首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two male-sterile lines, KalashreeA and PadminiA, with a Miz.21 cytoplasm source were developed through indica/indica hybridization followed by repeated backcrossing with their respective recurrent male parents (Kalashree and Padmini) up to the BC6 generation. These two cytoplasmic male-sterile lines are suitable for use in the development of hybrids for lowland situations owing to their intermediate to semi-tall stature, late flowering duration, good grain quality and easy fertility restoration ability.  相似文献   

2.
Summary Most of the commercial hybrids of indica rice are based on wild abortive (WA) source of cytoplasmic-genetic male sterility (CMS). Such cytoplasmic uniformity may lead to genetic vulnerability to disease and insect pests. To overcome this problem, diversification of CMS sources is essential. Crosses of 46 accessions of O. perennis and two accessions of O. rufipogon as female parents were made with two restorers (IR54, IR64) of WA cytosterility. Sterile hybrids were backcrossed with the respective recurrent parents. Of all the backcross derivatives, one line having the cytoplasm of O. perennis Acc 104823 and the nuclear background of IR64 was found to be stable for male sterility. The newly developed CMS line has been designated as IR66707A. This line is completely sterile (0% seed set) under selfed conditions. Crosses of IR66707A with 10 restorers of WA cytoplasm showed almost complete (93–100%) pollen sterility, indicating that the male sterility source of IR66707A is different from WA sterility. Southern hybridization of IR66707A, O. perennis (cytoplasmic donor), IR66707B (maintainer) and V20A (WA cytoplasm) using mitochondrial DNA specific probes (5 endonucleases × 8 probes) showed identical banding patterns between IR66707A and O. perennis. However, in more than half of the combinations, different banding patterns were observed between IR66707A and IR66707B and between IR66707A and V20A. The results suggest that IR66707A has the same cytoplasm as the donor (O. perennis), and CMS may not be caused by any major rearrangement or modification of mtDNA. The new CMS source identified will be useful in cytoplasmic diversification in hybrid rice breeding.  相似文献   

3.
W. L. Wei    H. Z. Wang    G. H. Liu 《Plant Breeding》2009,128(4):426-428
It is very important for rapeseed hybrid production to develop and utilize a novel cytoplasmic male sterility (CMS) system concerning the possible risk because of a narrow cytoplasm background. Here the anatomy of anther development in the CMS system, named NCa , was observed using light microscope and transmission electron microscope, and the restriction fragment length polymorphism (RFLP) analyses of mitochondrial DNA of NCa sterile line were also performed in comparison with the other rapeseed sterile lines, such as pol , nap , ogura , and tour . The anther abortion of this CMS line occurred at the later uninucleate microspore stage, and the anatomic aborting characteristics were obviously different from all the other rapeseed CMS lines reported before. The RFLP analyses revealed that five probe/enzyme combinations could distinguish the five CMS lines. The results of anatomic observations and mitochondrial DNA polymorphism indicated that the NCa CMS system is a novel one which differs from the pol , nap , ogura , and tour systems.  相似文献   

4.
Summary Ten cytoplasmic male sterile (CMS) sunflower (Helianthus annuus L.) lines were crossed with nine maintainer or male fertility restorer lines in a diallel crossing scheme. Based on fertility restoration of the F1 generation, CMS lines were divided into four groups. At least two new sources of CMS, CMS PET2 and CMS GIG1, were found to be potentially useful for commercial production of hybrids. Environment had an influence on fertility restoration of one CMS line, CMS MAX1. Effective restoration of male fertility for CMS RIG1, CMS ANN2, and CMS ANN3 was not found.  相似文献   

5.
Two shallow lowland male sterile lines, MotiA and PadminiAwith Miz.4 cytoplasmic source were developed throughintervarietal hybridization and recurrent backcrossing withtheir respective parents. In all probability, MotiA and PadminiA of Miz.4 source may be genetically different from the Wild abortive CMS source (V.20A). These two CMS lines are semitall in stature, photosensitive, of late duration in flowering with easy fertility restoration ability, and thus could be useful for developing hybrid rice suitable for shallow lowland areas.  相似文献   

