首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Soil cores from river marginal wetlands from three sites in the UK (Torridge and Severn catchments), sampled and restrained in PVC piping, were flooded with dilute aqueous potassium nitrate. Half of the cores were sterilized prior to flooding to destroy the denitrifying bacteria. The change in nitrate concentration in the flood-water was measured over time. It is argued that the observed nitrate depletion rates (from 1.2 to 4.7 kg ha−1 d−1) is the result of microbially-mediated denitrification. The results show the method to be a simple and direct procedure for the assessment of spatial variation in nitrate-sink capacity. The depth of the denitrifying layer at the soil–water interface was confirmed to be of the order of a few mm only. A one-dimensional model for the diffusive flux in the flooded soil was developed which, on differentiation, gave a predictive expression for denitrification rate in terms of the effective soil diffusion coefficient for nitrate, the flood-water depth and concentration, and the thickness of the microbially active zone.  相似文献   

2.

Purpose  

Most dryland ecosystems show high landscape heterogeneity that can influence soil fertility, although the underlying processes are still poorly understood. Furthermore, our understanding of the same could be affected by the scale dependency of the landscape representation. Here, we study the relationships between soil and landscape attributes at different spatial resolutions in a semiarid area, to better understand which landscape processes control soil fertility and whether such control is affected by the resolution of landscape representation.  相似文献   

3.
In column studies in the laboratory the apparent diffusion coefficients(D)of chloride and TOH for undisturbed and unsaturated soils were determined as a function of the pore water velocity. Parallel the effective diffusion coefficients (D+) of Cl? were measured as a function of water content. It was found that the values of D varied significantly between soil layers and soil types. This findings also held for the low flow velocities studied (0.3 and 1.0 cm/d). The impedance factors to calculate the effective diffusion coefficients (D+) from D values in the bulk water, decreased with decreasing bulk densities. In model calculations it was demonstrated that in spite of the differences of D values measured, for many purposes in the field good estimates of the solute distribution in the soils can be obtained by using simple relations between D and vo.  相似文献   

4.
Microscopic studies have shown that most microbes exist in soils as dwarf cells that are thought to be an adaptation to nutrient limitation. Most dwarfs are uncultured by current approaches and have not been identified phylogenetically. Only a few dwarf bacteria have been isolated in culture and dwarf archaea have received little study. We selected a semiarid creosotebush shrubland site for studying dwarf microorganisms because arid and semiarid soils are generally nutrient-poor. Soils were collected beneath creosotebush canopies and in open areas between shrubs. Cells were eluted in sodium pyrophosphate and filtered with a 0.45-μm pore-size filter. Filtrate DNA was extracted, PCR-amplified using universal bacterial and archaeal 16S rDNA primers, cloned, RFLP-screened, and sequenced. The eluted cell filtrates were also inoculated into R2B medium. After incubation, cultures were filtered to select against populations of dwarfs that formed large cells in the presence of nutrients (pleomorphic dwarfs) and to select for populations that retained dwarf size (intrinsic dwarfs). Dwarf archaea and bacteria were present in the initial filtrate and in the cultures. A single dwarf archaeon (SevArch-01) that is related to other soil Crenarchaeota sequences was found in the initial filtrates and in subsequent filtrate cultures, indicating an intrinsically dwarf archaeon. Dwarf bacteria fell into four bacterial phyla: Proteobacteria, Firmicutes, Actinobacteria, and the TM-7 group. Intrinsically dwarf bacteria in enrichment cultures were identified as α- and β-Proteobacteria. Dwarf bacteria related to Arthrobacter, Propionibacterium, and other actinobacteria were detected. Several sequences showed no close relationships to any microorganisms that have been grown in culture.  相似文献   

