首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xie W  Wang S  Wu Q  Feng Y  Pan H  Jiao X  Zhou L  Yang X  Fu W  Teng H  Xu B  Zhang Y 《Pest management science》2011,67(1):87-93
BACKGROUND: The polyphagous B‐biotype Bemisia tabaci (Gennadius) has developed a high resistance to commonly used insecticides in China. To illustrate the induced changes by host plant, bioassay and biochemical research on five different host populations were investigated. RESULTS: Except for bifenthrin, all tested insecticides showed lower toxicity to the B. tabaci poinsettia population compared with other host populations. Moreover, four insecticides, the exceptions being abamectin and fipronil, showed highest toxicity towards the tomato population. The LC50 values of the poinsettia population, particularly towards acetamiprid, were 14.8‐, 10.3‐ and 7.29‐fold higher than those of tomato, cucumber and cabbage respectively. The CarE activities of B. tabaci cabbage and cucumber populations were all significantly higher than those of poinsettia, cotton and tomato populations. The ratio of the cabbage population was 1.97‐, 1.79‐ and 1.30‐fold higher than that of poinsettia, cotton and tomato respectively. The frequency profiles for this activity also have obvious differences. The GST and P450 activities of the cucumber population were the lowest in the five host populations. CONCLUSION: Long‐term induction of host plants for B‐biotype B. tabaci could influence their susceptibilities to several insecticides. Rational selection and usage of insecticides for particular hosts will be helpful for resistance management and control of this species. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
BACKGROUND: B‐biotype Bemisia tabaci (Gennadius) has invaded China over the past two decades. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in B. tabaci, a resistant strain was selected in the laboratory. Cross‐resistance and the biochemical mechanisms of thiamethoxam resistance were investigated in the present study. RESULTS: A 66.3‐fold thiamethoxam‐resistant B. tabaci strain (TH‐R) was established after selection for 36 generations. Compared with the susceptible strain (TH‐S), the selected TH‐R strain showed obvious cross‐resistance to imidacloprid (47.3‐fold), acetamiprid (35.8‐fold), nitenpyram (9.99‐fold), abamectin (5.33‐fold) and carbosulfan (4.43‐fold). No cross‐resistance to fipronil, chlorpyrifos or deltamethrin was seen. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) exhibited significant synergism on thiamethoxam effects in the TH‐R strain (3.14‐ and 2.37‐fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that cytochrome P450 monooxygenase activities increased 1.21‐ and 1.68‐fold respectively, and carboxylesterase activity increased 2.96‐fold in the TH‐R strain. However, no difference was observed for glutathione S‐transferase between the two strains. CONCLUSION: B‐biotype B. tabaci develops resistance to thiamethoxam. Cytochrome P450 monooxygenase and carboxylesterase appear to be responsible for the resistance. Reasonable resistance management that avoids the use of cross‐resistance insecticides may delay the development of resistance to thiamethoxam in this species. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
BACKGROUND: A major problem of crop protection in Crete, Greece, is the control of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) with chemical insecticides owing to the rapid development of resistance. The aim of this study was to investigate the establishment of resistance and the underlying mechanisms to major insecticide classes with classical bioassays and known biochemical resistance markers. RESULTS: During a 2005–2007 survey, 53 Q biotype populations were collected. Application history records showed extensive use of neonicotinoids, organophosphates, carbamates and pyrethroids. High resistance levels were identified in the majority of populations (>80%) for imidacloprid (RF: 38–1958×) and α‐cypermethrin (RF: 30–600×). Low resistance levels (RF < 12) were observed for pirimiphos‐methyl. A strong correlation between resistance to imidacloprid and the number of applications with neonicotinoids was observed. Significant correlations were observed between COE and P450‐dependent monoxygenase activity with resistance to α‐cypermethrin and imidacloprid respectively. A propoxur‐based AChE diagnostic test indicated that iAChE was widespread in most populations. Resistance levels for α‐cypermethrin were increased when compared with a previous survey (2002–2003). Differentiation of LC50 values between localities was observed for imidacloprid only. CONCLUSION: Bemisia tabaci resistance evolved differently in each of the three insecticides studied. Imidacloprid resistance seems less established and less persistent than α‐cypermethrin resistance. The low resistance levels for pirimiphos‐methyl suggest absence of cross‐resistance with other organophosphates or carbamates used. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
Pyriproxyfen was effective against susceptible Bemisia tabaci eggs at a LC50 of 0.003 mg litre−1 and against nymphs at 0.02 mg litre−1. In comparison, eggs of a laboratory selected, pyriproxyfen-resistant B tabaci strain, originating in an Israeli greenhouse, exhibited 6500-fold resistance and nymphs exhibited 1100-fold resistance. Eggs and nymphs of a strain from an Israeli sunflower field exhibited 450 and 210-fold resistance in comparison to the susceptible standard. Fenoxycarb was generally less effective than pyriproxyfen against B tabaci eggs and nymphs but was unaffected by pyriproxyfen resistance. Piperonyl butoxide (PB) was antagonistic to pyriproxyfen, and this increased with increasing pyriproxyfen resistance. PB had no effect on the toxicity of fenoxycarb. Collectively, these data imply that the modes of action of pyriproxyfen and fenoxycarb are distinct, despite the structural similarities of these molecules. Possible reasons for the antagonism of PB against pyriproxyfen are discussed. © 1999 Society of Chemical Industry  相似文献   

