the dominant crop and the largest irrigation water user in Iran; hence, understanding of the crop yield-water relations in wheat across the country is essential for a sustainable production. Based on a previously calibrated hydrologic model, we modeled irrigated and rainfed wheat yield (Y) and consumptive water use (ET) with uncertainty analysis at a subbasin level in Iran. Simulated Y and ET were used to calculate crop water productivity (CWP). The model was then used to analyze the impact of several stated policies to improve the agricultural system in Iran. These included: increasing the quantity of cereal production through more efficient use of land and water resources, improving activities related to soil moisture conservation and retention, and optimizing fertilizer application. Our analysis of the ratio of water use to internal renewable water resources revealed that 23 out of 30 provinces were using more than 40% of their water resources for agriculture. Twelve provinces reached a ratio of 100% and even greater, indicating severe water scarcity and groundwater resource depletion. An analysis of Y-CWP relationship showed that one unit increase in rainfed wheat yield resulted in a lesser additional water requirement than irrigated wheat, leading to a larger improvement in CWP. The inference is that a better water management in rainfed wheat, where yield is currently small, will lead to a larger marginal return in the consumed water. An assessment of improvement in soil available water capacity (AWC) showed that 18 out of 30 provinces are more certain to save water while increasing AWC through proper soil management practices. As wheat self-sufficiency is a desired national objective, we estimated the water requirement of the year 2020 (keeping all factors except population constant) to fulfill the wheat demand. The results showed that 88% of the additional wheat production would need to be produced in the water scarce provinces. Therefore, a strategic planning in the national agricultural production and food trade to ensure sustainable water use is needed. This study lays the basis for a systematic analysis of the potentials for improving regional and national water use efficiency. The methodology used in this research, could be applied to other water scarce countries for policy impact analysis and the adoption of a sustainable agricultural strategy. 相似文献
14.
Central Asian water planning following international policy recommendations and ‘blue prints’ has caused more harm rather
than benefiting local communities. International research has not been sufficient to contribute in practical terms to water
and food security. This paper reflects potential factors that limit understanding the complexity of water management in Central
Asia. Five factors are identified which prevent cross linking of research across international boundaries and within countries.
These are: (1) language, (2) access, (3) wikipediarism, (4) smattering and (5) outdating. To change the situation two factors
are still missing – a lost generation of local experts and an internal critical review. 相似文献
15.
R.L. McCown 《Agricultural Systems》1982,8(1):3-15
In Part II liveweight loss in the dry season was found in most years to be closely related to cumulative ‘dry weeks’; extraordinary weight loss occurred in the dry season in years in which there were a low number of ‘growth weeks’ in the previous green season. Annual liveweight gain was related to the total number of ‘green weeks’. In this paper the geographic variation in these three agro-climatic parameters is described using a network of 77 stations across northern Australia, and the year-to-year variability is examined for eight representative stations.Variation in dry season severity was greater than variation in green season productivity (growth weeks). Median ‘dry weeks’ in the dry season varied from 29 to nil over the area. ‘Green weeks’ in the dry season as a result of winter rain is an important phenomenon in a relatively small part of the area, but in this area year-to-year variability is extremely high.It is concluded that the objectives of the study, to extend existing agro-climatic methodology to interface with cattle production and to use this in surveying the climatic potential for this form of land use over the entire tropical region of Australia, were achieved to the extent that the existing animal production data allow. 相似文献
16.
Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements 总被引:1,自引:0,他引:1
Bharat R. Sharma K.V. Rao K.P.R. Vittal Y.S. Ramakrishna U. Amarasinghe 《Agricultural Water Management》2010,97(1):23-30
A detailed district and agro-ecoregional level study comprising the 604 districts of India was undertaken to (i) identify dominant rainfed districts for major rainfed crops, (ii) make a crop-specific assessment of the surplus runoff water available for water harvesting and the irrigable area, (iii) estimate the efficiency of regional rain water use and incremental production due to supplementary irrigation for different crops, and (iv) conduct a preliminary economic analysis of water harvesting/supplemental irrigation to realize the potential of rainfed agriculture. A climatic water balance analysis of 225 dominant rainfed districts provided information on the possible surplus runoff during the year and the cropping season. On a potential (excluding very arid and wet areas) rainfed cropped area of 28.5 million ha, a surplus rainfall of 114 billion m3 (Bm3) was available for harvesting. A part of this amount of water is adequate to provide one turn of supplementary irrigation of 100 mm depth to 20.65 Mha during drought years and 25.08 Mha during normal years. Water used in supplemental irrigation had the highest marginal productivity and increase in rainfed production above 12% was achievable even under traditional practices. Under improved management, an average increase of 50% in total production can be achieved with a single supplemental irrigation. Water harvesting and supplemental irrigation are economically viable at the national level. Net benefits improved by about threefold for rice, fourfold for pulses and sixfold for oilseeds. Droughts have very mild impacts on productivity when farmers are equipped with supplemental irrigation. 相似文献
17.