5.
Intensive agriculture (IA) is widespread in South Italy, although it requires frequent tillage, large amounts of fertilizers and irrigation water. We have assessed the efficacy of reversing IA to sustainable agriculture (SA) in recovering quality of a typical South Italy soil (Lithic Haploxeralf). This reversion, lasting from 2000 to 2007, replaced 75% of nutrients formerly supplied inorganically by farmyard manuring and reduced the tillage frequency. Several chemical and biochemical properties, functionally related to C and N mineralisation–immobilisation processes and to P and S nutrient cycles, were monitored annually from 2005 to 2007 in the spring. Reversing IA to SA decreased soil bulk density, almost doubled the soil organic matter (SOM) as favoured the immobilisation of C and N, increased most soil microbial indicators but decreased contents of nitrate, mineral N and K2SO4-extractable C. The K2SO4-extractable C/K2SO4-extractable organic N ratio suggested that substrate quality rather than the mass of readily available C and N affected biomass and activity of soil microflora. Also, the largely higher 10-day-evolved CO2–C-to-inorganic N ratio under SA than IA indicated that higher C mineralisation, associated with higher microbial biomass N immobilisation, occurred under SA than IA. Decreases in most soil enzyme activities under IA, compared to SA, were much higher than concomitant decreases in SOM content. Soil salinity and sodicity were always higher in IA than SA soil, although not critically high, likely due to the intensive inorganic fertilisation as irrigation waters were qualitatively and quantitatively the same between the two soils. Thus, we suggest that the cumulative small but long-term saline (osmotic) and sodic (dispersing) effects in IA soil decreased the microbial variables more than total organic C and increased soil bulk density.  相似文献   

6.
A method is proposed which follows Darrah's experimental procedure and takes advantage of a mathematical solution provided by Carslaw & Jaeger to estimate the diffusion coefficients of adsorbed and non-adsorbed solutes in soil. The method requires only the values of the concentration of the solute at the input face of a uniform column of soil, Cs, and of the total amount, Qt, that has entered the soil after a specified time during which the surface of the block is in contact with a thin porous pad containing a known initial amount of solute, Q0, at concentration C0, expressed in the same units as Cs. In the Cs/C0 vs. Qt/Q0 space there is a unique relationship between the effective diffusion coefficient, De, of the solute in the soil and the contact conductance for this solute, h, between the pad and the soil surface. The proposed procedure is firstly to determine De, and h for a non-adsorbed solute in the experimental soil using the experimental values of Cs/C0 and Q/Q for that solute. This value of De, gives the diffusion impedance factor for the solute in the soil, f, which is assumed also to apply to adsorbed solutes. A first estimate of the effective diffusion coefficient of an adsorbed solute, 1Dea, is then made using f and the diffusion coefficient of the free solute in water, DL, obtained from the literature (i.e. 1Dea= DLf). Only if the solute is weakly adsorbed will the values of Cs/C0, and Qt/Q0 lie in Cs/C0, vs. Qt/Q0, space as defined by 1Dea and the contact conductance, h. Instead a second space relating Cs/C0 and Qt/Q0, is now constructed from nominated values of h and De, where De, is defined in terms of 1Dea, the adsorption coefficient, F , and the volumetric moisture content of the soil, θ. The position of the experimental values of Cs/C0, and Qt/Q0 within this new space defines h and the actual De, and F of the solute as it diffuses and is adsorbed in the soil. The advantages and limitations of the method are discussed. In particular, the method assumes that the adsorption process is linear and reversible.  相似文献   

7.
A mathematical model was developed which was capable of simulating the diffusion of compounds with a concentration-dependent diffusion coefficient, by virtue of their sorption on the solid phase of the soil. Methods were developed which allowed the sorption characteristics and the effective diffusion coefficient of several organic compounds to be inferred from their measured diffusion profiles.  相似文献   

8.
An experiment to evaluate the impact of water erosion and cultivation on the soil carbon dynamic and carbon stock in a semiarid area of South-East Spain was carried out. The study was performed under three different land use scenarios: (1) forest; (2) abandoned agricultural field; and (3) non-irrigated olive grove. Experimental erosion plots (in olive grove and forest) and sediment traps (in the abandoned area) were used to determine the carbon pools associated with sediments and runoff after each event occurring between September 2005 and November 2006.

Change in land use from forest to cultivated enhanced the risk of erosion (total soil loss in olive cropland seven-fold higher than in the forest area) and reduced the soil carbon stock (in the top 5 cm) by about 50%. Mineral-associated organic carbon (MOC) represented the main C pool in the three study areas although its contribution to soil organic carbon (SOC) was significantly higher in the disturbed areas (78.91 ± 1.81% and 77.29 ± 1.21% for abandoned and olive area, respectively) than in the forest area (66.05 ± 3.11%). In both, the olive and abandoned soils, the reduction in particulate organic carbon (POC) was proportionally greater than the decline in MOC.