5.
6.
A Helicoverpa armigera population was collected from Shandong province, China. After 15 generations of selection in the laboratory, the H. armigera strain developed more than 20-fold resistance to spinosad. At LD50 level, no significant cross-resistance was found between spinosad and chlorpyrifos, methomyl, avermectin and chlorfenapyr except for fenvalerate with a low cross-resistance of 2.4-fold. However, LD99 values of fenvalerate against the parental and resistant strains were not different significantly. After inhibitors were used, spinosad resistance could be partially suppressed by piperonylbutoxide (PBO) and triphenylphosphate (TPP), but not by diethylmaleate (DEM). Activities of p-nitroanisole O-demethylase (ODM) developed to 8.26-fold compared with the parental strain, but no obvious changes were found in activities of carboxyl esterase (CarE) and glutathione-S-transferase (GST). The results indicated that resistance to spinosad in the cotton bollworm might be associated with an increase in cytochrome P450 monooxygenase.  相似文献   

7.
BACKGROUND: The presence of symbiotic microorganisms may influence an insect's ability to tolerate natural and artificial stress agents such as insecticides. The authors have previously shown that Rickettsia in the B biotype of the whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) increases this insect's susceptibility to several insecticidal compounds. This communication reports a comparison of the susceptibilities of three isofemale strains of the Q biotype of B. tabaci harbouring different bacterial complements to major insecticides from different chemical groups: one strain harboured only Arsenophonus, one harboured Rickettsia and Arsenophonus and one harboured Arsenophonus and Wolbachia. RESULTS: The presence of different symbiont combinations in the three strains had a significant influence on their susceptibility to most of the insecticides tested. Thiamethoxam, imidacloprid, pyriproxyfen and spiromesifen had a significant influence on strains that had the double infections RickettsiaArsenophonus and Wolbachia–Arsenophonus, which also carried higher amounts of symbionts as assessed by quantitative real‐time PCR. No significant differences in mortality rates were observed when the tested strains were treated with diafenthiuron. CONCLUSION: The results suggest a correlation between the presence of high bacterial densities in B. tabaci and the insect's ability to detoxify toxic compounds such as insecticides. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
Summer-form pear psylla, Psylla pyricola Foerster, from sprayed pear were resistant to endosulfan (2·4-fold), methiocarb (2·5-fold), ethylan (5·8-fold), azinphos-methyl (7·7-fold), and fenvalerate (40·1-fold). Esterase (3·8-fold), glutathione transferase (1·8-fold), and cytochrome P-450 monooxygenase (1·6-fold) detoxification enzyme activity was higher in resistant than in susceptible summer forms. Synergism by piperonyl butoxide and S,S,S-tributylphosphorotrithioate (DEF) was added evidence for cytochrome P-450 monooxygenases and esterases as resistance mechanisms. Reduced penetration may also have contributed to resistance, as indicated by a 1·6-fold slower penetration of azinphos-methyl in resistant than susceptible summer-forms. Similar differences in insecticide toxicity and esterase and glutathione transferase activities were observed between winter-forms of resistant and susceptible pear psylla. Winter-forms of P. pyricola were up to three times more tolerant to insecticides than summer-forms. Higher cytochrome P-450 monooxygenase activity (1·7-fold) and slower azinphosmethyl penetration (2·1-fold) in winter-forms may have contributed to their greater insecticide tolerance; however, sequestration may also have been involved.  相似文献   

