首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
基于理论干湿边与改进TVDI的麦田土壤水分估算研究   总被引:1,自引:0,他引:1  
针对旱情监测及农田灌溉中传统的基于地表温度-植被指数特征空间的温度植被干旱指数(Temperaturevegetation drought index,TVDI)构建方法无法准确反映真实地表的水热能量交换,给土壤含水率估算带来极大不确定性的问题,根据地表能量平衡方程,并引入改进植被覆盖度参数,构建一种理论干湿边端点选取方法及基于地表温度-改进植被覆盖度特征空间的TVDI模型,结合两期MODIS遥感影像数据(DOY088和DOY112)及地面观测数据,对陕西杨凌区的麦田土壤含水率进行估算。结果表明,由理论干湿边计算得到的TVDI与实测土壤含水率相关系数在-0.700左右,均方根误差不大于0.060 cm3/cm3。DOY088和DOY112的土壤含水率估算结果均与土壤含水率实测值有较好的拟合关系,尤其是DOY088的反演结果更接近于实际地表干湿状况,相关系数为-0.715,均方根误差为0.029 cm3/cm3,DOY112的散点分布比DOY088分散。该方法可以避免传统特征空间在干湿边估算中必须包含裸土、部分植被覆盖以及全植被覆盖地表覆盖类型的限制,从而实现真实土壤水分的遥感反演和实际地表干湿状况的监测。  相似文献   

2.
土壤含水量是影响水文循环和气候变化的重要参数,相比于光学遥感,雷达遥感不受云、雨等气象因素影响,可以实现全天时、全天候的连续观测,是大范围获取土壤含水量信息的有效手段。为研究裸露地表雷达后向散射信号的影响因素和变化规律,探讨利用Sentinel-1A雷达数据反演裸露地表土壤含水量的方法,在南阳盆地典型农业区进行了观测试验。首先利用微波散射模型—AIEM理论模型模拟不同雷达入射角度、地表均方根高度、相关长度、以及土壤含水量参数下的雷达后向散射系数,分析各参数对雷达后向散射系数的影响。进而采用实测数据和模拟数据训练BP神经网络模型(Back Propagation Neural Network,BPNN),以实现对裸露地表土壤含水量的反演,并对其反演精度进行验证。结果表明:在特定入射角下,地表粗糙度对土壤含水量反演精度的影响不可忽略。不同极化方式下,BPNN模型与AIEM理论模型对微波后向散射系数模拟值的R2达到0.99以上。采用野外实测数据对BPNN模型反演土壤含水量的精度进行测试,结果显示,模型预测值与实测值之间的R2为0.72,RMSE为0...  相似文献   

3.
王金鑫  姚静  李聪玲  陈晓丽 《节水灌溉》2021,(12):94-99,107
大区域农田墒情遥感定量监测对当代精准农业应用意义重大,但如何提高监测精度一直是该领域的关键问题.融合多源遥感的方法可以充分发挥各种遥感的优势,是提高监测精度的重要技术手段.以河南省中东部为研究区域,利用MODIS、Sentinel数据,结合实测土壤含水量,根据植被覆盖、地表粗糙度和不同湿度的土壤对后向散射的贡献,利用BP神经网络模型构建上述参数的关系,分别对研究区2016年3-6月冬小麦高植被覆盖时期0~10 cm、0~20 cm深度土壤墒情反演.根据地表粗糙度参数的性质,提出了地表粗糙度不变假设,并结合遗传算法优化BP神经网络方法(GA-BP),进行对比实验.结果显示:①植被茂盛期,后向散射系数(σ)及其差值(?σ)与土壤墒情均具有一定的相关性,VV极化优于VH极化,差值优于原值;②在反演0~10 cm与0~20 cm深度土壤墒情时,BPσ、BP?σ、GA-BP?σ模型得到的结果精度均依次提高,其中GA-BP?σ模型的均方根误差0~10 cm为4.07%,0~20cm为3.42%;③3种BP神经网络模型皆与0~20 cm深度土壤墒情相关性较好,预测精度较高.研究表明:中原地区冬小麦全生育期地表粗糙度不变假设是成立的,后向散射系数差值(?σ)与土壤墒情的相关性更好,0~20 cm的根部墒情的遥测敏感度更高,  相似文献   

