首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extraction of organic compounds from airborne particulate matter, obtained by glass fiber filtration, has been studied with different solvents and has been followed as a function of time. For many compounds, almost quantitative extraction was obtained after S h. Polyaromatic hydrocarbons and polar compounds often yielded higher extraction efficiencies with methanol than with benzene. The gas chromatographic mass spectrometric determination of these compounds is somewhat simplified by a separation of the sample into neutral, acidic and basic fractions. The efficiency of this procedure was tested on a mixture of compounds representative for the actual aerosol composition. It was concluded that the basic fraction yielded poor results. The techniques for these measurements included quantitative gas chromatography with electronic integration for standard mixtures and quantitative mass chromatography for natural sample extracts.  相似文献   

2.
The formation of heat-induced aggregates of kappa-casein and denatured whey proteins was investigated in milk-based dairy mixtures containing casein micelles and serum proteins in different ratios. Both soluble and micelle-bound aggregates were isolated from the mixtures heated at 95 degrees C for 10 min, using size exclusion chromatography. Quantitative analysis of the protein composition of the aggregates by reverse phase high-performance liquid chromatography strongly suggested that primary aggregates of beta-lactoglobulin and alpha-lactalbumin in a 3 to 1 ratio were involved as well as kappa-casein, and alpha(s2)-casein in micellar aggregates. The results gave evidence that heat-induced dissociation of micellar kappa-casein was implicated in the formation of the soluble aggregates and indicated that a significant amount of kappa-casein was left unreacted after heating. The average size of the aggregates was 3.5-5.5 million Da, depending on the available kappa-casein or the casein:whey protein ratio in the mixtures. The size and density of these aggregates relative to those of casein micelles were discussed.  相似文献   

3.
A procedure for the separation and identification of small peptides from the water-soluble fraction of a goat cheese was developed. The water-soluble extract was ultrafiltered (1000 Da membrane cutoff), and peptides were isolated by sequential chromatography: size exclusion chromatography (HPLC-grade water), anion exchange chromatography (phosphate buffer gradient), and semipreparative reverse-phase high-performance liquid chromatography (water/acetonitrile gradient). The fractions obtained were analyzed by combined mass spectrometry methods including electrospray ionization, liquid secondary ionization, and tandem mass spectrometry to identify and to confirm the sequences of 28 tri- to octapeptides naturally appearing in goat cheese during ripening. Among these peptides, 26 are produced by degradation of caseins but do not correspond to the known specific cleavages due to chymosin. Only low correlation was found between hydrophobicity of peptides and HPLC elution time with acetonitrile gradient.  相似文献   

4.
Binding of condensed tannins to salivary proteins is supposed to be involved in their astringency. First, complexes arising from the interaction of saliva from two individuals and tannins were studied. Then interaction mixture models containing purified saliva proteins were developed. The highest polymerized tannins predominantly precipitated together with the salivary proteins. Electrophoresis of proteins in combination with thiolysis analysis of tannins indicated proline-rich protein (PRP)-polyphenol complexes in precipitated fractions and also in the soluble ones with individual differences. Individual salivas exhibiting different protein patterns were discriminated with regard to their ability to interact with tannins. From binding studies with purified classes of salivary proteins, interactions were shown to depend on the nature of the protein, in particular on their glycosylation state. For low concentrations of tannins, glycosylated PRP-tannin interactions led to complexes that remained soluble, whereas those arising from nonglycosylated PRP-tannin interactions were precipitated. This finding could indicate that under physiological conditions, complexes involving glycosylated proteins maintain part of the lubrication of the oral cavity, whereas tannin trapping leads to a lower astringency perception.  相似文献   

5.
We investigated dissolved organic matter (DOM) from soil, sewage sludges, water from waste disposal sites, and composts as sorbents and potential carriers for hydrophobic polycyclic aromatic hydrocarbons (PAHs) in soil. Partition coefficients (expressed log KDOC) for two 5-ring compounds were 4·8–4·9 for DOM from soil, 4·5–47 from composts, and 4·3–4·4 from sewage sludges. The DOM from compost and sewage sludge can influence the transport of non-ionic organic contaminants because of the large concentrations of dissolved organic carbon (DOC) released from these materials. Leachates from waste disposal sites did not sorb PAHs. The DOM from compost contained a large percentage of organic molecules > 14 000 Da (32–46%), whereas DOM from waste disposal leachates contained only 7-lo%, and so bound less PAHs. The percentage of total hydrophobic components, as characterized by XAD-8 chromatography, was 50 ± 9% for most of the DOM solutions and did not express the differences in affinity of the organic sorbents to PAHs in the same way as the KDOC values. Isolated molecular-weight fractions of DOM from composts sorbed benzo(k)fluoranthene in each fraction. The log KDOC values were 4·1–4·3 for both fractions, < 1000 and 1000–14 000 Da, and 4·8–5·0 for the fraction > 14 000 Da. The interaction of PAHs with DOM < 1000 Da cannot be explained by partitioning within intramolecular nonpolar environments of dissolved macromolecules; rather it seems to be due to the amphoteric properties of DOM. This type of interaction of PAHs with small DOM molecules might affect the mobility of hydrophobic organic chemicals in soils.  相似文献   

