首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
本文对土壤-植物-大气连统体(SPAC)中水分运动的诸多方面,如非饱和土壤水分的导水参数,植物根系吸收土壤水分,植物根系中的水分运动.SPAC中的水流阻力及水容,土壤水分有效性动力学,滞后效应以及SPAC中水流的电模拟等.进行了介绍,评述和论述.  相似文献   

2.
集约化互作体系植物根系高效获取土壤养分的策略与机制   总被引:6,自引:1,他引:5  
【目的】植物根系的形态与生理变化是植物从土壤中高效获取养分资源的重要机制,由相同物种或不同物种组成的互作体系中植物根系对养分的吸收利用受相邻植物竞争的强烈影响,阐明互作体系不同竞争条件下植物根系获取养分的策略并揭示其作用机制,这是基于根系觅食行为探讨养分高效利用的根际调控途径与技术措施的重要理论基础。主要进展根系属性的互补性有利于降低根系间对养分的竞争。根系构型的互补性,例如深根系与浅根系植物互作,促进个体植株对土壤剖面不同深度养分的吸收利用;由根系可塑性介导的水平方向上根系空间分布的互补性,提高了植物根系对同一土层不同空间位点土壤养分的挖掘;个体植株根系形态属性与相邻植物根际生理过程的互补性促进根系对不同形态养分的利用。互作体系根系获取养分的策略具有高度互补性,这有助于提高整个作物系统的养分利用效率,进而提高生产力。根系空间生态位的分离 (包括垂直与水平方向) 以及根际生物化学特征生态位的分离,是驱动互作体系根系高效获取养分资源的主要机制。合理的根层调控可以提高植物根系挖掘土壤养分的能力;优化互作体系物种的搭配能充分发挥根的互作效能,提高养分利用的生物潜力。问题与展望今后应进一步针对集约化高投入作物体系,通过管理根层养分供应和物种间的互作效应,强化根际养分信号的调控作用,调节根系形态与生理特性,降低种间竞争,增强种间互利,以最大化根系和根际的生物学潜力,提高养分利用效率和作物产量,为实现以节肥增效为核心的可持续集约化作物生产提供重要的调控策略与途径。  相似文献   

3.
环境因素对植物导水率影响的研究综述   总被引:2,自引:1,他引:2  
植物的导水率表示单位压力梯度植物传导水分的通量, 是根系吸收及传导水分能力大小的一个重要生理生态指标。植物导水率受内在和外在因素的影响而发生明显变化。本文重点概述了包括根区土壤水分、养分、盐分、温度和灌溉方式等外在因素对植物导水率影响的研究进展。深入阐明不同环境因素下的植物导水率, 不仅可充实SPAC 系统水分传输理论, 而且有助于明确植物对环境的适应机制和高效用水的潜力。  相似文献   

4.
植物根系是土壤结构以及土壤水力参数变化的重要影响要素。目前不仅缺乏定量描述“根-孔隙-土壤水力参数”相互作用的研究方法,在更大尺度上根系作用的客观表达也尚不明确,由此导致降雨入渗、径流和蒸发等流域水文过程的精细刻画与模拟预测具有很大的不确定性。基于文献检索,本文对国内外相关研究进行了回顾与梳理,量化了植物根系对土壤水力参数的改变和影响,并提出其与植被、土壤类型的响应方式,总结了植物根系动态性生长下的土壤水力参数定量表述及其预测模型进展。同时分析了在定量研究根-土复合系统中存在的问题及未来研究的发展方向,指出目前根系影响土壤水力参数的研究主要集中在小尺度控制实验方面,忽略了大尺度下土壤空间异质性及外部环境因素的干扰,强调大尺度根系作用和根系参数纳入土壤结构的重要性和实际意义,进一步与水文模型的深度耦合逐渐成为未来研究的热点。  相似文献   