The higher degree of sediment production in the olive cropland had an important consequence in terms of the carbon losses induced by erosion compared to the abandoned and forest plots. Thus, the total OC lost by erosion in the sediments was around three times higher in the cultivated (5.12 g C m−2) than the forest plot (1.77 g C m−2). The abandoned area displayed similar OC losses as a result of erosion as the forest plot (in the measurement period: 2.07 g C m−2, 0.63 g C m−2 and 0.65 g C m−2 for olive, forest and abandoned area, respectively). MOC represented the highest percentage of contribution to total sediment OC for all the events analysed and in all uses being, in general these values higher in Olive (74–90%) than in the other two areas (55–80%). The organic carbon lost was basically linked to the solid phase in the three land uses, although the contribution of DOC to total carbon loss by erosion varied widely with each event.

Data from this study show that the more labile OC fraction (POC) lost in soil in the cultivated area was mainly due to the effect of cultivation (low overall biomass production and residue return together with high C mineralization) rather than to water erosion, given that the major part of the OC lost in sediments was in the form of MOC.  相似文献   


9.
Nitrogen (N) deposition is a major threat to the semiarid Mediterranean ecosystems. We simulated a gradient of N deposition (0, 10, 20 and 50 kg N ha?1 year?1?+?6.4 kg N ha?1 year?1 ambient deposition) in a Mediterranean shrubland from central Spain. In autumn 2011 (after 4 years of experimental duration), soil cores were taken to extract the soil fauna. Acari (45.54%) and Collembola (44.00%) were the most represented taxonomical groups, and their abundance was negatively related to soil pH. Simulated N deposition had an impact on the total number of individuals in soil as well as on Collembola and Pauropoda abundance. Collembola abundance increased with N loads up to 20 kg N ha-1 year-1 and then decreased. This response was attributed to soil acidification (between 0 and 20 kg N ha-1 year-1) and increased soil ammonium (between 20 and 50 kg N ha-1 year-1). Pauropoda were favoured by additions of 50 kg N ha-1 year-1, and it was the only taxonomical group whose abundance was exclusively related to N deposition, suggesting their potential as bioindicators. Contrary to predictions, there was a negative relationship between soil faunal abundance and plant diversity. In conclusion, soil faunal communities from semiarid Mediterranean ecosystems in central Spain seem to be primarily influenced by soil chemistry (mainly pH) but are also susceptible to increased N deposition. The main drivers of change under increased N deposition scenarios seem to be soil acidification and increased ammonium in soils where nitrate is the dominant mineral N form.  相似文献   

10.
盐渍化农田土壤斥水性与理化性质的空间变异性   总被引:3,自引:0,他引:3  
郭丽俊  李毅  李敏  任鑫  朱德兰 《土壤学报》2011,48(2):275-285
通过对新疆玛纳斯县盐渍化土壤三个不同尺度(间距分别为50 m、5 m及0.5 m)的284个样点取样分析测定,采用经典统计学、空间自相关、地统计学和分形理论对土壤斥水性与理化性质进行空间格局分析。结果表明:1)土壤斥水性和pH符合正态分布,其余土壤属性符合对数正态分布。三尺度下土壤各属性绝大多数表现为中等变异水平。2)三尺度下土壤各属性的Moran s I系数变化具有相似性,在-0.8~0.6范围内波动。3)三尺度下土壤各属性的半方差函数理论模型大多数能用球状模型来拟合。4)在一定范围内,土壤各属性具有一定的分形特征,分形维数变化幅度为1.75~1.96。分析表明不同尺度下土壤斥水性与理化性质具有一定的差异。  相似文献   

11.
The soil acidity diffusion coefficients have been measured at two Pco2 levels with values in the range 2–70 × 10?9 cm2 s?1. The coefficient passed through an ill-defined minimum in the pH range 5–6.5. Theoretical values, calculated on the basis that the only significant acid-base carriers in the soil were the H3O+ -H2O and H2CO3-HCO?3 pairs, agreed well with the experimental values over the whole pH range at Pco2= 0.005 atm. Agreement was not so good however at a CO2 pressure of 0.0003 atm., especially in the neutralalkaline pH range. This was thought to be due to difficulties in maintaining this level of CO2 throughout the soil samples.  相似文献   

12.
The diffusion of indigenous nitrate from small (<5 mm) aggregates of a clay-loam soil, and added bromide from larger (30–70 mm) clods of a sandy clay, were studied under saturated conditions. The time (t0.5) taken for half the diffusional solute loss to occur from the small aggregates was well related to the square of the aggregate radius (a2). The impedance factor (fi) of 0.54 calculated from the t0.5 v. a2 relationship gave satisfactory results in simulations of the measured Mt/M∞. v. time curves. t0.5 was also well related to a2 for the clods, but the ft values calculated from it were not only very large (>0.9) but also decreased with increasing clod size, possibly because of anion exclusion effects. The model simulated bromide diffusion from chalk cubes of mixed sizes better when computations were made for each size than when a single volume-averaged size was taken.  相似文献   

