首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
中国野生和栽培大豆11S及7S蛋白质相对含量的比较分析   总被引:2,自引:0,他引:2  
大豆种质蛋白质11S和7S及其亚基组相对含量的遗传变异是专用型品种选育的基础.以全国各生态区的野生豆138份和地方品种409份,国内育成品种148份、国外育成品种83份,合计778份大豆种质为材料.采用SDS-PAGE电泳技术测定蛋白质11S和7S组分及其亚基组相对含量,研究其遗传变异.在南京同一条件下的结果表明:全国野生豆、地方品种和育成品种11S相对含量平均分别为54.7%、64.8%和71.7%,变幅28.8%~82.6%、38.8%~79.4%和48.2%~88.9%;7S相对含量平均分别为44.7%、34.9%和27.9%,变幅20.6%~71.2%、20.6%~61.1%和15.7%~47.8%;11S/7S比值平均分别为1.4、2.0和2.7,变幅0.4~3.9、0.6~3.9和0.9~4.0.野生豆驯化为栽培豆并经选育后11S相对含量和11S/7S比值上升,7S相对含量下降,变幅均减小;亚基组11S-2和11S-3相对含量增加;7S的6个亚基组,尤其7S-1和7S-6,相对含量下降.11S、7S、11S/7S以及各亚基组在各群体各生态区内均有较大变异,但与来源地纬度、蛋白质和油脂含量均无显著相关.从中优选到11S/7S比值大于3.7、11S相对含量为78.9%~88.9%的8份种质,发现有11S的4个亚基组相对含量分别大于37%、7S的6个亚基组相对含量分别大于24%、以及11S-1和7S的6个亚基组缺失的种质,这些特异种质可供蛋白质组分育种利用.  相似文献   

2.
南方菜用大豆资源营养品质性状的遗传变异   总被引:2,自引:1,他引:1  
以南方菜用大豆品种(系)为材料,研究其营养品质的遗传变异.2002~2004年的试验结果表明:可溶性糖的遗传变异系数最大,达到10.22%;脂肪含量的遗传力最高,为71.72%,其次为蛋白质、蛋脂总量、可溶性糖含量的遗传力分别为47.14%、48.94%和55.30%;根据5%的相对遗传进展,蛋白质、脂肪、蛋脂总量、淀粉、可溶性糖分别属于GSⅢ2、GSⅢ1、GSⅣ、GSⅣ、GSⅡ2类群.并从中筛选出19份营养品质相对较好的材料.  相似文献   

3.
中国大豆种质资源耐铝毒性的变异特点及优选   总被引:1,自引:0,他引:1  
齐波  赵团结  盖钧镒 《大豆科学》2007,26(6):813-819
铝毒害是酸性土壤中限制大豆产量的重要因素之一.探讨我国不同生态区大豆种质资源耐铝毒害性的遗传变异特点对于大豆耐铝毒品种选育具有重要意义.本研究从各生态区选出509份种质资源,采用苗期营养液砂培鉴定方法,以株高、叶龄、地上部干重和地下部干重的平均隶属函数值(FAi)作为耐铝毒性的指标,分析不同生态区品种对铝毒的耐性表现.结果表明,全国栽培大豆种质资源的耐铝毒隶属函数值存在相当大的变异,变幅为8.59%~74.83%,呈现出中间多、两头少的单峰态分布;各生态区内均存在与全国相同的变异特点,生态区间的变异比较小,平均数变幅仅为39.24%~41.65%,区内变异明显地大于区间变异;大豆耐铝毒性的强弱具有一定的相对性,根据参考文献所选的对照品种在509份资源中都处于中间状态,说明大豆种质资源耐铝毒性存在更大的耐铝毒和敏感性的变异;按照FAi》65%(1级),遴选出了15份强耐铝毒资源,占所选资源总数的2.95%,分别来自Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅵ生态区;按照FAi《15%(5级),遴选出5份强敏感性材料,占资源总数的0.98%,分别来自Ⅱ、Ⅲ、Ⅳ、Ⅵ生态区,可供大豆耐铝毒性遗传育种研究利用.  相似文献   