5.
磷与水分互作的根土界面效应及其高效利用机制研究进展   总被引:6,自引:2,他引:4  
【目的】磷与水分利用率低是制约作物生产的重要因子。磷必须在水分的作用下通过根土界面才能被作物吸收利用,磷和水分在根土界面的互作效应是影响其高效利用的关键环节。本文以根际为核心,重点综述了磷与水分在根土界面的互作机制,并剖析了通过强化根土界面磷与水分的协同,提高农田水肥资源利用效率的根际调控途径。[主要进展]根系的形态和生理变化深刻影响磷和水分的有效性,而根系生长和根际过程依赖于植物的营养和水分供应状况,作物根层适宜的水分和养分供应水平能最大化根系和根际过程的效率,从而促进作物对磷与水资源的高效利用。作物根系除了能对根层土壤中磷和水分的系统供应做出响应外,也对局部磷和水分的变化产生形态和生理上的反应。根系响应磷和水分的表型可塑性与植物激素的调控作用密切相关。ABA、乙烯、NO均参与磷和水分互作的调控过程,质外体pH在调控植物抵抗水分胁迫过程中具有重要作用,并与植物的营养状况密切相关。[展望]深入理解根土界面水与磷互作的协同过程及其调控机制是提高集约化作物体系水分和磷利用效率的关键。未来的研究方向与重点包括:进一步揭示磷和水分互作与激素信号途径之间的关系,探明农田生态系统中磷与水分互作的根土界面效应及其高效利用的协同机制,建立不同种植条件下水肥资源高效利用的根际调控途径,为通过根系、根际的定向调控,发挥其生物学潜力,提高集约化农田水肥资源的利用效率提供科学依据。  相似文献   

6.
间作作为一种可持续发展的种植模式不仅具有产量和养分获取的优势,而且能够保证粮食安全、降低作物减产风险。在众多间作组合中,豆科禾本科作物间作由于种间促进及生态位互补作用,而在世界范围内被广泛应用。根际是作物-土壤-微生物相互作用的界面,是养分、水分及有害物质从土壤进入作物系统参与食物链物质循环的必经门户,在根际中所发生的生物过程不仅决定着养分的供应量和有效性,而且也影响着作物的生产力和养分利用效率。因此,本文从豆科禾本科间作的根际生物过程角度出发,综述了豆科禾本科间作对根系形态、根际微生物、根系分泌物及其生态效应的研究进展,为豆科禾本科间作体系在修复重金属污染土壤、提高土壤中养分有效性以及植物遗传改良等方面的应用提供理论依据。  相似文献   

7.
李良谟  臧双  周秀如  潘映华 《土壤》1984,16(1):5-10
植物根系的呼吸、水分和养分的吸收、根系分泌物以及死亡根皮和根毛的脱落等,常引起土壤性状的变化,从而形成了根际土壤特殊的微生物活动环境。  相似文献   

8.
外源稀土(RE)可导致根-土界面物理、化学及生物学特性发生根本性变化,特别是根系主导的根际动态过程的变化。如施用不同剂量RE条件下,稀土元素(REE)与根系的相互作用使根系生长、酶活性、细胞质膜透性等受到不同程度的影响。根系生长、酶活性的变化反映了植物可能通过根系形态学、生理学的适应性和非适应性变化机制来改变根系吸收养分、REE及重金属离子的能力,直接影响根际离子进入根系中的含量;而根系细胞质膜透性的变化则反映了植物可能通过根系分泌作用的适应性和非适应性变化机制来改变根系有机酸、质子等的分泌状况,使之作用于根际环境,制约养分、REE及重金属元素在根际的形态转化与迁移分布模式,从而间接影响根际离子进入根系中的含量。本文从外源RE对根系生长状况和酶活性的影响;对根系细胞质膜透性和分泌作用的影响;对根际养分、REE及重金属元素动态的影响;对根系养分、REE及重金属元素吸收分布的影响等4个方面的国内外文献出发,就土壤-植物系统中外源RE作用下根-土界面养分、REE及重金属元素的转化、分布及其植物有效性的响应变化与相关机制做出综述,同时提出目前研究中存在的问题,对今后的研究方向进行展望。  相似文献   

9.
湘北红壤坡地土壤水分特征及其水分运移   总被引:5,自引:2,他引:5  
谢小立  王凯荣 《水土保持学报》2004,18(5):104-107,111
湘北红壤坡地土壤持水力强,有效水含量低(10%左右),含水量呈季节性变化(年变化可分为饱和、亏缺和补充3个时期);土壤结构性差,养分贫乏,原始生产力低,易产生降雨土壤侵蚀。湘北红壤坡地雨水自然资源化程度为降雨量的(46±2)%,农业利用中必须强化雨水资源化过程。坡地典型农业利用系统(旱季)地表/大气界面的水分传输表现为:植被构成是影响传输通量的第一要素;气温和界面水势是影响土/气界面水分传输的主导环境气象因子;辐射和空气饱和水气压差是影响叶/气界面水分传输的主导环境气象因子;在一定的土壤含水量范围内,土/气界面水分传输通量受表层土壤含水量控制。土壤水分变化影响能量平衡,土壤蒸发量与土壤表层水分含量之间有线性正相关;土壤水分除通过影响能量分配来影响植物蒸腾外,土壤水分还能通过影响叶片气孔导度来影响植物蒸腾速率。  相似文献   