6.
Genetics of thermosensitive genic male sterility in rice   总被引:4,自引:0,他引:4  
Summary Inheritance of thermosensitive genic male sterility (TGMS) in Norin PL12 and IR32364TGMS and their allelic relationship were studied from F1, F2 testcross (TC) and F3 generations of the crosses made with the two mutants and several fertile tester parents. F2, TC and F3 segregation behavior for pollen and spikelet fertility indicated that the TGMS trait in the two mutants was controlled by a single recessive gene. Allelic relationship studies indicated that TGMS genes of the two mutants were different. Since TGMS gene in Norin PL12 has been designated as tms 2 , the TGMS gene present in IR32364TGMS is tentatively designated as tms 3 (t) until allelic test is done with another TGMS gene (tms 1 ) reported from China in a line 5460S seeds of which were not available.  相似文献   

7.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

8.
Y. Shen  Q. Cai  M. Gao  X. Wang 《Euphytica》1996,90(1):17-23
Summary A male fertile revertant was isolated from M1 of a cytoplasmic male sterile indica rice line II-32A, the dry seeds of which were treated with 60Co- rays at a dose of 290 Gy. The acquired revertant T24 was morphologically and agronomically similar to II-32B, the maintainer of II-32A. Testcrosses of the revertant with II-32A and Zhenshan 97A showed that the revertant was able to restore the fertility of CMS lines. Genetic analysis of the progenies between T24 and II-32A, Zhenshan 97A XieqingzaoA and DZhenshan 97A, which have different cytoplasms, showed that the fertility restoration of four CMS lines by T24 involved one nuclear gene, indicating that T24 was a result of the mutation of one nuclear gene. The mechanism of the restoration of CMS line by T24 was obviously different from other restorers such as Minghui 63 and 20964, which were shown to behave in two gene mode in fertility restoration. The discovery of the revertant T24 contributes to the understanding of CMS and fertility restoration of CMS in rice. The T24 and its parent II-32A may constitute a pair of near isogenic lines for the restoring gene, which should be valuable materials for molecular genetic analysis of CMS.  相似文献   

9.
A germplasm collection of 152 diverse rapeseed accessions from Canada, China, France, India, Poland and South Korea was assayed for identifying new fertility restorers and sterility maintainers for a Tournefortii (tour) cytoplasmic male sterility (CMS) system in rape‐seed. Only 16 (10.5%) genotypes showed complete fertility restoration following hybridization with tour CMS line NE 409A. Notable among these were GSL 8851, GSL 8953, Mokpo # 9, Mali, Buk‐wuk‐13, Kuju‐27 and Mokpo # 84. As many as 78 (51.3%) genotypes were perfect maintainers of sterility, the remaining 58 (38.2%) genotypes were classified as partial maintainers. To study the inheritance of fertility restoration, 20 CMS (tour) rapeseed lines were crossed with the four best fertility restorers, namely GSL 8851, GSL 8953, Kuju‐27 and Mokpo # 9, to obtain F2 and test cross populations. Segregation data indicated that fertility restoration for tour CMS was governed by two genes, of which, one is stronger than the other (χ212:3:1). Differences in gene interactions were also observed (χ29:3:4) which could be explained on the basis of influence of female parent genotypes/or modified expression of the restorer gene(s) in different genetic backgrounds. Tests of allelism indicated that the restorer genes present in the four restorers evaluated were allelic.  相似文献   

10.
Y. Wang    L. Zhao    X. Wang    H. Sun 《Plant Breeding》2010,129(1):9-12
In this study, we report the mapping of the Rf locus in soybean by microsatellite simple sequence repeat (SSR) genetic markers. A cross was made between cytoplasmic male sterility (CMS) line JLCMS82A and restorer line JIHUI 1 based on the DNA polymorphisms revealed by 109 SSR markers. A F2 population derived from a single F1 plant containing 103 individuals was used for mapping the Rf locus. The Rf gene of JIHUI 1 gametophytically restores male fertility to JLCMS82A. Fertile and semi-fertile DNA bulks and parental DNAs were screened with 219 SSR markers, and Satt215 which was previously mapped to soybean LG J, was found linked to the Rf gene. Five additional polymorphic SSR markers from LG J were used for analysis and a regional linkage map around the Rf locus was established. SSR markers, Sctt011 and Satt547, flanked the Rf locus at 3.6 cM and 5.4 cM, respectively. The availability of these SSR markers will facilitate the selection of restorer lines in hybrid soybean breeding.  相似文献   