4.
大豆籽粒贮藏蛋白7S和11S组分及其亚基含量、11S/7S比值与大豆蛋白的营养价值和加工特性密切相关.获得具不同7S和11S组分及其亚基含量、不同11S/7S比值的种质材料是对大豆蛋白的营养价值和功能特性进行遗传育种改良的重要材料基础.本研究利用SDS-PAGE技术,对706份中国大豆种质资源7S、11S组分及其亚基相对含量进行了研究.结果表明:706份我国大豆种质资源中7S、11S组分及其亚基相对含量具有丰富的遗传变异;7S和11S组分含量间存在极显著的负相关(r=-1.00,P<0.01);603份地方品种和103份新育成品种或主栽品种的7S、11S组分相对含量的平均值和变异幅度分别为40.00%,20.58%~56.65%,60.00%,43.35%~79.42%和38.21%,30.33%~52.67%,61.79%,47.33%~69.67%;11S/7S比值的平均值和变异幅度分别为1.54,0.77~3.86和1.65,0.90~2.30;筛选获得了63份7S、11S组分或亚基含量变异种质.  相似文献   

5.
东北春大豆籽粒性状的生态特性分析   总被引:1,自引:0,他引:1  
为明确东北大豆籽粒性状的生态特性,采用东北地区代表性品种361份,于2012-2014年在东北地区北安、扎兰屯、克山、牡丹江、佳木斯、大庆、长春、白城、铁岭9个代表性地点进行了试验研究。本文将品种在所有环境下的平均值作为该品种在常规田间管理条件下获得的常规值,常规值的大小代表了品种的基因型值,用以作为与生态区值比较的标准。研究结果显示:(1)东北地区大豆的蛋白质含量、油脂含量、蛋脂总量为40.47%、21.35%和61.82%,百粒重总平均值为19.06 g。不同试点间蛋白质含量、油脂含量、蛋脂总量最大相差约2~3个百分点,百粒重最大相差约3 g;而品种间相对应性状则分别相差约8,4,6个百分点和20 g,品种间差异远大于试点间表达的平均差异。(2)品种按育成年代归类,不同育成年代品种平均值呈现一定的变异趋势,蛋白质含量和蛋脂总量随育成年代呈现下降趋势、油脂含量和百粒重呈现上升趋势,其中蛋白质含量从41.23%降至40.28%,蛋脂总量从62.16%降至61.74%,油脂含量从20.92%升至21.46%,百粒重从18.70 g升至19.29 g。但同一育成年代内品种的差异大于不同育成年代间平均值间的差异。(3)品种按熟期组归类,平均值呈现一定的变异趋势,蛋白质含量(39.97%~41.31%)呈现以MGⅠ组为底端,向早向晚均上升;油脂含量(20.42%~21.83%)与蛋脂总量(61.23%~62.92%)随熟期组变晚呈下降的趋势;百粒重在MGⅢ组(20.32 g)达到最大,在其它熟期组间(18.86~19.18 g)差异不显著。熟期组内品种籽粒性状的差异远大于熟期组间育成品种籽粒性状平均值间的差异。(4)各熟期组品种在各生态区籽粒性状的差异虽达到显著水平,但差异并不大。第Ⅰ亚区主要包括黑龙江、内蒙古北部地区,各熟期组在该地的蛋白质含量、油脂含量、蛋脂含量、百粒重平均值分别低于相应的全试验平均值约0.1~0.4、0.6~1.3和1~1.5个百分点。第Ⅱ亚区主要包括黑龙江中南部至吉林省长春地区,MG000-MGⅠ油脂含量在该地比相应的全试验平均约高0.1~0.2个百分点,百粒重高约0.45~1.1 g。第Ⅲ亚区包括黑龙江西南至吉林省东北部缺水地区,MG000-MGⅡ的蛋白质含量在该亚区比相对应的常规值高约0.3~0.5个百分点,MG000-MGⅠ的蛋脂总量在该亚区均高于相应的常规值,其中MG000高约0.5个百分点,其余各组高0.1~0.2个百分点。第Ⅳ亚区主要包括辽宁省大部地区,MG000-MGⅡ的蛋白质含量在该亚区比相应的常规值高约0.2~0.6个百分点,油脂含量比相应的常规值高约0.7~1.64个百分点,蛋脂总量则比相应的常规值高约1个百分点。第Ⅰ亚区综合生态条件并不利于大豆高品质的表达,第Ⅱ亚区综合生态条件有利于油脂含量、百粒重的表达,第Ⅲ亚区综合生态条件有利于蛋白质含量、蛋脂总量的表达,第Ⅳ亚区综合生态条件有利于各品质性状的表达。东北各亚区生态环境对籽粒品质性状的表达有一定作用,但各亚区内品种间的遗传差异更大。根据品种在各生态亚区的表现筛选出一批籽粒性状有特色的品种供育种利用。  相似文献   