9.
An introductory study was conducted to investigate the pyrethroid resistance ofHelicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) strains in Turkey, collected from cotton fields in the Adana and Antalya provinces, through two different synthetic pyrethroid insecticides: lambda-cyhalothrin and esfenvalerate. In addition, the roles of glutathioneS-transferases (GSTs) in this resistance mechanism were analyzed. It was found that whereas resistance ratios for lambda-cyhalothrin (LD50 levels) were 3- and 98-fold increased in the Adana and Antalya strains, respectively, esfenvalerate ratios were 3.3- and 92.3-fold increased in the Adana and Antalya strains, respectively, with respect to the susceptible strain. Furthermore, Adana and Antalya strains showed 2.4- and 2.9-fold higher GST activities than the susceptible strain, respectively. In the Antalya field strain, the minor increase in GST activity compared with the resistance levels implies that GSTs may be not greatly involved in this resistance. It also provides evidence that they could not be the only metabolic mechanism responsible for resistance to lambda-cyhalothrin and esfenvalerate inH. armigera from Turkey. http://www.phytoparasitica.org posting Nov. 16, 2006.  相似文献   

10.
A strain of the fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from corn in Citra, Florida, showed high resistance to carbaryl (562-fold) and methyl parathion (354-fold). Biochemical studies revealed that various detoxification enzyme activities were higher in the field strain than in the susceptible strain. In larval midguts, activities of microsomal oxidases (epoxidases, hydroxylase, sulfoxidase, N-demethylase, and O-demethylase) and hydrolases (general esterase, carboxylesterase, β-glucosidase) were 1.2- to 1.9-fold higher in the field strain than in the susceptible strain. In larval fat bodies, various activities of microsomal oxidases (epoxidases, hydroxylase, N-demethylase, O-demethylases, and S-demethylase), glutathione S-transferases (CDNB, DCNB, and p-nitrophenyl acetate conjugation), hydrolases (general esterase, carboxylesterase, β-glucosidase, and carboxylamidase) and reductases (juglone reductase and cytochrome c reductase) were 1.3- to 7.7-fold higher in the field strain than in the susceptible strain. Cytochrome P450 level was 2.5-fold higher in the field strain than in the susceptible strain. In adult abdomens, their detoxification enzyme activities were generally lower than those in larval midguts or fat bodies; this is especially true when microsomal oxidases are considered. However, activities of microsomal oxidases (S-demethylase), hydrolases (general esterase and permethrin esterase) and reductases (juglone reductase and cytochrome c reductase) were 1.5- to 3.0-fold higher in the field strain than in the susceptible strain. Levels of cytochrome P450 and cytochrome b5 were 2.1 and 1.9-fold higher, respectively, in the field strain than in the susceptible strain. In addition, acetylcholinesterase from the field strain was 2- to 85-fold less sensitive than that from the susceptible strain to inhibition by carbamates (carbaryl, propoxur, carbofuran, bendiocarb, thiodicarb) and organophosphates (methyl paraoxon, paraoxon, dichlorvos), insensitivity being highest toward carbaryl. Kinetics studies showed that the apparent Km value for acetylcholinesterase from the field strain was 56% of that from the susceptible strain. The results indicated that the insecticide resistance observed in the field strain was due to multiple resistance mechanisms, including increased detoxification of these insecticides by microsomal oxidases, glutathione S-transferases, hydrolases and reductases, and target site insensitivity such as insensitive acetylcholinesterase. Resistance appeared to be correlated better with detoxification enzyme activities in larval fat bodies than in larval midguts, suggesting that the larval fat body is an ideal tissue source for comparing detoxification capability between insecticide-susceptible and -resistant insects.  相似文献   