13.
The Brazilian Cerrado has been converted to farmland, and there is little evidence that this expansion will decrease, mainly because agriculture is the country’s main economic sector. However, the impacts of intense modification of land use and land cover on surface runoff and soil erosion are still poorly understood in this region. Here, we assessed surface runoff and soil loss in a woodland Cerrado area under a former pasture area, which was abandoned and has undergone a natural regeneration process for 7 years (RC). Its results were compared with that found in an undisturbed area of woodland Cerrado (CE), 40-month-old eucalyptus (3.0 × 1.8 m) (EU), and pasture under rotational grazing (PA). The study was conducted on Red Acrisol located in the Brazilian Cerrado. We performed rainfall simulations on a plot of 0.7 m2 and using three constant rainfall intensities of 60, 90, and 120 mm h−1 for 1 h. For each rainfall intensity, we carried out four repetitions using different plots in each treatment, i.e. 12 plots per treatment studied and 48 plots in total. We noted that the soil physical properties were improved in RC and, consequently, water infiltration and soil erosion control; RC presented surface runoff and soil loss different from EU and PA (α = 0.05). The macroporosity and soil bulk density affected surface runoff in RC and PA because the RC was used as pasture and is currently regenerating back to the cerrado vegetation. As the rainfall intensity increased, EU became more similar to PA, which showed the highest surface runoff and soil loss. Our findings indicate that natural regeneration processes (pasture to the cerrado vegetation) tend to improve the soil ecosystem services, improving infiltration and reducing surface runoff and soil erosion.  相似文献   

14.
Soil compaction was assessed in terms of soil strength as measured with a penetrometer. Penetrometer resistance was measured on virgin soil and on the same soil after one and after five passes of a 7,610 kg tractor. Also, comparative studies were made of strength profiles of soils in arable fields and in adjacent areas of virgin soil. The strength of virgin soil was increased by wheel traffic and agricultural operations in all cases. The increase in soil strength was significant down to 0.3 m, which is considerably greater than the normal depth of tillage in the area (0.05 m). Reduction in the coefficient of variation of penetrometer strengths after the passage of wheels was taken as evidence for associated losses of soil structure. Virgin soils provide important reference sites for assessing the impact of agriculture in an area.  相似文献   

15.
砂性层状土柱蒸发过程实验与数值模拟   总被引:1,自引:0,他引:1  
任利东  黄明斌 《土壤学报》2014,51(6):1282-1289
为了了解不同类型层状土柱蒸发特性,利用砂土和砂黄土2种土壤,设置3种不同厚度分层土柱(11.25、22.5、45 cm)和2种均质对照土柱,测定了土柱蒸发过程中累积蒸发量、相对蒸发速率和剖面含水量的变化;同时利用2种均质土柱排水过程优化的土壤水力参数和Hydrus-1D模型对2种均质土柱和3种不同类型层状土柱蒸发过程进行模拟分析。结果表明,均质砂黄土蒸发第一阶段持续长达34 d,累积蒸发量显著高于均质砂土和其他3种不同类型分层土柱,土柱剖面含水量变化进一步证明表层覆盖砂土可显著抑制土壤蒸发。利用排水过程优化的水力参数,HYDRUS-1D可以较好地模拟层状土柱蒸发过程。研究结果对干旱半干旱区土壤水分管理具有指导意义。  相似文献   

16.
通过对新疆玛纳斯县盐渍化土壤三个不同尺度(间距分别为50m、5m及0.5m)的284个样点取样分析测定,采用经典统计学、空间自相关、地质统计学和分形理论对土壤斥水性与理化性质进行空间格局分析。结果表明:1)土壤斥水性和pH符合正态分布,其余土壤属性符合对数正态分布。三尺度下土壤各属性绝大多数表现为中等变异水平。2)三尺度下土壤各属性的Moran’s I系数变化具有相似性,在-0.8~0.6范围内波动。3)三尺度下土壤各属性的半方差函数理论模型大多数能用球状模型来拟合。4)在一定范围内,土壤各属性具有一定的分形特征,分形维数变化幅度为1.75~1.96。分析表明不同尺度下土壤斥水性与理化性质具有一定的差异。  相似文献   

