首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The rate of deposition of carotenoids in pen-reared coho salmon was investigated by the addition of known carotenoid levels to diets. The carotenoids added to the diets were derived from red crab (P. planipes), and a process is described for the preparation of a soya oil carotenoid concentrate. Using a 3-stage counter-current extraction process, extracts containing 155 mg/100 g oil were prepared from red crab (P. planipes). Oregon moist pellets containing 3, 6, and 9 mg carotenoid/100 g were prepared using these extracts and were fed to coho salmon (Oncorhynchus kisutch) for 120 days. The amount of carotenoid deposited in the flesh of the fish was related to the carotenoid content of the diet and to the weight of the fish. Fish fed diets containing 6 and 9 mg carotenoid/100 g for the same length of time contained 60% more flesh carotenoids than those fed 3 mg/100 g. In general, after 120 days of feeding, only those fish feeding on diets containing 6.0 and 9.0 mg carotenoid/100 g and weighing over 215 g were assessed as having good-to-excellent coloration. Analysis of the flesh showed that there was no correlation between its carotenoid and fat contents.  相似文献   

2.
To improve the unnatural fade-pigmented skin of cultivated gilthead seabream, Sparus aurata, (if shown) the present study was initiated. The effects of either red bell-pepper (Capsicum annum) meal or carrot (Daucus carota) meal as a natural dietary carotenoid source, on growth and skin coloration of gilthead seabream growers were investigated. A basal/control diet (D1/CTR) was firstly formulated to contain 48% crude protein and 14% lipids, with no added-carotenoids. With this basal diet, two other test diets were similarly prepared and supplemented each with about 40mg/Kg total carotenoids from either red-pepper meal (D2) or carrot meal (D3). In a feeding trial, fish (mean IW, 94.86±0.3g) were fed one of the three diets (D1, D2, D3), in triplicates for each treatment, for 6 weeks in light-blue background PVC tanks supplied with natural seawater flow. Total carotenoids content of skin was determined spectrophotometerically at initiation and end of the experiment. Neither growth nor feed utilization were significantly (P<0.05) affected by the red pepper-added diet (D2) as compared to CTR diet. However, the carrot fed fish recorded the lowest and significant (P<0.05) weight gain (g/fish) and specific growth rate (SGR, %/d) among dietary treatments. There were no considerable (P>0.05) differences in major nutrients composition between fish fed the experimental diets. Total carotenoids content was significantly (P<0.05) increased, in the skin-opercle area, of fish fed the red pepper diet (D2) as compared to initial fish and to either carrot fed fish or CTR fish. Results have suggested that gilthead seabream can effectively bio-absorb natural carotenoid pigments (mainly capsansin and capsorbin) in red-pepper but not in carrot (mainly β-and α-carotene).  相似文献   

3.
Two experiments were conducted to evaluate the addition of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in the diets of goldfish, Carassius auratus. The first was designed to investigate the distribution of pigments in different tissues of goldfish and the effect of astaxanthin in the diet. The carotenoid concentration of tissues was not homogenous. The content of pigments in fish caudal fin was the highest followed by those of scales and head. Flesh had the least carotenoid deposition. Fish fed the diet containing 60 mg/kg astaxanthin had increased concentration of pigment in its head (22.6%), scales (45.5%), flesh (31.0%), and fin (21.2%), compared to fish fed basal diet (P < 0.05). Sixty parts per million astaxanthin had no effect on the weight gain and survival rate. High‐performance liquid chromatography analysis showed astaxanthin in its esterified form in goldfish. The second experiment was aimed at determining the dietary level of astaxanthin that improved color of goldfish. Goldfish were fed the same diet supplemented with 0, 10, 20, 40, 60, and 80 mg yeast astaxanthin/kg for 60 d. The deposition of carotenoids in goldfish fed diets supplemented with astaxanthin increased significantly (P < 0.05) after 15 d of feeding compared to that of the fish fed the diet without astaxanthin, but the effect of dosage of astaxanthin in the diets on the color of goldfish was not completely evident until Day 60 (P < 0.05). During the period of 15–45 d, the deposition of pigments in fish did not increase significantly (P > 0.05) in any treatment with the exception of the diet with 40 mg yeast astaxanthin/kg.  相似文献   