10.
植物根系养分吸收性能与土壤养分、水分、pH值和温度等环境条件有着密切的关系,同时又影响着近根微区(根际)土壤中养分的迁移和有效性.土壤中磷素在土壤中的迁移和吸收直接与土壤性质有关.  相似文献   

11.
Soil fabric, root development and root functions Plant roots fulfil numerous functions. These include the uptake of water and nutrients as well as a significant role in the energy, nutrient and hormone metabolism of the plant. To accomplish these functions the plant develops a huge root network during just a few weeks and extends it with a remarkable rate against considerable resistance through the soil pore system. This induces numerous mechanical as well as biochemical interactions between soil and roots, which are of great agronomic and ecological significance. Through a combination of knowledge from various research fields this paper intends to improve the understanding of plant root-soil interactions and to identify knowledge gaps.  相似文献   

12.
[目的] 为探究根土复合体的力学效应机理及模型方法应用。[方法] 采用文献分析和对比分析法,归纳分析根土复合体概念和内涵、根土复合体力学效应及力学模型原理、优缺点以及适用范围。[结果] (1)根土复合体是根系与土体之间力学耦合效应的复合整体,根系在土体中交叉缠绕,起到加固作用;(2)根系与土体力学关系实质上是根土复合体土力、水力和复合力学特性作用的结果,土力特性、水力特性分别侧重研究根系对土体的影响和土中水分对土体和根系的影响,复合力学特性侧重于根土复合体自身特性对植物根系特征以及结构的直接影响,从而通过三者作用使根系与土体的力学关系处于动态平衡之中;(3)根土复合体复合力学模型研究较土力和水力学模型略少,土力学和水力学模型都是根据量化参数,通过参数间对比来衡量固土效果,但复合力学特性同时涉及土力特性和水力特性,考虑全面,应是未来研究的重点方向。[结论] 未来在开展冻融循环、干湿交替、干热循环对不同地区根系与土体相互作用的影响、多类型植物混种抗剪强度、化学作用和微生物作用对土水特性影响机理及复合模型构建等方面有待深入研究。研究结果可为生态脆弱区植被恢复、水土保持和可持续发展等提供重要的理论价值和工程借鉴意义。  相似文献   

13.
Some herbaceous plant species have been shown to dynamically alter the hydraulic properties of their roots in response to sudden changes in the concentrations of mobile nutrients. These hydraulic adaptations effectively allow plants to ‘chase' mobile nutrients across the rhizosphere. Trees, on the other hand, could mitigate effects of heterogeneous, dynamic soil environments with extensive root systems as such systems would effectively equalize nutrient availability. In addition, large dendritic root systems would reduce the effectiveness of rapid, localized, physiological hydraulic changes as these local changes might cancel each other at lower‐order root junctions. Thus, the aim of this study was to determine if trees (Eucalyptus grandis) employ short‐term (minutes to hours), physiological hydraulic changes or rely on long‐term (days), growth‐based hydraulic acclimations to enhance mobile nutrient uptake. We used two nutrients, nitrogen (N) and phosphorus (P), that are characterized by contrasting soil mobility: N being mobile and P immobile. Transpiration, whole‐plant hydraulic resistance (liquid phase), and the hydraulic resistance of single roots of E. grandis plants grown in high and low N combined with high and low P availability were measured. In general, plants grown with high N availability had lower whole‐plant hydraulic resistance than plants grown with low N availability. When N or P were in short supply, a sudden addition of N or P did not change either single‐root or whole‐plant hydraulic resistance at a given leaf water potential. However, addition of N reduced the transpiration rate, thus, enhancing plant water status, suggesting that E. grandis behavior prioritizes water conservation over N uptake in short‐term. Prolonged exposure to low nutrient availability resulted in high overall hydraulic resistance further suggesting prioritization of water conservation over N gain.  相似文献   