4.
【目的】实现小麦农田土壤含水率大面积快速监测。【方法】以冬小麦冠层高光谱数据为基础,计算得到8种植被指数,通过对关键生育时期(拔节期、抽穗期、灌浆期)不同水分处理下冬小麦不同土层(0~20、20~40、40~60 cm)土壤含水率与植被指数拟合状况进行分析和筛选,分别构建了基于植被指数的不同土层土壤含水率反演模型,并对模型进行检验。【结果】①各时期植被指数拟合效果有所差异,拔节期0~20 cm土层以植被指数VOG1拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.75,40~60 cm土层以植被指数VOG3拟合效果较好,相关系数为0.59;抽穗期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.70,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.72,40~60 cm土层以植被指数mSR705拟合效果较好,相关系数为0.57;灌浆期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数SARVI拟合效果较好,相关系数为0.68,40~60 cm土层以植被指数SARVI拟合效果较好,相关系数为0.71;②各土层土壤含水率与植被指数拟合效果有所差异,其中利用VOG1和mNDVI705组合构建的模型反演0~20 cm土层,决定系数R2为0.743,利用mNDVI705和SARVI组合构建的模型反演20~40 cm土层,决定系数R2为0.707,利用VOG3、mSR705和SARVI组合构建的模型反演40~60 cm土层,决定系数R2为0.484;③通过建立植被指数对土壤含水率的反演模型,0~20 cm土层含水率反演效果好于20~40 cm和40~60 cm。【结论】高光谱植被指数反演模型中,以0~20 cm土层的估算模型最佳,植被指数组合为VOG1和mNDVI705。综上可知,该研究方法进行土壤含水率的反演是可行的。  相似文献   

5.
针对空间异质性导致的土壤含水率反演误差较大的问题,分别以玉米灌浆期和小麦苗期的土壤含水率反演为例,利用无人机多光谱遥感技术获取喷灌和畦灌灌溉方式下的正射影像。将34组光谱特征变量按照滑动窗口法提取不同空间尺度的光谱信息平均值,通过极端梯度提升(Extreme gradient boosting,XGBoost)、支持向量机回归(Support vector machine regression,SVR)以及偏最小二乘回归(Partial least squares regression,PLSR)3种机器学习模型确定采样点光谱信息最优窗口尺度;然后,采用皮尔逊相关系数特征变量筛选法(Pearson correlation coefficient feature variable screening method,R)结合XGBoost和SVR模型对提取的34组光谱特征变量进行筛选,选取与土壤含水率敏感的特征变量;最后,估算土壤含水率。结果表明:喷灌方式下所选择的采样点最优光谱信息窗口尺度比畦灌小,其最优窗口尺度范围分别为11×11~21×21和15×15~29×29;采用皮尔逊相关系数特征变量筛选方法结合机器学习模型可有效提高土壤含水率反演精度;5种机器学习模型(R_XGBoost、R_SVR、XGBoost、SVR、PLSR)中R_XGBoost模型估算土壤含水率精度最优,在喷灌和畦灌方式下玉米灌浆期R_XGBoost模型的测试集决定系数R2分别为0.80、0.83,均方根误差(Root mean square error,RMSE)分别为1.27%和0.98%,小麦苗期R2分别为0.76、0.79,RMSE分别为1.68%和0.85%;土壤含水率反演模型在畦灌条件下的精度优于喷灌条件下。该研究可为基于无人机多光谱影像分析的信息挖掘和土壤水分监测提供参考。  相似文献   

6.
设计了可以定位、快速、同步测量农田土壤含水率和坚实度的采集仪.在探讨该仪器测量原理和软硬件设计的基础上,对其测量的准确性进行了试验分析.某苗圃地,选定5 m × 5 m的30个采样点,用农田信息采集仪和烘干法分别测量各点的土壤含水率,并对测量值进行简单相关分析,其相关系数为0.917 9,达到极显著性相关.以同样的方式,采用农田信息采集仪和SC900型数字土壤坚实度仪,分别测量30个采样点10 cm和20 cm深度处的土壤坚实度值,并对两种方法在两个深度时的测量值进行相关性分析,其相关系数分别为0.826 7和0.924 5,达到极显著性相关.试验结果表明,该采集仪对农田土壤含水率和坚实度测量的准确性可满足农业生产要求.  相似文献   

7.
保护性耕作对土壤水分和玉米产量的影响   总被引:1,自引:0,他引:1  
针对东北半干旱区保护性耕作措施的节水和增产效应进行试验研究,试验区位于黑龙江省杜蒙县,保护性耕作措施包括行间覆膜、行间覆膜与垄向区田的集成,垄向区田、秸秆覆盖,以常规耕作处理作为对照,分析各节水方案对土壤水分及产量的影响,目的在于找到提高水分利用率的有效方法,提高黑龙江大庆地区的玉米产量.研究结果表明4种保护性耕作措施均可提高土壤含水率,且对地表以下0~40 cm的土壤含水率影响较明显,产量与对照相比除秸秆覆盖处理外均有增产效果.其中行间覆膜与垄向区田的集成措施可使土壤水分利用效率较对照提高24.88%,产量提高26.38%,其节水增产效果最好.  相似文献   