4.
Abstract.— This study was conducted to evaluate corn gluten feed as an alternative feedstuff in the diet of pond-raised channel catfish Ictalurus punctatus . Three 32%-protein diets containing 0%, 25%, or 50% corn gluten feed were tested. Channel catfish fingerlings (average weight: 57 g/fish) were stocked into 15 0.04-ha ponds at a rate of 18,530 fish/ha. Five ponds were used for each dietary treatment. Fish were fed to satiation once daily for a 147-d growing period. No differences were observed in feed consumption, weight gain, feed conversion ratio, survival, or fillet protein concentration among fish fed the test diets. Fish fed diets containing 25% and 50% corn gluten feed exhibited a lower level of visceral fat and a higher carcass yield than fish fed the control diet without corn gluten feed. The diet containing 50% corn gluten feed resulted in a lower level of fillet fat and a higher level of moisture than the control diet. There were no visible differences in the coloration of skin or fillet of channel catfish fed diets with and without corn gluten feed. Results from this study indicated that channel catfish can efficiently utilize corn gluten feed at levels up to 50%n without adverse effect on feed palatability, weight gain, or feed efficiency. Corn gluten feed may be beneficial in reducing fattiness of channel catfish and improving carcass yield by reducing the digestible energy to protein ratio of the diet.  相似文献   

5.
A feeding trial on yellow tail cichlid Pseudotropheus acei (Regan 1922) was undertaken to asses the effect of dietary Spirulina meal as a natural carotenoid source. Four experimental diets were formulated to progressively replace 0% (C), 2.5% (SP2.5), 5% (SP5) and 10% (SP10) of fish meal weight. Ten fish per tank (initial weight 3.75?±?0.02?g) were randomly distributed into twelve 80?l fiberglass tanks connected to a closed recirculation system (temperature 26.7?±?0.06°C). The diets were tested in triplicate for 12?weeks. The specific growth rate of fish fed all Spirulina diets were significantly higher compared to diet C. Feed intake (FI) tended to increase with dietary Spirulina level, and fish fed diet SP10 had significantly higher FI values compared to diet C. No significant differences in feed conversion ratio were observed among these groups. Although the protein efficiency ratio of fish fed diet C was lower than that of all Spirulina diets, no significant differences were observed among these groups (P?>?0.05). The total egg production and hatching rate (%) of eggs derived from all fish fed with Spirulina diets was significantly higher compared those from fish fed diet C. The yellow and blue coloration of yellow tail cichlid fed the diet containing Spirulina meal was enhanced and inclusion of dietary Spirulina meal was elevated carotenoids in skin. Results of the present study indicated that Spirulina meal has the potential to enhance the growth, reproductive performance and coloration on yellow tail cichlid.  相似文献   

6.
A study was conducted to determine the possible synergistic effects between dietary rutin (a bioflavonoid) and vitamin C, and to evaluate their antioxidant effects in fingerling channel catfish. Purified casein/gelatin diets containing two levels of rutin (0 and 1000 mg/kg diet) and three levels of L-ascorbic acid (0, 1500 and 3000 mg/kg diet) in a factorial arrangement were fed to fingerling channel catfish for 16 weeks. Fish fed the diets without supplemental vitamin C showed deformed spinal columns, external hemorrhages and fin erosion after 10 to 12 weeks. Also these fish had significantly (p < 0.05) depressed body weight gain, feed efficiency, hematocrit, hepatosomatic index (% liver weight), as well as reduced liver, fillet and plasma vitamin concentrations after 16 weeks. Liver, fillet and plasma vitamin C concentrations were correlated with dietary vitamin C levels. Forced oxidation of fillet samples significantly (p < 0.05) increased 2-thiobarbituric acid (TBA) values of fillets from fish fed diets without vitamin C and rutin. However, results from the present study indicated only limited synergistic effects of dietary rutin on vitamin C nutrition of channel catfish.  相似文献   

7.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

8.
A 15‐wk study was conducted to evaluate the effect of supplemental menhaden fish oil levels and feeding duration on growth performance and tissue proximate and fatty acid (FA) compositions of juvenile channel catfish, Ictalurus punctatus. Dietary fish oil levels had no effect on final weight gain, feed efficiency, and survival of channel catfish. Tissue lipid contents were directly correlated to dietary lipid levels, while moisture contents were inversely related to dietary lipid levels. Fillet moisture contents progressively decreased, whereas fillet lipid increased with increasing feeding duration. Significant increase in saturated and total n‐3 FAs and decrease in monoenoic and total n‐6 FA in whole body and fillet were observed at each incremental level of dietary fish oil. Percentages of n‐3 and n‐3 highly unsaturated fatty acids in fillet of fish fed the control and 3% fish oil diets decreased with increasing feeding periods, whereas those of fish fed 6 or 9% added fish oil diets remained stable or increased. Ratios of n‐3/n‐6 were statistically comparable throughout the 15‐wk feeding. When expressed in terms of mg/g of fillet, the highest concentration of n‐3 was obtained in fillets of fish fed the 9% added fish oil diet for 15 wk.  相似文献   

