首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Alfaxalone, a synthetic neuroactive steroid, has been attributed with properties including sedation, anaesthesia and analgesia. The clinical relevance of any analgesic properties of alfaxalone has not been demonstrated. This study was a prospective, blinded, randomized, negative control clinical trial in 65 healthy dogs presented for ovariohysterectomy. Anaesthesia was induced and maintained, for Group 1 (TIVA) dogs (n = 30) with intravenous alfaxalone alone and for Group 2 dogs (n = 35) with thiopental followed by isoflurane in 100% oxygen inhalation. After ovariohysterectomy, quantitative measures of pain or nociception were recorded at 15 min intervals for 4 hr using three independent scoring systems, a composite measure pain scale (CMPS), von Frey threshold testing and measures of fentanyl rescue analgesia. The mean CMPS scores of Group 2 (THIO/ISO) dogs remained higher than Group 1 (TIVA) dogs from 15 to 135 min post‐surgery but this difference was not statistically significant. There were no significant differences between groups in the proportions of dogs requiring rescue fentanyl analgesia, the total fentanyl dose used or the time to first fentanyl dose. The Von Frey threshold testing was found to be unsuitable for measurement of pain in this experimental model. When administered as total intravenous anaesthesia, alfaxalone did not provide analgesia in the postoperative period.  相似文献   

5.
ObjectiveTo compare the effect of alfaxalone and propofol on heart rate (HR) and blood pressure (BP) after fentanyl administration in healthy dogs.Study designProspective, randomised clinical study.AnimalsFifty healthy client owned dogs (ASA I/II) requiring general anaesthesia for elective magnetic resonance imaging for neurological conditions.MethodsAll dogs received fentanyl 7 μg kg−1 IV and were allocated randomly to receive either alfaxalone (n = 25) or propofol (n = 25) to effect until endotracheal (ET) intubation was possible. Heart rate and oscillometric BP were measured before fentanyl (baseline), after fentanyl (Time F) and after ET intubation (Time GA). Post-induction apnoea were recorded. Data were analysed using Fisher’s exact test, Mann Whitney U test and one-way anova for repeated measures as appropriate; p value <0.05 was considered significant.ResultsDogs receiving propofol showed a greater decrease in HR (-14 beat minute−1, range -47 to 10) compared to alfaxalone (1 beat minute−1, range -33 to 26) (p = 0.0116). Blood pressure decreased over the three time periods with no difference between groups. Incidence of post-induction apnoea was not different between groups.ConclusionFollowing fentanyl administration, anaesthetic induction with propofol resulted in a greater negative chronotropic effect while alfaxalone preserved or increased HR.Clinical relevanceFollowing fentanyl administration, HR decreases more frequently when propofol rather than alfaxalone is used as induction agent. However, given the high individual variability and the small change in predicted HR (-7.7 beats per minute after propofol), the clinical impact arising from choosing propofol or alfaxalone is likely to be small in healthy animals. Further studies in dogs with myocardial disease and altered haemodynamics are warranted.  相似文献   

6.
7.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

8.
9.
ObjectiveTo assess the effect of a benzodiazepine co–induction on propofol dose requirement for induction of anaesthesia in healthy dogs, to describe any differences between midazolam and diazepam and to determine an optimal benzodiazepine dose for co–induction.Study designProspective, randomised, blinded placebo controlled clinical trial.AnimalsNinety client owned dogs (ASA I–III, median body mass 21.5kg (IQR 10–33)) presented for anaesthesia for a variety of procedures.MethodsDogs were randomised to receive saline 0.1 mL kg?1, midazolam or diazepam at 0.2, 0.3, 0.4 or 0.5 mg kg?1. All dogs received 0.01 mg kg?1 acepromazine and 0.2 mg kg?1 methadone intravenously (IV). Fifteen minutes later, sedation was assessed and scored prior to anaesthetic induction. Propofol, 1 mg kg?1, was administered IV, followed by the treatment drug. Further propofol was administered until endotracheal intubation was possible. Recorded data included patient signalment, sedation score, propofol dosage and any adverse reactions.ResultsMidazolam (all groups combined) significantly reduced propofol dose requirement compared to saline (p < 0.001) and diazepam (p = 0.008). Midazolam (0.4 mg kg?1) significantly reduced propofol dose requirement (p = 0.014) compared to saline, however other doses failed to reach statistical significance. Diazepam did not significantly reduce propofol dose requirement compared to saline (p = 0.089). Dogs weighing <5 kg, regardless of treatment group, required a greater propofol dose than those weighing 5–40 kg (p = 0.002) and those >40 kg (p = 0.008). Dogs which were profoundly sedated required less propofol than those which were mildly sedated (p < 0.001) and adequately sedated (p = 0.003).Conclusions and clinical relevanceMidazolam (0.4 mg kg?1) given IV after 1 mg kg?1 of propofol significantly reduced the further propofol dose required for intubation compared to saline. At the investigated doses, diazepam did not have significant propofol dose sparing effects.  相似文献   

10.