11.
12.
Abamectin resistance was selected in the western flower thrips [Frankliniella occidentalis (Pergande)] under the laboratory conditions, and cross-resistance patterns and possible resistance mechanisms in the abamectin-resistant strain (ABA-R) were investigated. Compared with the susceptible strain (ABA-S), the ABA-R strain displayed 45.5-fold resistance to abamectin after 15 selection cycles during 18 generations. Rapid reversion of abamectin resistance was observed in the ABA-R strain in the absence of the insecticide selection pressure. Moderate and low levels of cross-resistance to chlorpyrifos (RR 11.4) and lambda-cyhalothrin (3.98) were observed in the ABA-R strain, but no significant cross-resistance was found to spinosad (2.00), acetamiprid (1.47) and chlorfenapyr (0.26). Our studies also showed that the esterase inhibitor S,S,S-tributyl phosphorotrithioate (DEF) and glutathione S-transferase inhibitor diethyl maleate (DEM) were not able to synergize the toxicity of abamectin, whereas the oxidase inhibitor piperonyl butoxide (PBO) conferred a significant synergism on abamectin in the ABA-R strain (SR 3.00). Biochemical analysis showed that cytochrome P450 monooxygenase activity of the ABA-R strain was 6.66-fold higher than that of the ABA-S strain. It appears that enhanced oxidative metabolism mediated by cytochrome P450 monooxygenases was a major mechanism for abamectin resistance in the western flower thrips.  相似文献   

13.
为明确天津市烟粉虱Bemisia tabaci隐种的类别及其寄主适应性、传毒能力、携带内共生菌情况和抗药性,采用mt COI酶切法对从武清、西青、蓟州和宁河4个区的番茄、黄瓜及辣椒3种寄主上采集的12个烟粉虱种群进行隐种鉴定,采用PCR检测其携带番茄黄化曲叶病毒(tomato yellow leaf curl virus,TYLCV)和内共生菌情况,并采用浸叶法测定其对4种常用药剂的抗性。结果表明,采集的烟粉虱种群以MED隐种为主,占所有检测个体的93.33%,有3个种群为MED和MEAM1隐种混合发生。所有检测个体中有36.25%的个体携带TYLCV,在6个种群中检测到TYLCV,其中5个种群有超过50%的个体携带TYLCV。在12个种群中共检测到Hamiltonella、立克次氏体Rickettsia、Cardinium和杀雄菌属Arsenophnus共4种内共生菌,携带个体比例分别为90.63%、48.96%、43.75%和8.33%,进一步对内共生菌协同感染情况进行分析,发现有HARC、HRC、HAC、HR、HC和AC共6个协同感染型,感染率分别为4.17%、28.13%、3....  相似文献   

14.
Pyriproxyfen, a novel juvenile hormone mimic, is a potent suppressor of embryogenesis and adult formation of the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Dipping of cotton or tomato seedlings infested with 0 to 1-day-old eggs in 0.1 mg litre?1 resulted in over 90% suppression of egg hatch of both B. tabaci and T. vaporariorum. Older eggs were affected to a lesser extent. Exposure of whitefly females to cotton or tomato seedlings treated with pyriproxyfen resulted in oviposition of non-viable eggs. The LC90 values for egg viability of B. tabaci and T. vaporariorum exposed to treated plants were 0.05 and 0.2 mg litre?1, respectively. Treatment of whitefly larvae with 0.04–5 mg litre?1 resulted in normal development until the pupal stage; however, adult emergence was totally suppressed. Second instars of B. tabaci exposed to 5 mg litre?1 pyriproxyfen, excreted honeydew at a level similar to the control level until the fourth instar (pupation), after which a strong reduction was observed. Inhibition of egg-hatch on the lower surface of cotton leaves was observed when their upper surface was treated with 1–25 mg litre?1, indicating a pronounced translaminar effect. These findings indicate that pyriproxyfen is an efficient control agent of both B. tabaci and T. vaporariorum. The compound has been used successfully for controlling whiteflies in Israeli cotton fields since 1991. Adults of B. tabaci collected from a rose greenhouse and from adjacent cotton fields were monitored during 1991–1993 for their susceptibility to pyriproxyfen. A high level of resistance was recorded in whiteflies collected from a greenhouse after three successive applications of pyriproxyfen. Based on LC50 values, the resistance ratio for egg-hatch suppression was 554-fold and, for adult emergence failure, 10-fold. However, a single treatment of pyriproxyfen in cotton fields during the summer season (according to an insecticide resistance management (IRM) strategy) did not alter appreciably the susceptibility of B. tabaci to this compound. In order to prevent development of resistance, an attempt should be made to restrict its use to one treatment per crop season applied during the peak activity of the pest. Pyriproxyfen can be alternated with other novel compounds such as buprofezin and diafenthiuron for controlling whiteflies in cotton, vegetables and ornamentals as part of integrated pest management (IPM) and IRM strategies. In pyriproxyfen- or buprofezin-resistant strains of B. tabaci or T. vaporariorum, no appreciable cross-resistance was observed among pyriproxyfen, buprofezin and diafenthiuron.  相似文献   