8.
膜下滴灌棉田土壤水分参数的空间变异性分析   总被引:1,自引:0,他引:1  
以新疆生产建设兵团石河子国家农业科技园区的膜下滴灌棉田作为试验区,采用均匀法布点方式,测定了各个采样点0~20、20~40和40~60 cm三个不同深度土壤的含水率,利用地统计学理论分析了膜下滴灌棉田均匀布点方式下土壤含水率的空间变异规律,并利用Sufer绘制了土壤含水率的等值线图,结果表明:①膜下滴灌棉田均匀布点采样方式下,东西方向即沿膜向的半方差函数值在0~20、20~40和40~60 cm深度层的变化规律趋于一致,随着深度增加棉田的土壤含水率的空间变异强度在逐渐减小;②各方向的半方差函数值的相关性均随着深度增加棉田的土壤含水率的空间结构性更加显著;③东西方向的空间变异性随着深度的增深而减小,其他方向的空间变异性随着深度的增深而增大;东西方向即沿膜向为弱变异,其他方向20~40 cm层为强变异,0~20、40~60 cm层为中等变异。  相似文献   

9.
针对当前运用单一光学卫星反演土壤含水率时易受到云的影响,单一SAR卫星反演土壤含水率时易受到地表粗糙度和植被影响的问题,以内蒙古河套灌区沙壕渠为研究区域,以4个深度的土壤含水率为研究对象,分别采用主成分分析(PCA)、施密特正交变换(GS)融合Landsat8和Sentinel-1图像以减少云、植被、土壤粗糙度的影响,并对融合后的图像质量进行评价,然后用融合图像的灰度构建1 134种遥感指数,基于相关系数分析、变量投影重要性分析、灰色关联分析3种变量筛选方法与BP神经网络(BP)、极限学习机(ELM)、随机森林(RF)、支持向量机(SVM)4种机器学习算法的耦合模型反演沙壕渠土壤含水率。研究结果表明:经PCA、GS融合后的融合图像可同时保持Sentinel-1和Landsat8图像的优势,并成功定量反演土壤含水率。基于融合图像构建的三维指数普遍比二维指数对土壤含水率更敏感。在表层土壤含水率反演中,基于GS融合的VIP-ELM模型精度最高(决定系数R2=0.66,均方根误差(RMSE)为1.35%)。将GS融合的VIP-ELM模型应用于其他土壤深度含水率的反演后发现...  相似文献   

10.
农田土壤含水率的空间时变特性对土壤墒情监测及灌溉预报有重要影响。在天津市武清区北靳庄和西吕村两个试区布置两套墒情监测系统,每套系统包括1台基站、3个测点,每个测点连接两个土壤水分传感器(埋设于地表下30和60 cm处)。测得两个深度的土壤含水率数据,利用线性公式计算得0~60 cm平均含水率,利用统计学方法分析土壤含水率的变异系数(C_V)随时间的变化特性,分析试区测点土壤含水率之间的相关关系。结果表明,C_V随时间有显著的变化,C_V变化较大时,相应时段的土壤含水率较小,通常为灌溉时期;C_V较小时,土壤含水率较大,普遍为降雨量较大时期;本试区C_V呈弱变异和中等变异;相关系数在一定程度上能够反映空间变异性大小,随着研究尺度的增大,测点之间土壤含水率的相关系数在减小。  相似文献   

11.
猕猴桃果园不同采样密度下土壤含水率空间变异性研究   总被引:6,自引:0,他引:6  
为揭示小区尺度乃至微尺度土壤含水率的空间变异性,在杨凌地区猕猴桃果园选取40 m×40 m区域,并在此基础上再以8、2 m为间距进行网格划分,基于经典统计学和地统计学理论,对不同采样密度条件下0~60 cm土层土壤含水率的空间分布特征及其空间变异性进行了研究。结果表明,对于40 m×40 m(L)、8 m×8 m(M)和2 m×2 m(S)3种尺度,0~60 cm深度各土层土壤含水率在水平方向上的变异强度表现为弱变异至中等(偏弱)变异,且随尺度减小和土层深度增加而减小,且所有取样点处0~60 cm深度内土壤含水率在垂直方向上的变异强度表现为弱变异至中等(偏弱)变异。在3种尺度中,土壤含水率存在强烈的空间相关性,表征土壤含水率空间分布形态的半方差函数因尺度不同存在较大差异,L尺度可采用球状和指数模型,M尺度可采用线性模型,S尺度可采用高斯、指数、线性模型。L尺度合理取样数较实际少,而M和S尺度合理取样数较实际多,对于3种尺度,基本表现出0~30 cm土层合理取样数较实际多、30~60 cm土层合理取样数较实际少,表明取样点的合理性分布有待进一步优化。由于地形原因导致当地果园内南北侧土壤含水率空间分布存在较大差异。  相似文献   