Objective

To determine the effect of fentanyl on the induction dose and minimum infusion rate of alfaxalone required to prevent movement in response to a noxious stimulus (MIRNM) in dogs.

Study design

Experimental crossover design.

Animals

A group of six healthy, adult, intact female mixed-breed dogs, weighing 19.7 ± 1.3 kg.

Methods

Dogs were randomly administered one of three treatments at weekly intervals: premedication with 0.9% saline (treatment A), fentanyl 5 μg kg–1 (treatment ALF) or fentanyl 10 μg kg–1 (treatment AHF), administered intravenously over 5 minutes. Anesthesia was induced 5 minutes later with incremental doses of alfaxalone to achieve intubation and was maintained for 90 minutes in A with alfaxalone (0.12 mg kg–1 minute–1), in ALF with alfaxalone (0.09 mg kg–1 minute–1) and fentanyl (0.1 μg kg–1 minute–1) and in AHF with alfaxalone (0.06 mg kg–1 minute–1) and fentanyl (0.2 μg kg–1 minute–1). The alfaxalone infusion was increased or decreased by 0.006 mg kg–1 minute–1 based on positive or negative response to antebrachium stimulation (50 V, 50 Hz, 10 ms). Data were analyzed using a mixed-model anova and presented as least squares means ± standard error.

Results

Alfaxalone induction doses were 3.50 ± 0.13 (A), 2.17 ± 0.10 (ALF) and 1.67 ± 0.10 mg kg–1 (AHF) and differed among treatments (p < 0.05). Alfaxalone MIRNM was 0.17 ± 0.01 (A), 0.10 ± 0.01 (ALF) and 0.07 ± 0.01 mg kg–1 minute–1 (AHF) and differed among treatments. ALF and AHF decreased the MIRNM by 44 ± 8% and 62 ± 5%, respectively (p < 0.05). Plasma alfaxalone concentrations at MIRNM were 5.82 ± 0.48 (A), 4.40 ± 0.34 (ALF) and 2.28 ± 0.09 μg mL–1 (AHF).

Conclusions and clinical relevance

Fentanyl, at the doses studied, significantly decreased the alfaxalone induction dose and MIRNM.  相似文献   

11.

Objective

To describe the sedative and physiologic effects of two doses of alfaxalone administered intramuscularly in dogs.

Study design

Randomized, blinded, crossover experimental trial.

Animals

Ten adult mixed-breed dogs.

Methods

Dogs were assigned randomly to be administered one of three intramuscular injections [saline 0.1 mL kg?1 (S), alfaxalone 1 mg kg?1 (A1) or alfaxalone 2 mg kg?1 (A2)] on three occasions. Heart rate (HR), respiratory rate (fR) and sedation score were assessed before injection (T0) and at 5 (T5), 10 (T10), 15 (T15), 20 (T20), 30 (T30), 45 (T45) and 60 (T60) minutes postinjection. Rectal temperature was determined at T0 and T60. Adverse events occurring between the time of injection and T60 were recorded.

Results

Sedation scores were higher in group A2 at T15 and T30 compared with group S. There were no additional differences between groups in sedation score. The A2 group had higher sedation scores at T15, T20 and T30 compared with T0. The A1 group had higher sedation scores at T10 and T30 compared with T0. Temperature was lower in groups A1 and A2 compared with S at T60, but was not clinically significant. There were no differences between or within groups in HR or fR. Adverse effects were observed in both A1 and A2 groups. These included ataxia (17/20), auditory hyperesthesia (5/20), visual disturbance (5/20), pacing (4/20) and tremor (3/20).

Conclusions and clinical relevance

While alfaxalone at 2 mg kg?1 intramuscularly resulted in greater median sedation scores compared with saline, the range was high and adverse effects frequent. Neither protocol alone can be recommended for providing sedation in healthy dogs.  相似文献   

12.

Objective

To investigate the clinical and physiological effects of intravenous (IV) alfaxalone alone or in combination with buprenorphine, butorphanol or tramadol premedication in marmosets.

Study design

Prospective, randomized, blinded, crossover design.

Animals

Nine healthy marmosets (391 ± 48 g, 3.7 ± 2.2 years old).