15.
BACKGROUND: The B‐type Bemisia tabaci (Gennadius) has become established in many regions in China, and neonicotinoids are extensively used to control this pest. Imidacloprid resistance in a laboratory‐selected strain of B‐type B. tabaci was characterised in order to provide the basis for recommending resistance management tactics. RESULTS: The NJ‐Imi strain of B‐type B. tabaci was selected from the NJ strain with imidacloprid for 30 generations. The NJ‐Imi strain exhibited 490‐fold resistance to imidacloprid, high levels of cross‐resistance to three other neonicotinoids, low levels of cross‐resistance to monosultap, cartap and spinosad, but no cross‐resistance to abamectin and cypermethrin. Imidacloprid resistance in the NJ‐Imi strain was autosomal and semi‐dominant. It is shown that enhanced detoxification mediated by cytochrome‐P450‐dependent monooxygenases contributes to imidacloprid resistance to some extent in the NJ‐Imi strain. Results from synergist bioassays and cross‐resistance patterns indicated that target‐site insensitivity may be involved in imidacloprid resistance in the NJ‐Imi strain of B. tabaci. CONCLUSION: Although oxidative detoxification mediated by P450 monooxygenases is involved in imidacloprid resistance in the NJ‐Imi strain of B‐type B. tabaci, target‐site modification as an additional resistance mechanism cannot be ruled out. Considering the high risk of cross‐resistance, neonicotinoids should be regarded as a single group when implementing an insecticide rotation scheme in B. tabaci control. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
Wheat aphid, Sitobion avenae (fabricius), is one of the most important wheat pests and has been reported to be resistant to commonly used insecticides in China. To determine the resistance mechanism, the resistant and susceptible strains were developed in laboratory and comparably studied. A bioassay revealed that the resistant strain showed high resistance to pirimicarb (RR: 161.8), moderate reistance to omethoate (32.5) and monocrotophos (33.5), and low resistance to deltamethrin (6.3) and thiodicarb (5.5). A biochemistry analysis showed that both strains had similar glutathione-S-transferase (GST) activity, but the resistant strain had 3.8-fold higher esterase activity, and its AChE was insensitive to this treatment. The I50 increased by 25.8-, 10.7-, and 10.4-folds for pirimicarb, omethoate, and monocrotophos, respectively, demonstrating that GST had not been involved in the resistance of S. avenae. The enhanced esterase contributed to low level resistance to all the insecticides tested, whereas higher resistance to pirimicarb, omethoate, and monocrotophos mainly depended on AChE insensitivity. However, the AChE of the resistant strain was still sensitive to thiodicarb (1.7-fold). Thus, thiodicarb could be used as substitute for control of the resistant S. avenae in this case. Furthermore, the two different AChE genes cloned from different resistant and susceptible individuals were also compared. Two mutations, L436(336)S in Sa.Ace1 and W516(435)R in Sa.Ace2, were found consistently associated with the insensitivity of AChE. They were thought to be the possible resistance mutations, but further work is needed to confirm this hypothesis.  相似文献   