9.
Juvenile channel catfish Ictalurus punctatus (average initial weight, 6.5 g/fish) were fed twice daily to apparent satiation with practical-type diets containing 0, 50, 150, or 250 mg supplemental vitamin C/kg from L-ascorbyl-2-polyphosphate for 10 wk under laboratory conditions. At the end of the feeding period, one half of the fish were stressed for 2 h by confinement and both stressed and nonstressed fish were exposed to a virulent strain of Edwardsiella ictaluri. Weight gain and feed conversion efficiency were lower for fish fed the basal diet than those fed diets containing supplemental vitamin C. No differences were observed in weight gain and feed conversion among fish fed diets containing supplemental vitamin C. There were no differences in feed consumption and survival (prior to experimental infection) among treatments. No vitamin C deficiency signs except reduced weight gain were observed in fish fed the basal diet. Serum cortisol concentrations were higher in stressed fish than in non-stressed fish. Dietary vitamin C level had no effect on serum cortisol concentration. As dietary vitamin C increased, ascorbate concentration in serum and liver increased. Confinement stress had no effect on serum and liver ascorbate concentrations. Cumulative mortality of channel catfish 21 d subsequent to experimental infection with E. ictaluri was higher for stressed fish than for nonstressed fish. Regardless of stress or nonstress, overall mortality for fish fed the basal diet was lower than the fish fed diets containing supplemental vitamin C. There were no differences in post-infection antibody levels among treatments or between stressed and nonstressed fish. Results from this study indicate that channel catfish require no more than 50 mg/kg dietary vitamin C for normal growth, stress response, and disease resistance.  相似文献   

10.
A laboratory study was conducted to compare different animal protein sources in diets containing 32% protein for channel catfish Ictalurus punrtatus . The experimental diets were practical-type diets and formulated to meet or exceed all known nutrient requirements for channel catfish. Twenty juvenile channel catfish (initial weight: 6.4 g/fish) were stocked into each of 25 110-L flow-through aquaria (five aquaria/treatment). Fish were fed twice daily to approximate satiation for 9 wk. Fish in each aquarium were counted and weighed collectively every 3 wk. No significant differences were observed in feed consumption, weight gain, feed efficiency, survival, percentages visceral fat and fillet yield, or proximate composition of fillets among channel catfish fed diets containing either 5% menhaden fish meal, meat and bone/blood meal, catfish by-product meal, poultry by-product meal, or hydrolyzed feather meal with supplemental lysine. The data indicate that these animal protein sources can be used interchangeably in diets for channel catfish without affecting fish growth, feed efficiency, or body composition.  相似文献   

11.
Abstract

A feeding trial was conducted to evaluate low-quality diets for growout of pond-raised channel catfish. Five practical diets containing various levels of protein (10-28%) of varying quality (with or without animal protein and/or soybean meal), and with or without certain nutrient supplements (vitamin, minerals, lysine, or fat) were fed to channel catfish, Ictalurus punctatusstocked in 0.04-ha earthen ponds at a rate of 17,290 fish/ha. The diets were as follows: (1) 28% protein, nutritionally complete control; (2) 28% protein without supplemental vitamins, minerals, or fat; (3) 18% protein + supplemental lysine, vitamins, and minerals, but without animal protein; (4) 10% protein without animal protein, soybean meal, or supplemental vitamins and minerals; and (5) 10% protein + supplemental lysine, vitamins, and minerals, but without animal protein or soybean meal. Each diet was fed once daily to apparent satiation to fish in five replicate ponds for a single growing season. Fish fed diets containing 18% or 28% protein without supplements had similar diet consumption rates and weight gain as those fed the 28% control diet, but the fish fed the control diet converted diet more efficiently. Fish fed the 10% protein diet without supplements consumed less diet, converted diet less efficiently, and gained less weight than fish fed diets containing higher levels of protein. The addition of supplements to the 10% protein diet increased weight gain and processing yield as compared to fish fed the 10% protein diet without supplements. Body fattiness increased, fillet protein decreased, and carcass, fillet and nugget yields decreased as dietary protein decreased. The data show that pond-raised channel catfish can be grown effectively on a diet containing 18% protein that is of relatively low quality, but fattiness is increased and processing yield is decreased. However, because of the negative aspects of this diet, we would not recommend it for general use in commercial catfish culture. It could be used where fattiness and processing yield are not of consequence, such as recreational ponds. For that matter, the 10% diet without supplements could be used as well in these situations if maximum growth is not desired.  相似文献   