11.
A new source of cytoplasmic male sterility (CMS) in tobacco with interspecific origin is reported. In traditional selection wild tobacco species have been used as donors of cytoplasm. In the present study the cultivated species Nicotiana tabacum L. (n = 24) is a source of CMS. It was used as female parent and N. alata (n = 9) was involved as a pollinator. The F1 hybrid of this cross was completely sterile. Tissue culture method was applied to restore the female fertility. Regenerants obtained from the 5th passage were successfully pollinated with N. tabacum and seed-containing capsules were formed. All BC1P1 plants were male sterile. They possessed normally developed corollas, three-loculed or deformed pistils, and 1–2 stamens modified into secondary pistils. In some plants stamenless flowers were observed. Male sterility of BC1P1 was preserved in BC2P1–BC7P1 progenies confirming its cytoplasmic nature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Segregation studies following the transfer of the gene wi to different cytoplasm types, which have been distinguished by means of restriction fragment length polymorphism analyses using mitochondrial gene probes, revealed the formation of the wi‐sterility in each of the four cytoplasms examined. The male sterility is therefore only caused by the nuclear wi gene, i.e. an additional factor of a specific cytoplasm can be excluded. Hence, the wi‐sterility proved to be a genic male sterility (GMS) and not a cytoplasmic male sterility (CMS). The expression of the wi‐sterility appears to be stable, since it is not affected by high temperatures or tetracycline. Accordingly, a temporary pollen production, which would allow self‐fertilization for the maintenance of sterile lines, cannot be induced by controlling these environmental factors. In terms of hybrid breeding, this GMS therefore has no advantage over the previously described CMS system.  相似文献   

13.
Cytoplasmic male sterility (CMS) hybrid rice has made a great contribution to the increase of rice yield globally. To facilitate the development of high‐quality pairs of the wild abortive (WA) male sterile and maintainer lines, the genetic basis of fertility restoration of WA‐CMS and stigma exsertion was investigated in this study using a testcross population with the WA‐CMS background. Seed‐setting rate and stigma exsertion rate were used as the indicators of the two traits, respectively. Results showed that four minor QTL regions from 9311 were responsible for the variation of seed‐setting rate, while a few minor QTLs and epistatic QTL pairs influenced stigma exsertion rate. These results would be of great use in the development of high‐quality pairs of WA male sterile and maintainer lines in rice.  相似文献   

14.
Natural alloplasmic cytoplasmic male sterile (CMS) clones of industrial chicory were obtained after crossing wild chicory with selected breeding lines. We investigated the CMS stability of 10 clones in various environmental growing conditions. CMS was stable under cool growing conditions in most of them. Fertility restoration, based on pollen production scores, was observed in all clones after a period of hot temperatures. The early flower bud stage was sensitive, resulting in fertile flowers 12–17 days after exposure to high temperatures. Experiments under controlled growing conditions at 15°C demonstrated that a heat shock of 2 days at 25 or 30°C was sufficient to restore fertility. Sterile flowers were formed when plants were again grown at lower temperatures. Significant differences between individual clones were observed, indicating the potential of genetic selection to obtain stable CMS parent lines.  相似文献   

15.
16.
Summary Interspecific substitutions of the nucleus of Helianthus annuus (2n=34) cv. Saturn into the cytoplasm of H. petiolaris (2n=34) by successive backcrossing, resulted in progenies with indehiscent anthers containing white, rather than normal yellow, pollen. Further backcrossing by cv. Saturn failed to restore pollen shed, suggesting that the male sterility was cytoplasmic. In vivo germination tests of pollen from 23 such plants from eight BC5 lines, indicated complete pollen sterility for 14 plants, but normal seed set, suggesting that female fertility was not affected. Meiosis in all plants examined was normal.Crosses between seven sources of pollen-fertility restorer, one collection of wild H. annuus, and an existing source of cytoplasmic male sterility, resulted in a high frequency of plants with normal pollen shed in all F1 progenies. However, no normal pollen shed was evident in F1 progenies for similar crosses between BC5 male-steriles and three of the seven restorer sources, nor for the single wild H. annuus evaluated. The foregoing suggests that the backcross substitution lines are a new source of cytoplasmic male sterility. The inheritance of restoration of pollen shed was complex and not fully elucidated. Some data suggested that two independent, complementary, dominant genes were required, but others indicated two to three independent, dominant genes.  相似文献   