6.
Hydrophobicity of bitter peptides from soy protein hydrolysates   总被引:6,自引:0,他引:6  
Soy peptides were characterized for flavor, chemical properties, and hydrophobicity to investigate their relationships with bitterness. Five peptide fractions ranging in average molecular mass from 580 to 11300 Da were fractionated by ultrafiltration from two commercial soy protein hydrolysates. The bitterness of fractionated peptides was related to molecular mass, with maximum bitterness observed at approximately 4000 Da for one hydrolysate and 2000 Da for the other. The bitterness increased as the peptide M(w) decreased to 3000 Da for the first hydrolysate and to 2000 Da for the second one and then decreased as the peptide M(w) decreased below 1000 Da. The peptide fraction with molecular mass of <1000 Da showed the lowest bitterness for both. The hydrophobicity data based on Q values do not support Ney's Q rule as a predictor of bitterness for soy peptides.  相似文献   

7.
The 85% methanol-soluble proteins are known to specifically contribute to the production of flavor of roasted peanut. To determine the nature of the 85% methanol-soluble proteins, they were isolated from the peanut seed, and the 85% methanol-soluble (MS) and 85% methanol-insoluble (MIS) fractions were characterized using polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The results showed that the 85% MS fraction contained lower amounts (9-10%) of protein than the MIS fraction (15-33%). Protein content of the MIS fraction increased more significantly during seed maturation than it did in the MS fraction. Unlike the protein, free amino acids and soluble sugars levels of the MS fraction decreased significantly during seed maturation. The 85% MS fraction contained predominantly low molecular weight (<20 kDa) proteins/polypeptides, whereas the MIS fraction contained a mixture of polypeptides with molecular weight between 14 kDa and 90 kDa. SDS-PAGE showed no major changes in the polypeptide composition of the MS fraction during seed maturation. Capillary electrophoretic analysis revealed major qualitative and quantitative changes in the protein and polypeptide composition of the MS and MIS fractions during seed maturation. Fatty acid analysis of these fractions indicated that the MS fraction is lipoprotein in nature and rich in oleic and linoleic acids.  相似文献   

8.
The composition of grape (Vitis vinifera L. cv. Shiraz) skin proanthocyanidins has been determined at different stages of berry development. Beginning approximately 3 weeks after fruit set and concluding at commercial ripeness, the composition of isolated skin proanthocyanidins was determined using the following analytical techniques: elemental analysis, UV-Vis absorption spectroscopy, reversed-phase HPLC after acid-catalysis in the presence of excess phloroglucinol, gel permeation chromatography, electrospray ionization mass spectrometry (ESI-MS), and (13)C NMR. On the basis of these analyses, berry development was correlated with an increase in proanthocyanidin mean degree of polymerization, an increase in the proportion of (-)-epigallocatechin extension subunits, and increases in the level of anthocyanins associated with the proanthocyanidin fraction. Additionally, data acquired from ESI-MS of the isolates following acid-catalysis in the presence of excess phloroglucinol is consistent with pectin-bound proanthocyanidins.  相似文献   

9.
To study the role of trace elements for the quality and nutritional value of bovine milk, the distribution of selenium, zinc, and copper in whey was investigated using a method linking size exclusion chromatography to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Three major peaks were detected for selenium, two peaks for zinc, and five peaks for copper. More than 65% of the selenium was found in protein fractions, mainly in fractions coinciding with the major whey proteins beta-lactoglobulin and alpha-lactalbumin. All zinc was associated with low molecular weight compounds (<5 kDa) and one of these compounds was probably citrate. More than 60% of the copper eluted in protein fractions and two of the five major peaks probably contained metallothionein and citrate. This method was used to compare milk and whey produced by organic and conventional feeding procedures. The selenium content in whey and desalted milk produced using organic regimens was significantly lower than that in conventional samples. Moreover, the proportion of selenium in protein fractions of organic whey was significantly smaller than that in conventional whey, but the distributions of zinc and copper did not differ. This study showed that with the SEC-ICP-MS technique the distribution profiles of several trace elements in whey could be studied in the same run and that the selenium profile differed in whey produced by organic and conventional procedures.  相似文献   