14.
Organic matter‐derived soil amendments containing humic substances (HS) have a functional role to improve plant growth and soil quality, but their response to water deficit stress is less reported, particularly in vegetable crops. This study assessed the impact of lignite‐derived HS on biota growth and evaluated their potential mitigative effects under water deficit stress in growth chamber and greenhouse environments. Bell pepper (Capsicum annuum L. cv. Revolution) plants were grown in sandy and clay soil previously mixed with lignite‐derived HS and subjected to four irrigation levels (20%, 40%, 60%, and 80%) based on soil water‐holding capacity. Plant growth traits, soil chemical properties, and microbial populations were measured and analyzed. HS increased plant root development and soil bacteria population in moderate and no stress conditions (60%, 80%). Physiologically, HS rapidly decreased leaf stomatal conductance and transpiration after imposing severe or mild stress (20%, 40%). The results indicate that HS transiently ameliorated plants exposed to water stress by reducing moisture loss. In addition, due to their capacity to improve plant root growth, soil nutrient cycling and microbial activity, application of HS might have long‐term benefits in agricultural systems.  相似文献   

15.
Solute transport from the bulk soil to the root surface is, apart from changes in soil moisture and plant nutrient uptake, a prerequisite for changes in soil osmotic potential (Ψo). According to the convection‐diffusion equation, solute transport depends on a number of parameters (soil moisture–release curve, hydraulic conductivity, tortuosity factor) which are functions of soil texture. It was thus hypothesized that soil texture should have an effect on the formation of Ψo gradients between bulk soil and the root surface. The knowledge about such gradients is important to evaluate water availability in the soil‐plant‐atmosphere continuum (SPAC). A linear compartment system with maize grown under controlled conditions in two texture treatments (T1, pure sand; T2, 80% sand, 20% silt) under low and high initial application of salts (S1, S2) was used to measure the development of Ψo gradients between bulk soil and the root surface by microscale soil‐solution sampling and TDR sensors. The differences in soil texture had a strong impact on the formation of Ψo gradients between bulk soil and the root surface at high and low initial salt application rate. At high initial salt application, a maximum osmotic‐potential gradient (ΔΨo) of –340 kPa was observed for the texture treatment T2 compared to ΔΨo of –180 in T1. The steeper gradients in osmotic potential in treatment T2 compared to T1 corresponded to higher cumulative water consumption in this treatment which can partly be explained by higher soil hydraulic conductivity in the range of soil matric potentials covered during the duration of the experiments. Differences between texture treatments in Ψo at the root surface did not result in differences in plant‐water relations measured as gas‐exchange parameters (transpiration rate, water‐use efficiency) and leaf osmotic potential. If soil osmotic and matric potential are regarded as additive in calculating the driving force for water movement from the soil into the root, the observed differences in water flux between treatments cannot be explained.  相似文献   

16.
确定水流阻力不仅有助于定量土壤栕魑飽大气连续体(SPAC)描述的水分传输过程,而且对建立减少水流阻力的节水农业措施,解决红壤区季节性干旱有重要意义。本文研究了不同耕作制度下作物气孔阻力日变化及其与蒸腾速率、土壤基质势、作物叶水势的关系,并分析了水流阻力的分布及其日变化规律。结果表明气孔阻力和蒸腾速率受作物种类和耕作制度影响,气孔阻力随着70cm土层以上土壤基质势的变化而变化;SPAC中叶气系统水流阻力为109~1010S,是作物体水流阻力的1000倍,而后者又是70cm以上土层土壤水流阻力的100倍;作物体水流阻力大小顺序为:大豆>花生>玉米>甘薯,除甘薯外,其它作物体水流阻力有明显的日变化;此外,耕作制度也影响作物体水流阻力。  相似文献   

17.
为探究土壤-刺槐系统水流阻力对水分胁迫的响应情况,通过盆栽试验方法设置8个水分梯度(田间持水量的30%~100%),研究了两年生刺槐在生长季内的蒸腾速率、根水势、叶水势及土壤-刺槐系统水流阻力等的变化。结果表明:(1)刺槐蒸腾速率、根水势及叶水势随水分含量的增加表现出先增大后保持稳定的趋势。蒸腾速率在30%~70%的田间持水量范围随水分含量的增加而迅速增大,根、叶水势在30%~50%的田间持水量范围增长最快,此后基本稳定;(2)土壤阻力、根系总阻力、植物传导阻力及叶-气阻力均随水分含量的增加而减小,均在30%~50%的田间持水量范围减小最快,其在生长季内大小为7月>10月>8月>9月;(3)土壤-刺槐系统总阻力的变化趋势与叶-气阻力相近,是由于叶-气阻力占总阻力的96.0%以上,并对总阻力的调节起主导作用。根据我们的研究结果推测刺槐在大于50%田间持水量范围,可保持健康、可持续生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号