12.
研究于我国西北旱区武威市一葡萄园内进行,根据葡萄行走向按照30m×30m设置网格,共设计60个采样点。测定表层(10~20cm)、葡萄根区(20~80cm)、深层(80~100cm)3个层次土壤水分。采用传统统计与地统计相结合的方法对土壤水分空间分布状况进行分析,结果表明,各层次土壤水分均服从正态分布,具有中等变异强度,并随着深度的增加呈现出先增加后减小的趋势;各层次土壤水分具有较强的空间相关性,其理论变异函数的有效变程分别为117.04、167.92、174.81m;采用克立格插值方法绘制的各层次土壤水分分布图可以为灌溉制度的制定提供参考。并给出了不同置信水平及精度要求下的合理取样数目。  相似文献   

13.
为了实现黄土高原地区滴灌条件下枣树园土壤含水率的小范围快捷监测,根据FAO-56水分胁迫系数的定义和相关计算公式,得到了基于土壤水分胁迫系数的黄土高原地区滴灌条件下枣树根层土壤平均含水率估算公式.2009年4-9月将该公式应用于西北农林科技大学陕西米脂孟岔试验站的枣树试验园,配置了3种不同的土壤含水率控制下限,对枣树2个重要生育期的土壤含水率进行了估算,模拟了水分动态变化过程,并对估算值和实测值进行对比和误差分析.结果表明:采用基于FAO-56水分胁迫系数的计算公式对土壤含水率的动态模拟达到了较高的精度,估算值与实测值之间误差较小:其中开花坐果期各处理(灌水下限为60%,50%,40%的田间持水率)的估算值与实测值之间的相关系数分别为0828 0,0907 3,0935 1;标准误差分别为0055,0093,0068.果实膨大期各处理的相关系数分别为0777 2,0766 7,0905 5;标准误差分别为0057,0092,0079.估算值与实测值之间的相关系数随土壤含水率的增大而减小,随土壤水分胁迫程度的增大而增大,即土壤含水率较高时对公式精度有一定的影响.该方法较适用于黄土高原半干旱地区,对农业用水管理具有一定参考价值.  相似文献   

14.
【目的】揭示豫北地区农田0~1 m土层土壤含水率空间分布与变异状况。【方法】在中国农业科学院新乡综合试验基地玉米田选取一个50 m×50 m的区域,然后在其内部选取10 m×10 m、2 m×2 m的区域,共形成3种采样尺度,分别标记为L、M、S尺度,并于2016年8月和9月,在各尺度内分别等间距选取36个取样点。基于地统计学理论,对0~1 m土层土壤平均含水率进行分析。【结果】各尺度土壤含水率正态分布置信水平高于对数正态分布,尺度越大,土壤含水率分布属于正态分布置信水平越低;对于土壤含水率均值,L尺度与M尺度差异较大,M尺度与S尺度差异较小;总体上,土壤含水率的置信区间、标准差以及变异系数均随尺度的减小而减小;L尺度内变异函数值总体上随着滞后距的增大而增大,而M尺度和S尺度变异函数值没有明显的变化趋势,相对比较稳定;总体上相同置信水平与估算精度条件下,估算样本均值所需的样本数量随尺度的减小而减小;与置信水平相比,估算精度对合理取样数量的影响大。【结论】不同尺度土壤含水率的概率分布与大部分统计特征值均会随着尺度的变化而产生有规律的变化,尺度越大,土壤含水率分布越偏离正态分布,其空间变异性也越强。  相似文献   