6.
东北是我国大豆的主要生态区,长春是东北中部重要产区。本研究于2012-2014年以搜集到的东北地区各单位现存的361份大豆地方品种和育成品种作为东北现存的本地种质,观察该群体在长春地区的表现,研究其潜在育种意义。主要结果如下:1)东北大豆种质群体在长春地区平均表现为全生育期114 d(93.88~137.75)、蛋白质含量41.09%(36.68%~45.85%)、油脂含量21.94%(19.00%~23.94%)、蛋脂总量63.09%(59.49%~66.24%)、百粒重20.53 g(9.47~28.20 g)、株高约83.82 cm(45.8~146.8 cm)、主茎16.7节(10.3~25.3)、分枝2个(0.1~10.1)、倒伏2级左右(1.4~4.0)。2)当地适合熟期组为MG0/MG I,生育天数在120 d左右。MG000、MG00生育天数集中在98~104 d,不能充分利用当地的自然条件;株高、节数均比MG0/MG I低约20~28 cm、3~4节。MGⅡ/MGIII在长春不能稳定成熟,其株高、主茎节数比MG0/MG I高约25~35 cm、2~3节。至于籽粒性状(蛋白质含量、油脂含量和百粒重),不同熟期组间绝对值差异不大,而各熟期组内均含有表现突出的资源。3)根据各农艺品质性状在长春表现,油脂和蛋白质含量遗传率高但相对遗传进度较低,需加大选育强度;蛋脂总量的改良应建立在蛋白质、油脂改良的基础上;本群体在倒伏性状上潜力有限,应通过引进新的种质来进行改良。4)长春当地的82个地方/育成品种(共88个,其中6个育成品种未查到系谱资料)共有99个祖先亲本,这些祖先亲本主要来源于当地,其次为黑龙江省和国外;其中衍生品种最多的前20个祖先亲本对群体的贡献率约63%,衍生品种最多的前5个祖先亲本衍生品种数及贡献率分别为金元(58,6.35%)、铁荚四粒黄(50,8.16%)、十胜长叶(49,6.61%)、嘟噜豆(44,4.02%)、四粒黄(P340)(41,6.36%);虽然当地育成品种平均含有9.3个祖先亲本,但当地品种的遗传基础仍较为狭窄,需通过其它地区资源扩展当地种质的遗传基础。  相似文献   

7.
本文对我国部分省(区)市4504份大豆品种资源(栽培豆3202份,野生豆1302份)主要品质性状进行鉴定,分析了脂肪、蛋白质、脂肪酸的含量、变异及分布,鉴定了胰蛋白酶抑制剂的类型。初步筛选出一批高油分、高蛋白、高亚油酸、低亚麻酸的优良种质,未发现不含胰蛋白酶抑制剂的资源。  相似文献   