17.
The mechanisms responsible for > 6000-fold permethrin resistance in a pyrethroid-selected strain of house fly, Learn-PyR, were investigated. Through electrophysiological, in vitro metabolism, in vivo penetration and synergism studies it was demonstrated that the resistance mechanisms consisted of enhanced metabolic detoxification via the mixed-function oxidase (MFO) system, target-site insensitivity and decreased cuticular penetration. The major resistance mechanism was the MFO-mediated detoxification. The elevated MFO activity was correlated with higher levels of cytochrome P-450, cytochrome b5 and NADPH-cytochrome c reductase activity. The kinetics of the latter showed similar Km but greater Vmax values in the Learn-PyR than in the susceptible strain, suggesting that the elevated activity was due to an altered amount, but not an altered form, of the enzyme. The Learn-PyR strain showed widely varying levels of resistance to the pyrethroids tested. Comparison of the pyrethroid structures with the resistance ratios revealed that resistance was highest in the presence of an unsubstituted phenoxybenzyl alcohol moiety. Substitution or certain modifications of the alcohol moiety reduced the level of resistance. Structure of the acid moiety or the presence or absence of an a-CN group did not affect the resistance level. These results are discussed with reference to the resistance mechanisms present.  相似文献   

18.
采用Tabashnik的域性状指标分析了新疆MEAM1(Middle-East-Asia-Minor l)烟粉虱隐种对吡虫啉的抗性现实遗传力(h2)和不同致死率下的抗性发展速率,同时测定了抗性种群对不同类型杀虫剂的交互抗性。结果表明,在30%~50%较低的选择压力下,新疆MEAM1烟粉虱隐种连续汰选8代后,对吡虫啉的抗性上升28.01倍,抗性现实遗传力h2为0.429 7。假设田间种群现实遗传力为实验室筛选估算值的1/2,即h2=0.214 9,对新疆MEAM1烟粉虱隐种对吡虫啉的抗性发展速率估算结果表明:在药剂选择压力为50%~60%下,若使其对吡虫啉的抗性增长10倍,则需要生长10~8代;而在药剂选择压力为70%~90%下,若使其抗性增长10倍,则仅需要生长6~4代。表明新疆MEAM1烟粉虱隐种对吡虫啉产生抗性的风险很大。交互抗性测定结果显示:抗性种群对同类型的杀虫剂吡虫清和噻虫嗪分别产生了10.78倍和4.75倍的中等至低水平交互抗性;对多杀菌素、毒死蜱、吡丙醚和高效氯氰菊酯的敏感性有所降低;对阿维菌素、氟啶虫胺腈和乙基多杀菌素等杀虫剂则无交互抗性。  相似文献   

19.
20.
BACKGROUND: Laodelphax striatellus (Fallén) is a major pest of cultivated rice and is commonly controlled in China with the organophosphate insecticides. To develop a better resistance management strategy, a chlorpyrifos‐resistant strain of L. striatellus was selected in the laboratory, and its cross‐resistance to other insecticides and possible mechanisms of the chlorpyrifos resistance were investigated. RESULTS: After 25 generations of selection with chlorpyrifos, the selected strain of L. striatellus developed 188‐fold resistance to chlorpyrifos in comparison with the susceptible strain, and showed 14‐ and 1.6‐fold cross‐resistance to dichlorvos and thiamethoxam respectively. There was no apparent cross‐resistance to abamectin. Chlorpyrifos was synergised by the inhibitor triphenyl phosphate; the carboxylesterase synergistic ratio was 3.8 for the selected strain, but only 0.92 for the susceptible strain. The carboxylesterase activity of the selected strain was approximately 4 times that of the susceptible strain, whereas there was no significant change in the activities of alkaline phosphatase, acid phosphatase, glutathione S‐transferase and cytochrome P450 monooxygenase between the strains. The Michaelis constant of acetylcholinesterase, maximum velocity of acetylcholinesterase and median inhibitory concentration of chlorpyrifos‐oxon on acetylcholinesterase were 1.7, 2.5 and 5 times higher respectively in the selected strain. CONCLUSION: The high cross‐resistance to the organophosphate dichlorvos in the chlorpyrifos‐resistant strain suggests that other non‐organophosphate insecticides would be necessary to counter resistance, should it arise in the field. Enhanced activities of carboxylesterase and the acetylcholinesterase insensitivity appear to be important mechanisms for chlorpyrifos resistance in L. striatellus. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号