15.
权全  解建仓  沈冰  罗纨 《农业工程》2010,(12):237-241
如何结合土壤特性和先进手段,制定具有代表性,同时又经济的土壤采样方案一直是土壤分析的难题。该文根据陕西省卤泊滩盐碱地改良区土壤含盐量的实测资料和相应的遥感图片数据,并结合土壤属性空间分布特性,提出一种新的土壤水盐含量采集方案。结果表明,用33个已知点的实测数据可以估算出101个未测点的含量并最终构成插值343个点的空间分布图,且水分与盐分含量预测结果相关的确定系数分别为0.869和0.817。在此基础上进而对工程改良措施下的卤泊滩盐渍土表层水盐空间变异性进行研究。分析结果表明,研究区土壤水盐含量具有中等较强的空间自相关性和较弱的变异性。通过对该地区水盐空间变异性的研究可以及时了解盐渍地试验区的改良效果及水资源管理情况。  相似文献   

16.
【目的】提高深埋地下滴灌在作物生长初期的水分供应能力,降低其深层渗漏风险。【方法】设置无阻水板、下衬7.8 cm阻水板及9.4 cm阻水板的点源地下滴灌土槽试验,测定下衬阻水板宽度对地下滴灌土壤湿润锋运移和土壤水分分布的影响程度。【结果】下衬阻水板不影响地下滴灌土壤湿润锋形状,仍近似于扁椭圆形,但改变了地下滴灌土壤湿润模式;下衬阻水板对地下滴灌土壤水分水平方向运移距离影响不大,但明显增加了土壤水分垂直向上运移距离,减小了土壤水分垂直向下运移距离,使得地下滴灌土壤湿润体整体向上层迁移,阻水板越宽,土壤湿润体向上层迁移的越明显。下衬阻水板可以调整土壤湿润体内的土壤水分分布,随着下衬阻水板宽度的增大,浅层(0~10 cm土层)土壤含水率增大,而深层(50~60 cm土层)土壤含水率减小。【结论】下衬阻水板可以促进地下滴灌土壤湿润体及水分向上层土壤集中,有利于保障作物生长初期的水分供应。  相似文献   

17.
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentinel-1/2协同反演植被土壤含盐量的精度,用水云模型对雷达卫星后向散射系数进行校正,消除植被影响;然后协同Sentinel-2纹理特征,基于VIP、OOB、PCA 3种变量筛选和RF、ELM、Cubist 3种机器学习回归模型构建植被土壤含盐量反演模型。研究结果表明:经过水云模型去除植被影响后的雷达后向散射系数及其极化组合指数与土壤含盐量的相关性有一定程度的提高。不同变量选择方法与不同机器学习方法耦合模型在反演土壤含盐量中,OOB变量筛选方法与RF、ELM和Cubist 3种机器学习方法的耦合模型精度最佳,建模集和验证集的R2都在0.750以上,且验证集的RMSE和MAE均最小;其中OOB-Cubist耦合模型精度最高,且R2v/R2c为0.955,具有良好的鲁棒性。研究可为机器学习协同物理模型、光学卫星协同雷达卫星在土壤含盐量反演中的进一步应用提供思路。  相似文献   

18.
不同水头和土壤容重下微润灌湿润体内水盐分布特性   总被引:7,自引:0,他引:7  
为探明微润灌溉施肥的湿润体内水盐分布规律,开展不同压力水头和土壤容重下室内微润灌溉入渗试验。设置3个水头(H1.0:1.0 m、H1.5:1.5 m和H2.0:2.0 m)和3个土壤容重(D1.00:1.00 g/cm~3、D1.15:1.15 g/cm~3和D1.30:1.30 g/cm~3),以质量分数0.3%的硝酸钾溶液为入渗溶液,研究微润灌湿润体内水盐空间分布规律和变异特征。结果表明:微润管入口水头和土壤容重对湿润体内含水率、NO_3~--N与K~+含量均值影响显著。同一土壤容重下,H1.5和H2.0与H1.0相比,湿润体剖面面积增大13.50%~21.61%,湿润体内含水率、NO_3~--N与K~+含量均值分别增大3.69%~10.71%、7.80%~10.95%和7.29%~17.49%,均匀系数分别增大7.65%~18.63%、5.22%~13.63%和9.34%~21.89%;同一水头下,D1.15和D1.30与D1.00相比,湿润体剖面面积减小5.76%~9.21%,含水率、NO_3~--N含量均值分别减小15.73%~21.54%、8.08%~10.97%,而K~+含量均值增大34.89%~64.79%,三者均匀系数分别减小9.02%~11.45%、4.04%~7.25%和7.09%~11.54%。K~+在微润管周围分布较集中,K~+聚集分布面积约占湿润体剖面面积的40.80%~61.41%。微润灌湿润体内含水率、NO_3~--N和K~+含量均值与至微润管的水平距离符合四参数Log-logistic模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号