Methods

Meloxicam 0.20 mg kg?1 subcutaneously, atropine 0.05 mg kg?1 intramuscularly (IM) and either buprenorphine 20 μg kg?1 IM (BUP-A), butorphanol 0.2 mg kg?1 IM (BUT-A), tramadol 1.5 mg kg?1 IM (TRA-A) or no additional drug (control) were administered to all marmosets as premedication. After 1 hour, anaesthesia was induced with 16 mg kg?1 alfaxalone IV. All animals received all protocols. The order of protocol allocation was randomized with a minimum 28 day wash-out period. During anaesthesia, respiratory and pulse rates, rectal temperature, haemoglobin oxygen saturation, arterial blood pressure, palpebral and pedal withdrawal reflexes and degree of muscle relaxation were assessed and recorded every 5 minutes. Quality of induction and recovery were assessed. Duration of induction, immobilization and recovery were recorded. Blood samples were analysed for aspartate aminotransferase, creatine kinase and lactate dehydrogenase concentrations. The protocols were compared using paired t tests, Wilcoxon's signed-rank test with Bonferroni's corrections and linear mixed effect models where appropriate.

Results

Out of nine animals, apnoea was noted in eight animals administered protocol BUP-A and two animals administered protocol BUT-A. With TRA-A and control protocols, apnoea was not observed. No other significant differences in any of the parameters were found; however, low arterial blood pressures and hypoxia occurred in TRA-A.

Conclusions and clinical relevance

Our study employing different premedications suggests that the previously published dose of 16 mg kg?1 alfaxalone is too high when used with premedication because we found a high incidence of complications including apnoea (BUP-A), hypotension and hypoxaemia (TRA-A). Appropriate monitoring and countermeasures are recommended.  相似文献   

13.

Objective

To study the effect of alternating the order of midazolam and alfaxalone administration on the incidence of behavioural changes, alfaxalone induction dose and some cardiorespiratory variables in healthy dogs.

Study design

Prospective, randomized, controlled, clinical trial.

Animals

A total of 33 client-owned dogs undergoing elective procedures.

Methods

Following intramuscular acepromazine (0.02 mg kg?1) and morphine (0.4 mg kg?1) premedication, anaesthesia was induced intravenously (IV) with a co-induction of either midazolam (0.25 mg kg?1) prior to alfaxalone (0.5 mg kg?1; group MA), or alfaxalone followed by midazolam at identical doses (group AM). The control group (CA) was administered normal saline IV prior to alfaxalone administration. Additional alfaxalone (0.25 mg kg?1 increments) was administered as required in all groups until orotracheal intubation was possible. Changes in behaviour, quality of induction, ease of intubation and incidence of adverse events at induction were recorded. Heart rate (HR), respiratory rate (fR) and systolic arterial blood pressure (SAP) were measured before treatments (baseline values), 30 minutes after premedication and at 0, 2, 5 and 10 minutes postintubation.

Results

The incidence of excitement was higher in group MA compared with groups CA (p = 0.005) and AM (p = 0.013). The mean induction dose of alfaxalone was lower in group AM compared with group CA (p = 0.003). Quality of induction and ease of intubation were similar among groups. Mean HR values decreased after premedication and increased after alfaxalone administration in all groups. Mean SAP values were similar between groups. The number of animals that required manual ventilation was higher in the MA group.

Conclusions and clinical relevance

Despite a lower occurrence of adverse events at induction in group AM compared with group MA and a reduction of alfaxalone dose requirement in group AM compared with group CA, the use of an alfaxalone–midazolam co-induction does not seem to produce any cardiovascular or respiratory benefits in healthy dogs.  相似文献   

14.
15.
ObjectiveTo compare the anaesthetic and cardiopulmonary effects of alfaxalone with propofol when used for total intravenous anaesthesia (TIVA) during ovariohysterectomy in dogs.Study designA prospective non-blinded randomized clinical study.AnimalsFourteen healthy female crossbred bitches, aged 0.5–5 years and weight 16–42 kg.MethodsDogs were premedicated with acepromazine 0.01 mg kg?1 and morphine 0.4 mg kg?1. Anaesthesia was induced and maintained with either propofol or alfaxalone to effect for tracheal intubation followed by an infusion of the same agent. Dogs breathed spontaneously via a ‘circle’ circuit, with oxygen supplementation. Cardiopulmonary parameters (respiratory and heart rates, end-tidal carbon dioxide, tidal volume, and invasive blood pressures) were measured continuously and recorded at intervals related to the surgical procedure. Arterial blood samples were analysed for blood gas values. Quality of induction and recovery, and recovery times were determined. Non-parametric data were tested for significant differences between groups using the Mann–Whitney U-test and repeatedly measured data (normally distributed) for significant differences between and within groups by anova.ResultsBoth propofol and alphaxalone injection and subsequent infusions resulted in smooth, rapid induction and satisfactory maintenance of anaesthesia. Doses for induction (mean ± SD) were 5.8 ± 0.30 and 1.9 ± 0.07 mg kg?1 and for the CRIs, 0.37 ± 0.09 and 0.11 ± 0.01 mg kg?1 per minute for propofol and alfaxalone respectively. Median (IQR) recovery times were to sternal 45 (33–69) and 60 (46–61) and to standing 74 (69–76) and 90 (85–107) for propofol and alphaxalone respectively. Recovery quality was good. Cardiopulmonary effects did not differ between groups. Hypoventilation occurred in both groups.Conclusions and clinical relevanceFollowing premedication with acepromazine and morphine, both propofol and alphaxalone produce good quality anaesthesia adequate for ovariohysterectomy. Hypoventilation occurs suggesting a need for ventilatory support during prolonged infusion periods with either anaesthetic agent.  相似文献   