12.
Abstract.– Juvenile channel catfish Ictalurus punctatus (initial weight: 6.8 g/fish) were fed four practical diets containing 0, 250, 500, and 750 units of microbial phytase/kg and a diet containing 1% feed grade dicalcium phosphate (but no microbial phytase) under laboratory conditions for 12 wk. Fish fed the diets containing 250 units of microbial phytase/kg and above consumed more feed, gained more weight, and had a lower feed conversion ratio (FCR) in comparison to fish fed the basal diet containing no microbial phytase. Fish fed the diet containing dicalcium phosphate had intermediate weight gain and feed conversion ratio as compared to fish fed the basal diet and diets containing microbial phytase. Bone ash and phosphorus concentrations were lower for fish fed the basal diet than for fish fed other diets. No differences in weight gain, feed consumption, FCR, bone ash and bone phosphorus were observed among fish fed the diets containing various levels of microbial phytase. Fish fed the diet containing dicalcium phosphate had a lower bone phosphorus concentration than fish fed diets containing microbial phytase. Fecal phosphorus concentrations were lower for fish fed the diets containing microbial phytase than for fish fed the basal diet and the diet containing dicalcium phosphate. Results from the present study indicated that addition of 250 units of microbial phytase/kg to practical diets can effectively improve bioavailability of phytate phosphorus to channel catfish and may possibly eliminate the use of an inorganic phosphorus supplement in channel catfish diets. However, these data must be verified in trials conducted in ponds, prior to recommending removal of supplemental phosphorus from channel catfish diets.  相似文献   

13.
A 10-wk feeding trial was conducted in the laboratory during which channel catfish Ictalurus punctatus (average initial weight: 6.5 g/fish) were fed five practical diets containing either 0, 500, 1,000, 2,000, or 4,000 units of microbial phytase/kg diet. Fish fed diets containing 500 or more units of microbial phytase/kg consumed more feed and gained more weight than fish fed the basal diet without supplemental phytase. Feed conversion ratios (FCR) did not differ among treatments except the FCR for fish fed 1,000 units of microbial phytase/kg diet was lower than that of fish fed no supplemental phytase. Fish survival was not different among treatments. Contrast analysis showed that weight gain, feed consumption, bone ash, and bone phosphorus were higher and feed conversion ratio was lower for fish fed diets supplemented with phytase as compared to fish fed no supplemental phytase. The concentration of fecal phosphorus decreased linearly as phytase supplementation increased. Results from this study demonstrate that microbial phytase is effective in improving bioavailability of phytate phosphorus to channel catfish, which may eventually lead to a reduction in the amount of supplemental phosphorus added to commercial channel catfish feeds.  相似文献   

14.
Abstract— A 2 × 5 factorial experiment was conducted using practical-type extruded feeds containing 20, 24, 28, 32, or 36% crude protein with or without animal protein. The animal protein supplement consisted of 4% menhaden fish meal and 4% meat, bone and blood meal. Channel catfish fingerlings (average size: 26.3 g/fish) were stocked into 50 0.04-ha ponds at a rate of 24,700 fishha. Five ponds were used for each dietary treatment. Fish were fed once daily to satiation for 202 d. There were no differences in feed conversion ratio (FCR), percentage fillet moisture, and survival among treatments. In fish fed diets containing no animal protein, feed consumption, weight gain, and percentage dressout were lower for fish fed the 20% protein diet than those fed diets containing 28% and 32% protein. Fish fed 28, 32, or 36% protein diets without animal protein did not differ in respect to percentage dressout and percentage visceral fat; fish fed the 36% protein diet had higher percentage fillet protein and a lower percentage fillet fat than fish fed other diets with the exception of fish fed the 28% protein diet. In fish fed diets containing animal protein, feed consumption, weight gain, percentage fillet protein and ash, and percentage dressout were lower and visceral fat was higher for fish fed the 20% protein diet than those fed other diets. Fish fed diets containing 24% protein and above with animal protein were not different in respect to weight gain and feed consumption, but fish fed the 24% protein diet had a higher percentage fillet fat than fish fed a 32% or 36% protein diet. Fish fed the 32% protein diet had a lower visceral fat. Considering animal protein vs non-animal protein with the data pooled across all diets without regard to dietary protein level, weight gain and FCR of fish fed diets containing animal protein were higher than those fed diets containing no animal protein. However, weight gain of fish fed diets containing 20, 28, or 32% protein with or without animal protein did not differ. Dressout percentage and fillet protein were higher and fillet fat was lower for fish fed diets containing no animal protein than those fed diets containing animal protein. Data from this study indicated that animal protein may not be a necessary dietary ingredient for fish fed 28% or 32% protein diets typically used for grow out of pond-raised channel catfish under satiation feeding conditions. Whether animal protein should be included in catfish diets containing less than 28% protein is unclear, since fish fed the 24% protein diet benefited from animal protein but those fed the 20% protein diet did not benefit from animal protein. Additional studies to provide more information on low-protein, all-plant diets are currently being conducted.  相似文献   

