首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
【目的】水稻病虫害是引起水稻减产的重要因素。准确地识别水稻病虫害类型,及 时采取有效的针对性预防措施,有助于避免因水稻减产带来的经济损失。然而,聚焦于人 脸和花草等常见事物的识别技术,在农业领域特别是水稻病虫害识别领域应用较少,而 目前已有的水稻病虫害识别研究存在数据量小和数据种类不够丰富等问题。【方法】文 章搜集了2.0372 万张水稻病虫害图片,并以此构建了完整的水稻病虫害识别数据集,基 于迁移学习的思想,在ResNet50 的预训练模型基础上构建了一个针对16 种主要水稻病 虫害识别的深度模型。同时,考虑实际应用的需要,搜集了9 928 张其他图片(包括人 像、汽车等),结合9 675 张水稻病虫害图片,构建了一个二分类数据过滤模型,以此来 避免非水稻病虫害图片被识别为某一类病虫害的不合理结果。【结果】有预训练模型验 证结果的top-1 准确率达到了95.23%,F1 系数为77.83%,相较无预训练模型top-1 准确 率提升了24.51%,F1 系数提升了56.66%。数据过滤模型的过滤准确度达到了99.60%。 【结论】基于迁移学习的水稻病虫害识别模型,使水稻病虫害识别结果更加准确。非水稻病 虫害过滤模型,有效地解决了实际应用中非水稻病虫害图片被错分为某一类水稻病虫害的 问题。  相似文献   

2.
为了解决传统花卉识别方法中特征提取主观性强、模型泛化能力差、错分率高的问题,提出一种基于Inception_v3的深度迁移学习模型的花卉图像识别方法。本研究对5种常见花卉图像进行识别分类,首先对原始图像进行预处理,通过对每张图像进行水平翻转、旋转操作,扩增数据集;其次,采用预训练完毕的Inception_v3模型,对其在ImageNet上训练好的网络参数进行迁移学习,对各个参数进行微调,并保留原模型的特征提取能力,并将原模型的全连接层替换为符合本研究要求的5分类softmax分类输出层,从而构建基于深度迁移学习的识别模型。对5种花卉共计11 000张图像进行训练和验证,平均识别正确率达到93.73%,与传统的花卉识别方法相比,识别率得到提高,模型鲁棒性更强,具有一定的使用价值。  相似文献   

3.
针对棉花异性纤维(棉花采摘、摊晒、收购、储存、运输及加工过程中混入棉花中的非棉纤维)识别问题,提出了一种基于联盟博弈和极限学习机相融合的棉花异性纤维识别方法,该方法利用基于联盟博弈的特征选择方法确定最优的特征集,随后利用极限学习机进行棉花异性纤维识别并与支持向量机、k近邻法进行了试验比较.试验结果表明,该方法、支持向量机和k近邻法可以实现的准确率分别为90.15%、88.46%和86.30%.相对于另两种方法,该方法具有最高的识别准确率,并使特征集的特征数由75个降为25个.  相似文献   

4.
随着机器学习加速应用于各行各业,卷积神经元网络在农作物病害图片识别领域展现出良好的性能。本文针对传统卷积网络所需样本量大、训练时间长、二次学习困难等问题,实现了一种基于特征的有监督迁移学习,在Inception-V3网络的基础上,使用imageNet固化特征提取层,为目标领域设置特征分类器的方法,在每种病害仅使用20张图片的小样本基础上,实现了对8种不同病害的正确识别,总体识别率达到90.6%,并给出了进一步提升模型性能的方法,以期为小样本农作物病害图片识别提供有益参考。  相似文献   