17.
S. Prakash    I. Ahuja    H. C. Upreti    V. Dinesh  Kumar  S. R. Bhat    P. B. Kirti  V. L. Chopra   《Plant Breeding》2001,120(6):479-482
An alloplasmic mustard, Brassica juncea, has been synthesized by placing its nucleus into the cytoplasm of the related wild species Erucastrum canariense to express cytoplasmic male sterility. To achieve this, the sexual hybrid E. canariense (2n=18, EcEc) ×Brassica campestris (2n= 20, AA) was repeatedly backcrossed to B. juncea (2n= 36, AABB). Cytoplasmic male‐sterile (CMS) plants were recovered in the BC4 generation. These plants are a normal green and the flowers have slender, non‐dehiscing anthers that contain sterile pollen. Nectaries are well developed and female fertility is > 90%. The fertility restoration gene was introgressed to CMS B. juncea from the cytoplasmic donor E. canariense through pairing between chromosomes belonging to B. juncea with those of the E. canariense genome. The restorer plants have normal flowers, with well‐developed anthers containing fertile pollen. Meiosis proceeds normally. Pollen and seed fertility averaged 90% and 82%, respectively. F1 hybrids between CMS and the restorer are fully pollen fertile and show normal seed set. Preliminary results indicate that restoration is achieved by a single dominant gene. The constitution of the organelle genomes of the CMS, restorer and fertility restored plants is identical, as revealed by Southern analysis using mitochondrial and chloroplast probes atp A and psb D, respectively.  相似文献   

18.
J. H. Oard  J. Hu  J. N. Rutger 《Euphytica》1991,55(2):179-186
Summary Twenty-six male sterile plants grown in the field were recovered in the M7 generation from ethyl methane sulfonate-treated material of the rice cultivar M-201. Fertility increased five-fold when ratooned plants from the field were grown in a growth chamber with a 12 hour daylength. Crosses between mutant and normal fertile cultivars produced fertile F1 plants. Female fertility was normal as judged by percent seed set from unbagged panicles of parental and recombinant lines. Transgressive segregation for fertility was observed for all crosses in the F2 and F3 generations. Five of 37 F3 male sterile plants showed moderate levels of seed fertility under winter greenhouse conditions and reduced seed set when transplanted to summer field plots. Fertility data from reciprocal crosses suggested cytoplasmic factors had little or no effect on levels of male sterility in the mutant lines. Chi-squared analyses of F2 and F3 generation results indicated male sterility of the mutants is conditioned by two nuclear genes with epistatic effects.  相似文献   

19.
Summary A new cms source, ANN-5, was found in wild Helianthus annuus. This source showed high stability under different conditions in 1991 and 1992. All progenies from crosses of this source with several stable B-lines and restorer lines, which are homozygous for the gene which restores Leclercq's source of male sterility, were completely male sterile. Flower contained pistils and atrophied stamens. The cytological analysis showed that pollen mother cell degeneration took place in a premeiotic stage.  相似文献   

20.
Summary Genetic analysis of cytoplasmic male sterility systems in sorghum was undertaken by evaluating a set of 25 A×B crosses and another set of 171 A×R crosses. Male steriles included diverse sources reported from U.S.A. and India. Fertility restoration in crosses was assessed by studying pollen sterility under microscope and seed setting under selfed earheads. Male fertility restorers are identified for diverse cytoplasms. Accordingly the diverse cytoplasms are grouped and listed in the increasing order of their sterility as A1 & CK 60A A2 A4 M31-2A & M35-1A (A4 tentative) A3 & VZM2A G1A (A5 tentative) and consequently fertility restoration also becomes difficult in the same order for utilization in the breeding programmes. Among the non-milo cytoplasms, A2 among exotics and maldandi (M31-2A and M35-1A) among Indian sources, can be utilised for practical exploitation in breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号