10.
After flavonol glycosides, monomeric flavan-3-ols, and dimeric and trimeric proanthocyanidins were fractionated from an extract of sea buckthorn (Hippophae rhamnoides) pomace by Sephadex LH-20 gel chromatography, oligomeric proanthocyanidins were eluted. The oligomeric fraction accounted for 84% of the total proanthocyanidins and 75% of the total antioxidant activity of the sea buckthorn pomace extract. To elucidate the structure of the oligomeric fraction, it was depolymerized by acid catalysis in the presence of phloroglucinol. The structure of the resulting flavan-3-ol monomers and flavan-3-ol-phloroglucinol adducts was determined by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. Quantitative high-performance liquid chromatography investigations demonstrated (+)-gallocatechin as the predominating subunit in the oligomeric fraction. This observation was confirmed by ESI-MS, matrix-assisted laser desorption/ionization mass spectrometry, and (13)C NMR spectroscopy. The results showed that the majority of the flavan-3-ol subunits possessed a 2,3-trans configuration. The oligomers consisted mainly of prodelphinidin subunits whereas procyanidins were present in smaller amounts, indicating a very uncommon composition of the sea buckthorn proanthocyanidins. The mean degree of polymerization of the oligomeric proanthocyanidins was between 6 and 9.  相似文献   

11.
The condensed tannin concentrations and composition and the characterization of the phenolic constituents in the leaves of the forage legume sulla (Hedysarum coronarium), a biennial forage legume found in temperate agricultural regions, were studied. The colorimetric butanol-HCl assay was used for the quantitation of the seasonal condensed tannin concentrations in the leaves of sulla. Fractionation of extracts on Sephadex LH-20 using step elution with aqueous methanol, followed with aqueous acetone or gradient elution with water, aqueous methanol, and aqueous acetone, gave condensed tannin and flavonoid fractions. The chemical characteristics of the purified condensed tannin fractions were studied by acid-catalyzed degradation with benzyl mercaptan and electrospray ionization mass spectrometry (ESI-MS). Thiolysis revealed that epigallocatechin was the major extender unit (15-75%) while gallocatechin was the major terminal unit (50-66%), thus indicating the extractable sulla condensed tannin fraction as the prodelphinidin type. Condensed tannin oligomers to polymers obtained from Sephadex LH-20 gradient fractions ranged between 2.9 and 46 mDP. The homo- and heterogeneous oligomer ions in condensed tannin gradient fractions detected by ESI-MS ranged from 2 to 10 DP and are consistent with the values obtained by thiolysis (2.9-6.9 DP). Lower molecular weight phenolics, including flavonoids and phenolic acids, were characterized by liquid chromatography atmospheric pressure chemical ionization mass spectrometry (LC-APCI/MS) and ESI/MS/MS on a linear ion trap. The flavonoids extracted with aqueous acetone and methanol from sulla leaves and identified included kaempferol, rutin, quercetin-7-O-α-L-rhamnosyl-3-O-glucosylrhamnoside, quercetin-3-O-α-L-rhamnosyl-7-O-glucoside, kaempferol-3-O-β-D-glucoside-dirhamnoside, genistein-7-O-β-D-glucosyl-6″-O-malonate, formononetin-7-O-β-D-glucoside-6″-O-malonate, and afrormosin and the phenolic acid chlorogenic acid.  相似文献   

12.
Corn fiber gum (CFG) has been fractionated by hydrophobic interaction chromatography on Amberlite XAD-1180 resin using ionic, acidic, basic, and hydrophobic solvents of different polarities. Characterization, including determination of total carbohydrate, acidic sugar, and protein content, has been done for each fraction together with measurements of molar mass, polydispersity, radius of gyration, Mark-Houwink exponent, and intrinsic viscosity using multiangle laser light scattering and online viscosity measurements. Emulsification properties of all fractions in an oil-in-water emulsion system with 20:1 oil to gum ratio were studied by measuring turbidity over 14 days. The results indicate that CFG consists of different components differing in their molecular weights and carbohydrate and protein contents. The main fraction eluted with NaCl, although low in protein content, has the highest average molecular weight and was determined to be a better emulsifier than the other fractions. The unfractionated CFG, which contains different molecular species, is the best emulsifier.  相似文献   