5.
针对人工诊断棉叶螨害分级准确率低、耗时长、成本高的问题,提出一种基于迁移学习和改进残差网络的棉花叶螨为害等级识别方法。以3种受害等级的棉花叶片与健康叶片图像作为对象,分别于单一背景和自然环境下采集图像,构建图像数据集。首先,利用PlantVillage数据集预训练模型,使用数据增强技术对数据集进行数据增强,扩充训练样本;然后,在ResNet50网络模型的基础上,引入焦点损失函数,在不同网络层嵌入注意力机制模块,并加入Dropout正则化构建改进的ResNet50模型;最后,对比不同模型的识别效果。结果表明:同时在深层和浅层引入注意力机制模块,设定动量为0.9、学习率为0.001时,改进的ResNet50模型具有最好的分类效果,优于ResNet50、VGG16、MobileNet、AlexNet和SENet模型,对棉叶螨危害等级的平均识别准确率达到97.8%。  相似文献   

6.
番茄叶部病害严重影响了番茄的产量和质量,为实现在移动设备实时对番茄进行病害识别,提高番茄的产量,减少种植者的损失。本研究提出将轻量级网络模型MobileNet V2和迁移学习的方式相结合,对番茄早疫病、番茄细菌性斑疹病、番茄晚疫病、番茄叶霉病、番茄斑枯病、番茄红蜘蛛病、番茄褐斑病、番茄花叶病、番茄黄化曲叶病等9种叶部病害图像以及健康番茄叶片图像进行分类识别,首先将数据集按照9∶1的比例分为训练集和验证集,对于训练模型根据迁移学习的方式分别采用不冻结卷积层、冻结部分卷积层、全部冻结卷积层的方式获得3种模型,然后在模型最后加上2层全连接层并用Dropout层防止过拟合,接着通过Softmax层输出实现对番茄病害图像分类识别,最后利用验证集来统计模型的准确率和损失值。其中,冻结部分卷积层准确率最高,达到93.67%。另外,通过试验对比传统网络VGG16、ResNet50训练集和验证集的准确率、损失值及运行时间,其中迁移学习的MobileNet V2模型的准确率最高,运行时间最短。该研究提出的基于MobileNet V2和迁移学习的番茄病害识别研究方法识别效果较佳,速度较快,为在移动设备实时对...  相似文献   

7.
使用竹片图像实现竹片缺陷自动识别,目前深度学习可以有效地解决该类问题,但是必须使用大量样本数据做训练才能获得较高的识别准确率。当图像数量有限时,利用基于迁移学习的方法,把经过预训练的卷积神经网络模型进行迁移,即共享卷积层和池化层的权重参数,调整新网络模型的超参数,并建立一个包含4种共计6 360张竹片缺陷图像的数据库,把图片分成4种训练集测试集形式,即80%训练、20%测试;60%训练、40%测试;40%训练、60%测试;20%训练、80%测试,分别利用支持向量机SVM分类方法、深度学习方法和迁移学习方法进行训练和测试,并将这3种方法作对比。最后,通过构建竹片缺陷识别的混淆矩阵对迁移学习进行具体分析与说明。结果表明,按照80%训练、20%测试的识别准确率最高,通过迁移学习得到的竹片缺陷最高识别精度分别达到98.97%,比普通深度学习提高了11.55% ,比SVM分类方法提高了13.04%。说明迁移学习比普通深度学习和传统支持向量机SVM分类方法更适合用于小样本数据集的分类识别,并且效果优于普通深度学习和 SVM 分类方法。  相似文献   

8.
应用传感器实现钢琴教学时,为随时获取钢琴演奏者的演奏手势是否规范,需要合理的钢琴演奏手势识别技术,为此提出基于深度迁移学习的钢琴演奏手势识别技术研究。采用IU-EKF算法实现钢琴演奏手势的定姿,获取演奏者的演奏手势姿态,将该演奏手势信息作为数据样本,利用MEMS惯性传感器采集钢琴演奏手势姿态数据,并通过状态空间模型做出手势姿态估计。以该模型为基础,利用多特征提取方法,获取手势特征,并对不同特征作出归一化处理,将处理后的结果输入到极限学习机(VGG-16)网络模型中,通过该模型的深度迁移学习与训练,实现钢琴演奏手势的识别。经实验验证:该方法能有效提取演奏者手背、手指下关节、手指上关节的各角度特征,且相较于其他方法该方法具有较高的识别精度,能够在不同的时间有效识别手指上、下关节俯仰角的变化情况。  相似文献   