15.
Feeds formulated to contain 75 ppm astaxanthin or canthaxanthin were fed to Artic char (Salvelinus alpinus, Labrador strain) for 15 weeks. After 9-15 weeks of feeding, the level of carotenoids in fillets of fish exceeded 4 mg/kg, which is considered sufficient for visual colour impression on the fillets. Significant correlations were observed between length of time the cartenoid-containing diets were administered and total carotenoid content of both flesh and skin for both the astaxanthin and canthaxanthin-fed fish. The Hunter a, redness, colour values were correlated with total carotenoids content in the flesh for both astaxanthin-fed and canthaxanthin-fed Artic char.  相似文献   

16.
A feeding trial was conducted to determine the effects of soy lecithin supplementation on production performance of juvenile channel catfish, Ictalurus punctatus (mean ± SE; 5.8 ± 0 g). The basal diet consisted of a practical dietary formulation for channel catfish, containing 4.3% endogenous phospholipids (PL) from dietary ingredients, to which supplemental PL from soybean lecithin were added. The study diets were 1 control and 2 experimental diets to which 0, 2, or 4% supplemental lecithin was added, respectively. Soy lecithin inclusion did not affect survival, growth, feed consumption, whole‐body total lipid, innate immune response, plasma cholesterol or triglyceride concentrations, or hepatosomatic index. Feed conversion (gain/intake) improved in fish fed 4% supplemental lecithin compared with 0% lecithin. Whole‐body crude protein was greater in fish fed 2% supplemental lecithin compared with 0% lecithin, while 4% supplemental lecithin was intermediate. Phosphatidylcholine (PC) content was greater in fish fed 2 or 4% lecithin than 0% lecithin. Plasma concentrations of PC were inversely proportional to dietary concentrations. Liver glycogen was greater in fish fed 0% lecithin compared with 2 or 4% lecithin. Liver lipid and phospholipid were lower in fish fed 0% lecithin than 2 or 4% lecithin. The dietary phospholipid requirement, if any, of juvenile channel catfish for growth and survival is less than or equal to 4.3% (1.5% PC) of the diet. Feed conversion is improved in channel catfish fed diets supplemented with 4% soy lecithin (7.2% phospholipid; 5.1% PC), which might offset additional costs due to phospholipid supplementation. Dietary soy lecithin inclusion altered plasma and liver lipid composition, but it is unknown whether these effects can alter the ability of juvenile catfish to survive and grow under various conditions.  相似文献   

17.
Channel catfish, Ictalurus punctatus, 88.4 ± 2.6 g/fish, were fed a basal diet amended with 4% of three processed menhaden, Brevoortia tyrannus, oils. These were compared with basal diets amended with 4% corn oil or 4% canola oil. Three replicate aquaria of nine fish each were fed assigned diets twice daily. At 6 wk, fish were group weighed, fillets were collected for sensory evaluation, fatty acid analysis by gas chromatography (GC). In a second study, catfish, 118.8 ± 3.2 g/fish, were stocked into fifteen 0.04‐ha earthen ponds and fed once daily for 16 wk one of four diets containing 2 or 4% of either catfish offal oil or refined (RF) menhaden oil. At harvest, fillets were saved for sensory evaluation and fatty acid analysis. Results showed no significant (P > 0.05) differences among treatments for aquarium study and pond study variables such as weight gain, fillet proximate analysis, or pond production. GC analysis showed that levels of omega‐3 (n‐3) highly unsaturated fatty acids (HUFA) in fillet lipid were significantly (P < 0.05) elevated for fish fed menhaden oil diets. Sensory evaluation revealed that fillets from fish fed RF menhaden oil had satisfactory flavor and could be a source of n‐3 HUFA for humans.  相似文献   