13.
High-performance liquid chromatography combined with diode array and electrospray ionization mass spectrometric detection was used to study soluble and insoluble forms of phenolic compounds in strawberries, raspberries (red and yellow cultivated and red wild), arctic bramble, and cloudberries. Hydroxycinnamic acids were present as free forms in cloudberries and mainly as sugar esters in the other berries. Quercetin 3-glucuronide was the typical flavonol glycoside in all of the berries studied. The composition of the predominant anthocyanins can be used to distinguish the studied red Rubus species from each other since cyanidin was glycosylated typically with 3-sophorose (56%) in cultivated red raspberry, with 3-sophorose (30%) and 3-glucose (27%) in wild red raspberry, and with 3-rutinose (80%) in arctic bramble. Ellagic acid was present as free and glycosylated forms and as ellagitannins of varying degrees of polymerization. Comparable levels of ellagitannins were obtained by the analysis of soluble ellagitannins as gallic acid equivalents and by the analysis of ellagic acid equivalents released by acid hydrolysis of the extracts.  相似文献   

14.
Indonesian soy sauce is made using only soybeans as the nitrogenous source. Moromi obtained from fermentation of yellow soybeans using Aspergillus sojae as the starter was investigated. The fraction with molecular weights of less than 500 Da obtained by stepwise ultrafiltration was then fractionated by several chromatographic procedures, including gel filtration chromatography and RP-HPLC. Several chemical analyses, CE profiles, and taste profiles were performed to obtain the most intense umami fraction. The main components eliciting or enhancing the umami taste present in the fraction were purified and identified by protein sequencing, ESI-MS, and (1)H NMR at 400 MHz. Besides free l-glutamic acid and aspartic acid, free aromatic amino acids such as l-phenylalanine and l-tyrosine may also play an important role in impressing savory or umami taste of Indonesian soy sauce at their subthreshold concentrations and in the presence of salt and free acidic amino acids. This is reported as a new phenomenon of the so-called bitter amino acids.  相似文献   

15.
The foam of sparkling wines is a key parameter of their quality. However, the compounds that are directly involved in foam formation and stabilization are not yet completely established. In this work, seven sparkling wines were produced in Bairrada appellation (Portugal) under different conditions and their foaming properties evaluated using a Mosalux-based device. Fractionation of the sparkling wines into four independent fractions, (1) high molecular weight material, with molecular weight higher than 12 kDa (HMW), (2) hydrophilic material with molecular weigh between 1 and 12 kDa (AqIMW), (3) hydrophobic material with molecular weigh between 1 and 12 kDa (MeIMW), and (4) hydrophobic material with a molecular weight lower than 1 kDa (MeLMW), allowed the observation that the wines presenting the lower foam stability were those that presented lower amounts of the MeLMW fraction. The fraction that presented the best foam stability was HMW. When HMW is combined with MeLMW fraction, the foam stability largely increased. This increase was even larger, approaching the foam stability of the sparkling wine, when HMW was combined with the less hydrophobic subfraction of MeLMW (fraction 3). Electrospray tandem mass spectrometry (ESI-MS/MS) of fraction 3 allowed the assignment of polyethylene glycol oligomers (n = 5-11) and diethylene glycol 8-hydroxytridecanoate glyceryl acetate. To observe if these molecules occur in sparkling wine foam, the MeLMW was recovered directly from the sparkling wine foam and was also analyzed by ESI-MS/MS. The presence of monoacylglycerols of palmitic and stearic acids, as well as four glycerylethylene glycol fatty acid derivatives, was observed. These surface active compounds are preferentially partitioned by the sparkling wine foam rather than the liquid phase, allowing the inference of their role as key components in the promotion and stabilization of sparkling wine foam.  相似文献   

16.
Defibrinated bovine plasma (DBP) was treated with the microbial protease Flavourzyme to obtain protein hydrolysates with various degrees of hydrolysis (DH). The angiotensin I-converting enzyme (ACE) inhibiting activity of the hydrolyzed protein was assessed with hippuryl-His-Leu as the substrate. The amount of hippuric acid released, due to uninhibited ACE activity, was determined by high-performance liquid chromatography. ACE inhibiting (ACEI) activity was found to increase with increasing DH; the 43% DH hydrolysate exhibited the highest activity and had an IC(50) of 1.08 mg/mL. Peptide fractions with high ACEI activity were isolated using size exclusion chromatography. The fraction that possessed the highest ACEI activity contained peptides with GYP, HL(I), HPY, HPGH, L(I)F, SPY, and YPH sequence motifs, as determined by reversed-phase liquid chromatography-tandem mass spectrometry using a novel immonium precursor-ion scanning technique. Some of these motifs correspond to sequences found in bovine serum albumin, a potential source of ACEI peptides in bovine plasma.  相似文献   