16.
ObjectiveTo compare the physiological parameters, arterial blood gas values, induction quality, and recovery quality after IV injection of alfaxalone or propofol in dogs.Study designProspective, randomized, blinded crossover.AnimalsEight random-source adult female mixed-breed dogs weighing 18.7 ± 4.5 kg.MethodsDogs were assigned to receive up to 8 mg kg?1 propofol or 4 mg kg?1 alfaxalone, administered to effect, at 10% of the calculated dose every 10 seconds. They then received the alternate drug after a 6-day washout. Temperature, pulse rate, respiratory rate, direct blood pressure, and arterial blood gases were measured before induction, immediately post-induction, and at 5-minute intervals until extubation. Quality of induction, recovery, and ataxia were scored by a single blinded investigator. Duration of anesthesia and recovery, and adverse events were recorded.ResultsThe mean doses required for induction were 2.6 ± 0.4 mg kg?1 alfaxalone and 5.2 ± 0.8 mg kg?1 propofol. After alfaxalone, temperature, respiration, and pH were significantly lower, and PaCO2 significantly higher post-induction compared to baseline (p < 0.03). After propofol, pH, PaO2, and SaO2 were significantly lower, and PaCO2, HCO3, and PA-aO2 gradient significantly higher post-induction compared to baseline (p < 0.03). Post-induction and 5-minute physiologic and blood gas values were not significantly different between alfaxalone and propofol. Alfaxalone resulted in significantly longer times to achieve sternal recumbency (p = 0.0003) and standing (p = 0.0004) compared to propofol. Subjective scores for induction, recovery, and ataxia were not significantly different between treatments; however, dogs undergoing alfaxalone anesthesia were more likely to have ≥1 adverse event (p = 0.041). There were no serious adverse events in either treatment.Conclusions and clinical relevanceThere were no clinically significant differences in cardiopulmonary effects between propofol and alfaxalone. A single bolus of propofol resulted in shorter recovery times and fewer adverse events than a single bolus of alfaxalone.  相似文献   

17.
18.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

19.
20.
IntroductionImmersion anaesthetic techniques are commonly used in amphibian species. Alfaxalone has been reported as an immersion anaesthetic in fish but not amphibians.Case history and examinationA Mexican 56 g axolotl was presented with a 3 day history of anorexia. Anaesthesia was required for the surgical retrieval of two gastric foreign bodies. Prior to anaesthesia, on visual inspection the axolotl was bright and active. Branchial and gular respiratory movements occurred at approximately 24 respirations minute?1 and heart rate was approximately 52 beats minute?1.ManagementThe axolotl was exposed to increasing concentrations (up to 5 mg L?1) of alfaxalone (Alfaxan; Vetóquinol, UK) in a water bath. After becoming sedated the axolotl was removed from the water bath. Anaesthesia was induced and maintained with alfaxalone (5 mg L?1) via continuous irrigation of the gills (branchial) and skin (cutaneous) with additional 30 μL drops of alfaxalone (10 mg mL?1) administered branchially as required. Endoscopy and surgery were performed to remove two gastric foreign bodies. Branchial and gular respiratory movements persisted at what was considered an appropriate anaesthetic depth. Anaesthetic depth could be rapidly deepened by branchial irrigation of alfaxalone solutions and lightened by irrigation using fresh water. Anaesthesia lasted approximately 1 hour and recovery was rapid (within 15 minutes). Recovery was assisted through branchial and cutaneous irrigation with fresh water.Follow-upNo obvious adverse effects of anaesthesia were observed immediately post-anaesthesia or, according to the owner, in the following week.ConclusionsAxolotls can be anaesthetized using alfaxalone administered via immersion and branchial/transcutaneous irrigation offering an alternative technique for anaesthetising axolotls for clinical and research purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号