9.
【目的】研究一种基于卷积神经网络的危害棉叶症状识别技术,提高棉花病虫害的识别准确率。【方法】基于caffe深度学习框架,在CaffeNet网络结构基础上增加一层全连接层(记为CaffeNet+1),并结合迁移学习方法对网络进行训练。采集健康、红叶茎枯、红蜘蛛、枯萎、黄萎、双斑萤叶甲、蚜虫、褐斑棉叶图像各975张作为样本集。随机选取验本集中80%的图像样本作为训练集,剩余20%作为测试集。【结果】迁移学习方式下学习率取0.005时的CaffeNet+1模型最优,在测试集上其识别准确率可达98.9%。【结论】在与全新学习模式下的CaffeNet模型相比,该方法可加速网络模型收敛,且具有更高的识别准确率,该技术方法在准确识别田间病虫害棉叶后表现症状的图像写出来具体方面具有重要的应用价值。  相似文献   

10.
水稻病害是影响水稻产量的重要因素之一,使用传统机器学习方法识别农作物病虫害效果并不理想,因此该研究使用深度学习技术结合迁移学习方法识别常见水稻病害.使用当前深度学习领域经典网络模型VGG、ResNet、DenseNet、InceptionResNet、Xception模型作为预训练模型,通过比较不同模型在新任务上的表现,选取性能最好且最稳定的Xception模型作为最终模型.试验结果显示,DenseNet、InceptionResNet、Xception的识别准确率可以达到97%,尤其是Xception模型不仅可以达到98.50%的最高识别准确率而且是最稳定的.该研究通过试验探讨了适用于常见水稻病害智能识别的最佳模型,同时表明了使用迁移学习方法解决新任务的有效性.  相似文献   

11.
基于分层卷积深度学习系统的植物叶片识别研究   总被引:2,自引:3,他引:2  
深度学习已成为图像识别领域的研究热点。本文以植物叶片图像识别为研究对象,对单一背景和复杂背景图像分别给出了优化预处理方案;设计了一个8层卷积神经网络深度学习系统分别对Pl@antNet叶片库和自扩展的叶片图库中33 293张简单背景和复杂背景叶片图像进行训练和识别,并与传统基于植物叶片多特征的识别方法进行了比较分析。实验证明:本文提供的CNN+SVM和CNN+Softmax分类器识别方法对单一背景叶片图像识别率高达91.11%和90.90%,识别复杂背景叶片图像的识别率也能高达34.38%,取得了较好的识别效果。利用本文实现的分层卷积深度学习识别系统在数据量大而无法做出更多优化的情况下,叶片图像的识别率更高,尤其是针对复杂背景下的叶片图像,取得了极佳的识别效果。   相似文献   

12.
基于深度学习和支持向量机的4种苜蓿叶部病害图像识别   总被引:1,自引:2,他引:1  
为实现苜蓿叶部病害的快速准确诊断和鉴别,基于图像处理技术,对常见的4种苜蓿叶部病害(苜蓿褐斑病、锈病、小光壳叶斑病和尾孢菌叶斑病)的识别方法进行探索。对采集获得的899张苜蓿叶部病害图像,利用人工裁剪方法从每张原始图像中获得1张子图像,然后利用结合K中值聚类算法和线性判别分析的分割方法进行病斑图像分割,得到4种病害的典型病斑图像(每张典型病斑图像中仅含有1个病斑)共1 651张。基于卷积神经网络提取病斑图像特征,建立病害识别支持向量机(Support vector machine,SVM)模型。结果表明:当病斑图像尺寸归一化为32×32像素,利用归一化的特征HSV(即特征H、特征S和特征V归一化后的组合特征)构建的病害识别SVM模型最优,其训练集识别正确率为94.91%,测试集识别正确率为87.48%。本研究基于深度学习和SVM所建立的病害识别模型可用于识别上述4种苜蓿叶部病害。  相似文献   