17.
Bitterness-masking compounds were identified in a natural white mold cheese. The oily fraction of the cheese was extracted and further fractionated by using silica gel column chromatography. The four fractions obtained were characterized by thin-layer chromatography and nuclear magnetic resonance spectroscopy. The fatty acid-containing fraction was found to have the highest bitterness-masking activity against quinine hydrochloride. Bitterness-masking activity was quantitated using a method based on subjective equivalents. At 0.5 mM, the fatty acid mixture, which had a composition similar to that of cheese, suppressed the bitterness of 0.008% quinine hydrochloride to be equivalent to that of 0.0049-0.0060% and 0.5 mM oleic acid to that of 0.0032-0.0038% solution. The binding potential between oleic acid and the bitter compounds was estimated by isothermal titration calorimetry. These results suggest that oleic acid masked bitterness by forming a complex with the bitter compounds.  相似文献   

18.
The beta-conglycinin and glycinin fractions of soy protein were isolated from Macon, Ohio FG1, Enrei, and IL2 genotypes that were grown under the same environmental conditions. The soy protein fractions were evaluated to determine whether chemical composition and gel-forming properties were related. Amino acid analyses suggested that the hydrophobic residues may be the primary cause of differences in soy protein gel characteristics as the storage moduli increased with higher percentages of hydrophobic residues. Reversed-phase high-performance liquid chromatography profiles revealed variations in the composition of each fraction that corresponded to differences observed among the storage moduli. The gel-forming properties may be related to more than just protein content, such as the amount and type of amino acid in the fraction.  相似文献   

19.
"Temulose" is the trade name for a water-soluble molasses produced on a large scale (300-400 tonnes per year) as a byproduct of the fiberboard industry. The feedstock for Temulose is predominantly a single species of pine ( Pinus taeda ) grown and harvested in stands in southeastern Texas. Because of the method of production, the molasses was predicted to consist of water-soluble hemicelluloses, mainly arabinoxylan-type and galactoglucomannan-type oligosaccharides, plus minor components of lignin, but no detailed structural study had been reported. The structure and composition of the molasses has now been deduced by a combination of MALDI-TOF mass spectrometry, size exclusion chromatography, proton and (13)C NMR techniques, and classic carbohydrate analysis. Limited acid hydrolysis released a series of galactoglucomannan oligosaccharides (GGMO) that were selectively recovered from the acid-labile arabinogalactan by precipitation with ethanol. The precipitate was named "Temulose brown sugar" because of its appearance, and is shown to consist of GGMO with a degree of polymerization (DP) from 4 to 13, with the major component being DP 5-8. The structure of these oligosaccharides is a β-1,4-linked backbone of Man and Glc residues, with occasional α-1,6 branching by single galactosyl units.  相似文献   

20.
The proteins from Vicia sativa L. (common vetch) seeds were investigated. Protein comprises approximately 11.4% of the seed fresh weight, >50.8% of which is composed by globulins and 43.6% by albumins. The globulins may be fractionated into two main components, which were named alpha-vicinin (comprising 73% of the total globulin fraction, and hence >37% of the total seed protein) and beta-vicinin. Two minor globulin components are also present, gamma-vicinin and delta-vicinin. alpha-Vicinin, the legumin-like globulin, with a sedimentation coefficient of 10.6 S, is a nonglycosylated, disulfide-bond-containing globulin, composed of a group of subunits with molecular masses ranging from 50 to 78 kDa. Upon reduction, each of these subunits releases a heavy polypeptide chain (34-66 kDa) and a light polypeptide chain (21-23 kDa). beta-Vicinin, the vicilin-like globulin, with a sedimentation coefficient of 7.7 S, is a nonglycosylated globulin that contains no disulfide bonds and consists of two major polypeptides with molecular masses of 58 and 66 kDa. gamma-Vicinin is a minor, glycosylated, disulfide-bond-containing globulin. In the reduced form, it comprises six polypeptide chains with molecular masses of 12, 19, 21, 22, 23, and 31 kDa. Finally, delta-vicinin is a minor, highly glycosylated globulin that exhibits hemagglutinating activity. It is composed of a major 47 kDa polypeptide and two minor (33 and 38 kDa) polypeptides. N-terminal sequencing of the delta-vicinin 47 kDa polypeptide revealed no homology to any other known storage protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号