8.
对新疆 116份海岛棉棉仁蛋白质、脂肪含量的研究表明 ,二者平均含量分别为 33.12 %和 4 0 .37% ,其间呈极显著负相关 ( r=- 0 .74 81)。蛋脂含量与棉子的大小、被绒多寡、端绒颜色、株型、品种类型等有关。趋势是 :子指小、毛子、端褐子、零式果枝、育成品种等的蛋白质含量较高 ;子指大、光子、端绿子、长果枝、推广品种等的脂肪含量较高。吐鲁番地区是新疆海岛棉高脂肪区 ,喀什地区为高蛋白区。蛋、脂含量与纬度和海拔间呈线性相关。蛋指总量在品种间和地区间表现稳定 ,平均为 73.50 %。筛选出蛋白质、脂肪及其总含量较高的种质 13份  相似文献   

9.
大豆种质资源蛋白质及脂肪含量的聚类及相关性分析   总被引:1,自引:0,他引:1  
采用辽宁省农科院种质资源圃的45份大豆种质资源,进行蛋白质及脂肪含量的测定,并对其进行相关及聚类分析。结果表明:45份大豆品种的蛋白质含量在39.86%~47.37%之间,平均值为43.34%,变异幅度为7.51%;供试品种的脂肪含量在17.58%~22.08%之间,平均含量为20.52%,变异幅度为4.50%;供试品种蛋脂总量变异范围在60.15%~66.69%之间,平均值为63.86%,变异幅度为6.54%。大豆蛋白质含量与脂肪含量间存在极显著的负相关,相关系数为-0.675**,蛋白质与脂肪含量的关系为:y=-0.3461x+35.521(39相似文献   

10.
东北是我国大豆的主要生态区,克山是东北北部重要产区。本研究于2012-2014年,以搜集到的东北地区各单位现存的361份大豆地方品种和育成品种作为东北现存的本地种质,观察该群体在克山地区的表现,研究其在克山的潜在育种意义。获得以下主要结果:(1)东北大豆种质群体平均表现为全生育期133 d(103.8~157.0 d)、蛋白质含量39.69%(35.6%~44.38%)、油脂含量20.58%(17.47%~22.84%)、蛋脂总量60.27%(54.00%~63.97%)、百粒重17.61 g(6.13~28.17 g)、株高约96 cm(54.92~146.8 cm)、主茎19节(11.23~25.83)、分枝2.75个(0.22~7.63)、倒伏2级左右(1.00~4.00);(2)当地适合熟期组为MG 0和MG I,各性状的平均值与群体平均相近,其它熟期组在当地的表现与之不同。MG 000和MG 00的生育天数集中在110~120 d,比当地无霜期早约10~20 d,不能充分利用当地的自然条件;而品质性状表现则略优于MG 0和MG I,特别是油脂含量和蛋脂总量分别高约1%、1.5%;株高、节数均低于MG 0和MG I,分别低约10~40 cm、2~8节。MG II的生育天数在当地高达150 d,不能稳定正常成熟,不适合当地种植;品质性状表现低于当地品种水平,特别是蛋白质、蛋脂总量均低约2%,油脂低约0.5%;而株高、节数高于当地品种,分别高约10 cm、2节,倒伏程度则高达3级。MG III在克山不能正常成熟,导致其它性状表达不正常,生长量和倒伏度增加;(3)根据各农艺品质性状在克山表现的遗传进度估计,虽然油脂和蛋白质含量相对小些,但均有一定的改良潜力。克山地区利用东北大豆资源育成了许多适于东北北部的优异品种,体现了东北种质的重要作用。根据当地品种的表现,从供试的东北资源中提出了各农艺、品质性状改良可用的亲本品种名单,供育种工作者参考。  相似文献   

11.
山东省审定大豆品种的产量、品质及株型演变   总被引:4,自引:0,他引:4  
自1982年开展农作物品种审定工作以来,山东省共有50个大豆品种通过国家或省级审定。本文分析了这50个审(认)定品种的区域试验平均产量、最高产量、蛋白质含量、脂肪含量和生育期、株高、主茎节数、有效分枝数、单株荚数、百粒重等农艺性状。结果表明,区域试验平均产量由1982-1985年的1892.73 kg/hm2提高到2001-2005年的2820.67 kg/hm2,增幅为49.0%;最高产量由3072.0kg/hm2提高到4389.3kg/hm2,提高了42.9%;蛋白质和脂肪含量随时代和选育目的的不同而在37.00%~46.44%和16.80%~22.50%之间变化。山东省夏大豆的理想株型应是株高70~80cm,主茎节数14~16节,有效分枝1~2个,并且在此基础上,有密而均匀的结荚。  相似文献   