18.
Apparent digestibility, deposition and retention of carotenoids in the muscle of rainbow trout, Oncorhynchus mykiss, were investigated comparing the feeding of pigments from Chlorella vulgaris against commercially available pigments at two different total lipid contents (15% and 20% lipid). Algal biomass (ALG) was included in rainbow trout diets and muscle pigmentation was compared to that obtained in trout fed diets containing a 5:3 mixture of canthaxanthin and astaxanthin (MIX) (reflecting the relative concentrations of these carotenoids in the dry alga) or those fed a diet containing astaxanthin only (AST). Apparent digestibilities of pigments and nutrients were determined by the indirect method, using Cr2 O3 as indicator, and the colour intensity and pigment concentration were assessed in the muscle, using the Roche colour card for salmonids and UV-vis spectrophotometry. After 6 weeks feeding, colour intensity was similar for the various pigment sources, achieving levels 12 to 13, yet significantly higher in fish fed the diet with the higher lipid content ( 20%) (p<0.05). Pigment concentration in the muscle was also higher in the fish fed the high-fat diet. Muscle pigment concentrations were similar for fish fed diets ALG and MIX, and over 1.5 times higher than for diet AST (p<0.05) after 6 weeks. Apparent digestibility of dry matter, crude protein, lipid, total energy and specific carotenoid concentrations were also measured. Increased dietary fat content was shown to increase the deposition and the retention of carotenoids in muscle, and the difference increased with time (deposition increase of 10–20% at week 3 and 30–40% at week 6 and retention increase of 10–15% at week 3 and 30% at week 6). Pigment digestibility also apparently increases (10–20%) under those conditions despite the fact that no significant effects in terms of apparent digestibility increase were found for dry matter, protein, lipids or energy. © Rapid Science Ltd. 1998  相似文献   

19.
Juvenile channel catfish, Ictalurus punctatus (Rafinesque), blue catfish, I. furcatus (Lesueur), and their reciprocal Fl hybrids were fed practical diets containing 25% and 45% protein during a 10-week trial to determine the effects of genotype, dietary protein level and genotype X diet interactions on growth, feed conversion ratio (FCR), fillet proximate composition and resistance to the bacterium Edwardsiella ictaluri. Rankings of genotypes (best to worst) for absolute weight gain, percentage weight gain and FCR were: channel, channel female X blue male, blue, and blue female X channel male for the 25% protein diet; and channel, channel X blue, blue X channel, and blue for the 45% diet. Diet did not affect growth or FCR of channel catfish, but growth and FCR were better for blue catfish and both hybrids fed the 25% diet compared to those fed the 45% diet. Channel catfish additive genetic and maternal effects were favourable, and heterosis was negative for growth and FCR. After adjusting for effects of fish size, genotype had no effect on fillet composition. Fillet protein was higher for all genotypes, and fillet lipid was lower for blue catfish and hybrids fed the 45% diet than for fish fed the 25% diet. Genotype X diet interactions observed for growth, FCR and fillet lipid appeared to be a result of poor palatability of the 45% diet to blue catfish and hybrids. Survival (76-93%) and antibody levels (0.10-0.24 OD) after exposure to E. ictaluri at the end of the feeding trial were not affected by genotype or diet. Hybridization of blue catfish and channel catfish would not be an effective method for improving the traits measured for the fish strains and diets used in this study.  相似文献   

20.
A study was conducted to evaluate low‐protein traditional or alternative diets for pond‐raised hybrid catfish, Ictalurus punctatus × Ictalurus furcatus. Three 24% protein diets containing decreasing levels of soybean meal (30, 20, and 15%) and increasing levels of cottonseed meal and corn germ meal were compared with a 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 71 g/fish) were stocked into 20 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per dietary treatment. Fish were fed once daily to apparent satiation for a 191‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, feed conversion ratio (FCR), survival, or fillet proximate nutrient composition among dietary treatments (P ≥ 0.10). However, regression analysis showed for fish fed 24% protein diets there was a linear increase in FCR as soybean meal levels decreased (P = 0.06). Compared with fish fed the 28% protein control diet, fish fed 24% protein diets had lower carcass and fillet yield. Results demonstrate a 24% protein alternative diet containing 20% soybean meal may be substituted for 28% protein diets for hybrid catfish during food fish production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号