13.
基于迁移学习的番茄叶片病害图像分类   总被引:4,自引:1,他引:4  
针对卷积神经网络对番茄病害识别需训练参数较多,训练非常耗时的问题,将迁移学习应用于AlexNet卷积神经网络,对病害叶片和健康叶片共10种类别的番茄叶片进行分类研究。使用14 529张番茄叶片病害图像,随机选择70%作为训练集,30%作为验证集,对AlexNet卷积神经网络模型结构进行迁移,利用在Imagenet图像数据集上训练成熟的AlexNet模型和其参数对番茄叶片病害识别。在训练过程中,固定低层网络参数不变,微调高层网络参数,将番茄病害图像输入到网络中训练网络高层参数,用训练好的模型对10种类别的番茄叶片分类,并进行了20组试验。结果表明:该算法在训练迭代474次时使网络模型很好的收敛,网络对验证集的测试平均准确率达到95.62%,与从零开始训练的AlexNet卷积神经网络相比,本研究算法缩短了训练时间,平均准确率提高了5.6%。采用迁移学习所建立的病害分类模型能够对10种类别的番茄叶片病害快速准确地分类。  相似文献   

14.
目的 基于计算机层析成像(Computed tomography, CT)设备所得芒果CT序列图像,实现芒果内部品质的无损检测和病状识别分类。方法 利用分段函数法、中值滤波结合双边滤波,实现芒果图像增强;采用局部自适应阈值法,实现二值化处理;采用种子填充法进行区域填充;最后通过差影法准确提取芒果果实内部组织的坏损区域。基于深度迁移学习模型,对未处理和已处理的芒果图像数据开展训练和测试,通过AlexNet和GoogLeNet深度学习网络开展迁移学习,调整超参数完成训练过程的网络微调,在不同模型中对比未处理和已处理的芒果测试集在模型上的分类结果。结果 基于未处理数据集,GoogLeNet模型在学习率为0.0002下训练,Accuracy和Macro-average指标分别为98.79%和98.41%。基于已处理数据集,GoogLeNet模型在学习率为0.0002下训练,Accuracy和Macro-average指标分别为100%和100%。深度迁移学习模型在已处理数据集下的模型分类指标较未处理的数据集下有较大的提升。基于同一数据集且超参数一致时,GoogLeNet网络的分类效果明显优于AlexNet网络。结论 设定学习率为0.0002、迭代轮数为3、最小批值为64,基于GoogLeNet网络开展深度迁移学习训练,将所得模型作为最终的分类模型。  相似文献   

15.
【目的 】机器学习模型在农作物分类研究领域有着较高精度,但如何利用历史样本用于当前时间的作物分类是一个难点。迁移学习的核心思想在于找到已有数据与新数据之间的相似性,文章旨在探索迁移学习方法使用历史样本进行作物分类的可靠性。【方法 】该文以嫩江市为研究区域,基于实地采样数据与遥感数据,用随机森林(Random Forest,RF)分类器,结合多种遥感指数,对2020—2021年嫩江市玉米与大豆种植区域进行分类;利用动态时间规整方法,以2020—2021年实地采样数据生成2022年的分类样本,用RF对2022年嫩江市的玉米与大豆种植区域进行分类。【结果 】(1)对2020—2021年玉米与大豆种植区域进行分类,RF的平均总体精度达到97.8%。(2)对动态时间规整方法生成的2022年玉米与大豆种植区域进行分类,RF的总体精度达到87.5%。【结论 】基于迁移学习的作物识别方法达到较高精度,具有实践意义,可提高历史时期样本的利用效率。  相似文献   