12.
选用野生大豆、栽培大豆按异黄酮含量不同(高、中、低)配制杂交组合,对33个组合进行杂种优势分析。结果表明:中亲优势为正向优势的组合为15个,占全部组合的45.5%。具有超高亲优势的组合为12个,其中高异黄硐含量母本组合5个,占全部正向超高亲优势的41.7%,说明高异黄酮亲本杂种优势明显。18个栽培与野生杂交组合中超高亲优势正向优势组合为11个,中亲优势正向优势组合为13个,说明栽培与野生杂交组合的杂种优势明显,但14个栽培×野生杂交组合F2优势降低,表现为自交衰退,因此获得高异黄酮的后代材料仍需进一步选择。  相似文献   

13.
为了探究不同播种期对吉林小粒大豆生育进程、产量及品质的影响,以3种不同生育期的小粒大豆品种为试验材料,设置5个播种期处理,研究不同播种期对小粒大豆生育进程、产量及品质的变化规律。结果表明:随着播种期的推迟,小粒大豆生育进程延后,生育期表现缩短趋势,且各处理间差异达到极显著水平(P<0.01);小粒大豆单株荚数、单株粒数、百粒重及产量均呈现先增加后降低的变化趋势,不同播期的单株荚数和单株粒数差异均达到显著水平(P<0.05),A1~A3播期间百粒重差异不显著,各品种产量均在A2(5月4日)播种期最高,东农690为2 448.6 kg·hm^-2,吉林小粒豆6号为2 606.9 kg·hm^-2,九芽豆1号为3 101.2 kg·hm^-2,播期间产量差异极显著(P<0.01);回归分析结果表明,播期与产量间具有很大的相关性。早播或迟播病粒率增加,完全粒率降低,蛋白质含量和蛋脂总含量降低,推迟播期籽粒粗脂肪含量持续下降;小粒大豆播期与蛋白质含量呈显著或极显著负相关关系,与脂肪含量、总蛋脂含量呈极显著负相关关系。吉林地区小粒大豆适宜播期是5月4日左右,此期间播种有利于获得高产优质的小粒大豆。  相似文献   

14.
大豆属(Glycine)亚属间和种间种子氨基酸组成的比较分析   总被引:2,自引:0,他引:2  
比较了大豆属14个种的种子蛋白氨基酸的组成。结果表明:①不同亚属的各种均以谷氨酸含量最高,天门冬氨酸次之,其它氨基酸含量的位次也基本一致。②大豆属中亚属间种子蛋白的氨基酸含量存在明显的差异,Soja亚属各种氨基酸含量最高,Glycine亚属均低,而Wighlii最低。③亚属内种间、以及种内地理来源不同、或染色体基数不同,氨基酸含量也有差异。④Glycine亚属中latrobeana种的种子蛋白的氨基酸含量明显高于其它种。讨论了Glycine属、亚属间氨基酸含量与进化的可能联系,以及Wighlii的归属问题。  相似文献   

15.
野生大豆与栽培大豆种子贮藏蛋白含量的PAGE分析   总被引:2,自引:0,他引:2  
对黄河三角洲野生大豆与栽培大豆贮藏蛋白进行比较分析,用不同溶剂系统高速离心提取野生大豆和栽培大豆鲁豆1号、鲁豆10、河豆12和中黄20种子中的贮藏蛋白,采用紫外分光光度法比较贮藏蛋白质含量,聚丙烯酰胺电泳法分析贮藏蛋白谱带差异.结果发现:野生大豆种子贮存蛋白总含量稍低于栽培大豆种子;栽培大豆种子叶醇溶蛋白和水溶蛋白明显高于野生大豆;野生大豆种子中盐溶蛋白的含量高于其它4种栽培大豆.PAGE谱带表明.不论是水溶蛋白还是盐溶蛋白,在高分子量处,野生大豆有两条蛋白谱带不同于栽培大豆,说明在贮藏蛋白水平野生大豆与山东普通栽培大豆之间存在一定的差异.  相似文献   