Precision irrigation involves the accurate and precise application of water to meet the specific requirements of individual
plants or management units and minimize adverse environmental impact. Under precision irrigation applications, water and associated
solute movement will vary spatially within the root zone and excess water application will not necessarily result in deep
drainage and leaching of salt below the root zone. This paper estimates that 10% of the irrigated land area (producing as
much as 40% of the total annual revenue from irrigated land) could be adversely affected by root zone salinity resulting from
the adoption of precision irrigation within Australia. The cost of increases in root zone salinisation due to inappropriate
irrigation management in the Murray and Murrumbidgee irrigation areas was estimated at AUD 245 million (in 2000/01) or 13.5%
of the revenue from these cropping systems. A review of soil–water and solute movement under precision irrigation systems
highlights the gaps in current knowledge including the mismatch between the data required by complex, process-based soil–water
or solute simulation models and the data that is easily available from soil survey and routine soil analyses. Other major
knowledge gaps identified include: (a) effect of root distribution, surface evaporation and plant transpiration on soil wetted
patterns, (b) accuracy and adequacy of using simple mean values of root zone soil salinity levels to estimate the effect of
salt on the plant, (c) fate of solutes during a single irrigation and during multiple irrigation cycles, and (d) effect of
soil heterogeneity on the distribution of water and solutes in relation to placement of water. Opportunities for research
investment are identified across a broad range of areas including: (a) requirements for soil characterisation, (b) irrigation
management effects, (c) agronomic responses to variable water and salt distributions in the root zone, (d) potential to scale
or evaluate impacts at various scales, (e) requirements for simplified soil–water and solute modelling tools, and (f) the
need to build skills and capacity in soil–water and solute modelling. 相似文献
18.
Agricultural systems as well as other ecosystems generate ecosystem services, i.e., societal benefits from ecological processes. These services include, for example, nutrient reduction that leads to water quality improvements in some wetlands and climatic regulation through recycling of precipitation in rain forests. While agriculture has increased ‘provisioning’ ecosystem services, such as food, fiber and timber production, it has, through time, substantially impacted other ecosystem services. Here we review the trade-offs among ecosystem services that have been generated by agriculture-induced changes to water quality and quantity in downstream aquatic systems, wetlands and terrestrial systems. We highlight emerging issues that need urgent attention in research and policy making. We identify three main strategies by which agricultural water management can deal with these large trade-offs: (a) improving water management practices on agricultural lands, (b) better linkage with management of downstream aquatic ecosystems, and (c) paying more attention to how water can be managed to create multifunctional agro-ecosystems. This can only be done if ecological landscape processes are better understood, and the values of ecosystem services other than food production are also recognized. 相似文献
19.
Yield and water productivity of rice as affected by time of transplanting in Punjab, India 总被引:1,自引:0,他引:1
Early planting of rice crop during the period of peak evaporative demand results in substantial mining of ground water and threats the sustainability of rice production in Punjab, northwest India. In order to increase yield and water productivity, arrest the mining of ground water, and achieve sustainability of rice production, there is need to adopt water-saving management practices. The present investigation in the Indian Punjab was aimed at investigating the effect of date of transplanting in four rice cultivars varying in growth duration (short-duration RH-257 and PR-115, and medium-duration PR-113 and PAU-201) on yield and water productivity. Delaying in transplanting from 15 June to 25 June or 5 July resulted in reduction in mean grain yield of the four cultivars by 7.2% and 15.9%, respectively. PAU-201, a photoperiod-sensitive cultivar, had higher mean grain yield (7.8 t ha−1) by 14.1%, 12.8% and 11.5% over the photoperiod-insensitive cultivars, PR-113, PR-115 and RH-257, respectively. Irrespective of transplanting dates, short-duration cultivars, RH-257 and PR-115, respectively, resulted in 18.9% and 16.6% saving of water, as compared to medium-duration cultivar PR-113. With delayed transplanting after 15 June, both yield and water productivity decreased for all photoperiod insensitive cultivars, but yields remained statistically similar and water productivity greater for a photoperiod sensitive cultivar. Mean irrigation water productivity (WPI) was highest for 15 June transplanting (0.66 kg m−3) and lowest for 5 July transplanting (0.57 kg m−3), and was highest for RH-257 (0.68 kg m−3) and lowest for PR-113 (0.50 kg m−3). Total water productivity (WPI+R; irrigation plus rainfall) decreased by 9.1% for 5 July transplanting compared with 15 June transplanting, and was highest for RH-257 (0.49 kg m−3) and lowest for PR-113 (0.38 kg m−3). Real crop water productivity (WPET) of the photoperiod insensitive cultivars decreased (1.10-1.40 kg m−3), but that of a photoperiod sensitive cultivar increased (1.63 kg m−3), with delayed transplanting. We conclude that substantial amount of water can be saved and yield increased by transplanting short-duration cultivars during the period of peak evaporative demand, or water saved and yield maintained by transplanting a photoperiod-sensitive cultivar late in the season when the evaporative demand is low. 相似文献
20.
Kulbhushan Balooni A.H. Kalro Ambili G. Kamalamma 《Agricultural Water Management》2008,95(12):1314-1322
We analyze traditional community initiatives in building and managing temporary check-dams across seasonal streams in Kumbadaje panchayat in the state of Kerala in India. This is a fairly successful system, functioning for decades in the study area. Check-dams overcome water scarcity faced by farmers during the summer irrigation season and thereby play a crucial role in farming. We identify issues in the management of check-dams, noting how this traditional water harvesting and conservation system suits the local geographic conditions and needs to be sustained and promoted. 相似文献