16.
基于多特征融合的花卉种类识别研究   总被引:1,自引:1,他引:1  
花卉种类识别作为植物自动分类识别的重要分支,有着很高的研究和应用价值。针对当前花卉特征描述存在的局限和花卉识别准确率较低的实际情况,以花卉图像为研究对象,首先对复杂背景图像采用基于显著性检测的Grab Cut分割算法进行预处理,得到单一背景图像;然后在提取花卉图像花冠(所有花瓣)颜色和形状特征的基础上,创新性地提取花蕊区域的颜色和形状所包含的特征信息,并将提取到的18个特征融合成单一特征向量。以支持向量机(SVM)算法为基础构建分类器,通过实验确定核函数与最佳参数;对360幅自建花卉样本库(24个种类,每个种类15幅)进行训练和测试,其中240幅作为训练样本,120幅作为测试样本,并与基于不同特征组合的识别方法进行比较。结果表明:本文提出的基于多特征融合的识别方法具有较高的识别准确率,识别率可以达到92.50%。对通用花卉样本库Oxford 17 flower进行训练与测试,选取其中340幅作为训练样本,170幅作为测试样本,取得了较好的识别效果,验证了本文方法的有效性。   相似文献   

17.
针对目前玻璃空瓶回收再生产过程中造成瓶口缺陷破损的在线实时检测难题,提出一种基于极限学习机(Extreme Learning Machine, ELM)的检测算法。首先对采集的瓶口进行预处理,通过研究表面缺陷,提取灰度方差等6种表面特征。然后运用遗传算法对极限学习机的输入层层的阈值和权值进行优化,提高算法的检测精度。最后现场选取569个样本对所设计ELM分类器进行训练学习与测试,并与LVQ算法、BP分类器对比实验。结果表明该算法能够满足对机器视觉检测系统缺陷检测高速高精度的要求。  相似文献   

18.
茶叶鲜叶等级直接影响优质绿茶成品的等级,如果在鲜叶阶段就茶叶的芽叶数量进行等级识别,并将不同等级鲜叶分离出来,制作不同等级的绿茶成品,从一定程度上解决了优质绿茶鲜叶采摘环节的难题.提出基于茶叶形态、纹理和HOG特征的鲜叶分级方法,采集鲜叶样本图片,对样本图片进行预处理操作,再提取鲜叶形态和纹理特征等特征参数,建立机器学习模型支持向量机、随机森林和线性判别法K-最近邻对新鲜茶叶样本进行分类,得到各等级的茶叶识别结果.试验结果表明,单独使用一种特征分类效果不佳,也不符合茶叶本身的复杂性.将多种特征融合有更好的分类效果;3种算法中,随机森林算法有较高的优越性,准确率达97.06%.该研究提取的多特征参数和分类模型,为实际鲜叶的生产加工等级识别提供参考.  相似文献   

19.
探讨了灰色系统理论在目标识别中的应用,提出了目标识别的矢量灰关联算法、复数灰关联算法、模糊数灰关联算法和矩阵灰关联算法.实例计算表明,灰关联分析用于目标识别,是一个简洁而实用的方法.  相似文献   

20.
一种基于神经网络的扇贝图像识别方法   总被引:1,自引:0,他引:1  
为了满足计算机视觉辅助下应用机器人进行扇贝自动分拣的实时性和鲁棒性要求,提出了一种基于神经网络的扇贝识别和分级方法.首先对图像进行灰度化处理,并用canny算子检测目标边界,然后用8-连通邻域追踪算法提取目标边界像素坐标,最后计算目标边界到中心点的平均距离及其绝对平均误差,并作为特征信息训练BP神经网络,实现对扇贝图像识别和分类.实验结果表明,该方法可以快速实现扇贝的自动识别和分级工作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号