16.
黑龙江省近二十年来育成大豆品种品质性状变化分析   总被引:2,自引:0,他引:2  
对1988~2007年间黑龙江省育成的201个大豆品种的品质与产量性状进行分析。结果表明:各地区育成品种蛋白质和脂肪含量在不同时期均有差异,脂肪含量总体呈上升趋势,蛋白质含量总体呈略微下降趋势。大豆品种脂肪、蛋白含量有着不同的地理分布,其中松哈平原地区蛋白质含量最高,脂肪含量较低,产量较高;东部三江低湿平原脂肪含量最高,蛋白含量较低,产量最高。松哈平原、东部三江低湿平原、北部高寒区大豆品质与产量的综合改良潜力较其它地区大。  相似文献   

17.
以栽培大豆和滩涂野大豆杂交组合(N23674×BB52)亲本及其经逐代耐盐性筛选获得的4个F4∶5家系为研究对象,对其苗期耐盐性、农艺性状、籽粒品质进行了分析和比较。结果表明:F44个株系的农艺性状都介于两亲本之间。盐胁迫下F5株系幼苗的耐盐系数、干物质积累和相对生长速率高于母本栽培大豆N23674,其中4076株系最为突出。籽粒品质较其父本BB52种群有明显改善,主要表现在籽粒中蛋白质和多数必需氨基酸、含硫氨基酸含量及氨基酸总量高于双亲,粗脂肪含量介于双亲之间,且接近于其母本N23674;4076和4111株系亚油酸含量超过双亲。  相似文献   

18.
Saline soils hamper various physiological functions in soybean [Glycine max (L.) Merr.]. One example is the reduction in nitrogen (N) uptake capacity, a major dysfunction that limits soybean growth and yield under saline conditions. Previous studies have revealed that tolerance to salinity varies with cultivar; however, the cultivars used in these studies were selected solely based on agro-morphological traits. In this study, we examined genotypic variation in salinity tolerance among 85 soybean genotypes which were selected based on an assessment of both single nucleotide polymorphisms (SNP) markers and agro-morphological traits. Additionally, we examined whether salt tolerance is associated with nodulation and N uptake. We used a subset of the world soybean mini-core collection (80 cultivars) and an additional five cultivars/genetic lines (NILs72-T, NILs72-S, Enrei, En-b0-1, and En1282). All plants were grown in pots and treated with saline (final concentration of 150 mM NaCl) during the vegetative growth stage. To evaluate salinity tolerance, we used the ratio of saline-treated (S) to control (C) plant total dry weight [DW (S/C)]. The ratio differed markedly according to genotype. Furthermore, salinity-tolerant genotypes exhibited superior nodulation, leaf greenness, and N uptake under saline conditions. These results indicate that there is a marked genotypic variation in salinity tolerance, and that the tolerant genotypes exhibit greater nodulation and N uptake, although further studies are needed to clarify whether the superior nodulation and N uptake of salinity-tolerant genotypes are responsible for the observed tolerance.  相似文献   

19.
大豆根系生长和活性特点的研究   总被引:11,自引:4,他引:11  
孙广玉  何庸 《大豆科学》1996,15(4):317-321
本试验利用框架剖面法测定了大豆根系的生长动态和根系活性变化。结果表明:大豆根系生长过程呈S型曲线变化,形成慢生长(Ve-V3),快速生长(V3-R5)和衰老(R5),三个阶段,高峰值出现在R4-R5阶段。根系活性变化与根系生长特点相似,R1时期之前根系活性逐渐增强,R2时期之后根系活性下降。根系活性变化比根系生长提前。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号