17.
In Central Aragon, winter cereal is sown in the autumn (November–December), commonly after a 16–18 months fallow period aimed at conserving soil water. This paper uses the Simple Soil–Plant–Atmosphere Transfer (SiSPAT) model, in conjunction with field data, to study the effect of long fallowing on the soil water balance under three tillage management systems (conventional tillage, CT; reduced tillage, RT; and no-tillage, NT). This was on the assumption that soil properties would remain unchanged during the entire fallow season. Once the model was validated with data obtained before primary tillage implementation, the differences between simulated and observed soil water losses for the CT and RT treatments could be interpreted as the direct effect of the soil tillage system. The model was calibrated and validated in a long-term tillage experiment using data from three contrasting long-fallow seasons over the period 1999–2002, where special attention was paid to predicting soil hydraulic properties in the pre-tillage conditions. The capacity of the model to simulate the soil water balance and its components over long fallowing was demonstrated. Both the fallow rainfall pattern and the tillage management system affected the soil water budget and components predicted by the model. The model predicted that about 81% of fallow seasonal rainfall is lost by evaporation in long-fallow periods with both a dry autumn in the first year of fallow and a rainfall above normal in spring. Whereas, when the fallow season is characterised by a wet autumn during the first year of fallow the model predicted a decrease in soil water evaporation and an increase in water storage and deep drainage components. In this case, the predicted water lost by evaporation was higher under NT (64%) than under RT (56%) and CT (44%). The comparison between measured and simulated soil water loss showed that the practice of tillage decreased soil water conservation in the short term. The long-term analysis of the soil water balance showed that, in fallow periods with a wet autumn during the first year of fallow, the soil water loss measured under CT and RT was moderately greater than that predicted by the model.  相似文献   

18.
19.
《Applied soil ecology》2007,35(1):120-127
The effect of an atrazine formulation on microbial biomass, microbial respiration, ATP content and dehydrogenase and urease activity in a semiarid soil and the influence of time on the response of soil microbial activity to the herbicide treatment were assessed. The atrazine formulation was added to soil as aqueous solutions of different concentrations of active ingredient to obtain a range of concentrations in the soil from 0.2 to 1000 mg kg−1. Microcosms of soil with the different herbicide concentrations and untreated control soil were incubated for 6 h, 16 and 45 days. In general, an increase in the measured microbiological and biochemical parameters with atrazine concentration in soil was observed. The increase in microbial activity with atrazine pollution was noticeable after lengthy incubation.  相似文献   

20.
Selective erosion and transport of silt and clay particles from watershed soil surfaces leads to enrichment of suspended sediments by size fractions that are the most effective scavengers of chemical pollutants. Thus, preferential transport of highly reactive size fractions represents a major problem relative to sediment/chemical transport in watersheds, and offsite water quality. The objective of this research was to develop an approach to identify sediment sources at a soil mapping unit scale for the purpose of designing site specific best management practices which affect greater reductions in runoff and erosion losses. Surface soil samples were collected along transects from each of the major 25 mapping units in six subwatersheds of the Walnut Gulch Experimental Watershed. Suspended sediments were collected from supercritical flumes at the mouth of each subwatershed. Laboratory analyses included basic soil/sediment physical and chemical properties, radioisotopes, and stable carbon isotopes, all by standard methods. Aggregation index (AI) values [100 · (1 − water dispersible clay / total clay)] were taken as an indicator of relative soil erodibility. Potential sediment yield index (PSYI) values were calculated by multiplying percent relative area for individual soil mapping units times (100 − AI). Particle size results indicated that suspended sediments were enriched in clay, relative to the watershed soils, by an average of 1.28. Clay enrichment ratios (ER) were significantly (P ≤ 0.01) and positively correlated with AI, an indication that these two parameters can be equated with erodibility and sediment yield. The PSYI values for the six subwatersheds ranged from 68.0 to 81.7. The stable carbon isotope data for the suspended sediments gave a C3 (shrubs) to C4 plant (grasses) ratio that ranged from 1.06 to 2.25, indicating greater erosion from the more highly erodible, shrub-dominated subwatersheds which also coincided with the highest PSYI values. Correlation coefficients determined individually for PSYI versus clay ER, C3/C4 plant ratios, and multivariate mixing model results were: 0.962 (P ≤ 0.01), 0.905 (P ≤ 0.01), and 0.816 (P ≤ 0.05), respectively. These statistically significant relationships support the accuracy of a potential sediment yield index approach for identifying suspended sediment sources at soil mapping unit scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号