首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
基于高光谱遥感的农作物分类研究进展   总被引:2,自引:1,他引:2  
【目的】农作物类型识别是农作物面积、长势监测与产量预测的重要前提。及时、准确地获取农作物类型、空间分布以及种植面积对制定农业政策、促进社会经济发展和保障国家粮食安全具有重要意义。近年来,高光谱遥感凭借光谱分辨率高、光谱信息丰富等优点,已广泛应用于农作物制图中。【方法】文章归纳了高光谱遥感应用于农作物分类的研究进展,总结了国内外农作物分类常用的高光谱数据源,并分析了各种数据源的适用范围。梳理了农作物高光谱遥感分类方法,讨论了各种分类方法的优缺点。【结果】现有农作物高光谱遥感分类研究存在一些不足:(1)机载高光谱影像光谱分辨率高,但影像监测面积小,不适合大区域农作物面积提取研究;(2)星载高光谱影像监测面积较大,但空间分辨率较低,某些农作物面积提取实际应用中精度较低;(3)由于缺乏对农作物高光谱特征的研究,导致分类算法机理性不足,普适性较差。【结论】农作物高光谱遥感分类未来研究方向是:(1)丰富高光谱遥感监测的农作物类型;(2)提高高光谱影像的空间分辨率,实现农作物种植结构复杂、地块破碎地区的农作物分类研究;(3)进一步研究利用高光谱遥感进行农作物分类的机理和多源数据融合的方法。  相似文献   

2.
基于条件随机场的高光谱遥感影像农作物精细分类   总被引:2,自引:2,他引:0  
【目的】农作物精细分类对于农作物长势监测、产量预估、灾害评估、保障国家粮食安全具有重要意义。高光谱遥感影像具有丰富的光谱波段,能够探测到各类农作物之间细微差别,已逐渐成为分类的理想数据源。【方法】研究以由AVIRIS传感器收集的美国加利福尼亚州南部萨利纳斯山谷的农作物区域的高光谱数据为数据源,提出了一种基于条件随机场的高光谱遥感农作物精细分类方法,利用SVM分类器计算各类地物的概率,并定义为条件随机场的一元势函数以融合空间特征信息;将空间平滑项和局部类别标签成本项加入到二元势函数中,以考虑空间背景信息,并保留各类别中的详细信息。最后与传统的最小距离法和SVM算法进行比较。【结果】文章提出的方法较最小距离分类法、SVM传统方法相比,整体精度分别提高了16%和2%,除了C15类(葡萄园3)精度为72.32%与74.11%外,各类地物精度均在94%以上,各种"椒盐"噪声与分类混淆现象得到了改善。【结论】实验结果表明,该方法在农作物精细分类应用中具有较大优势。  相似文献   

3.
农作物病虫害监测是有害生物综合防治必不可少的环节之一。在阐述高光谱遥感监测农作物病虫害原理的基础上,从光谱植被指数和导数光谱的角度入手,综述了近年来国内外高光谱遥感监测农作物病虫害的研究进展,体现了高光谱遥感在植保领域中广阔的应用前景。最后,还提出了研究中一些有待解决的问题。  相似文献   

4.
随着高光谱遥感技术的不断发展,高光谱遥感在农业方面的应用已经成为高光谱遥感研究的热点领域。高光谱遥感技术可以实时准确快速地得到农作物生长状况的信息,为精准农业的实现提供重要的技术支持。从农作物生化参数(叶绿素含量、氮含量、含水量)监测、物理参数(叶面积指数、生物量)监测、病虫害监测三个方面对高光谱遥感在农作物生长监测的应用研究取得的新进展进行归纳和总结,并对其应用前景进行展望。  相似文献   

5.
黑龙江省是我国最大的商品粮生产基地,其农作物种植信息对于粮食估产,防灾减灾,乃至保障国家粮食安全均具有重要意义。为提高黑龙江省主要农作物种植类型信息的提取精度提供有参考意义的方法,以黑龙江省齐齐哈尔市为研究区,针对多光谱数据在区分玉米和大豆种植信息方面的局限性,基于环境减灾星高光谱数据(HSI),利用决策树法提取主要农作物类型信息。结果表明,齐齐哈尔市的土地覆盖类型以农耕地(包括大豆、玉米、水稻和其它作物)为主,占该市土地面积的70%以上,其中玉米种植区是该市最主要的土地利用类型,各作物分类精度均超过80%,总体精度达到88.71%。  相似文献   

6.
高光谱遥感技术在作物氮素营养诊断与监测中表现出强大的优势,具有广阔的应用前景。本文在介绍高光谱遥感技术发展和作物氮素高光谱遥感监测机理的基础上,从作物叶片、冠层及多角度三个尺度对作物氮素含量高光谱监测研究进行梳理,对研究现状进行分析,并提出今后发展方向,以期为有效开展作物氮素高光谱遥感诊断研究提供借鉴。  相似文献   

7.
【目的】农作物精细分类是面积估算、长势监测、产量预测及灾害评估的重要前提和基 础。近年来,无人机低空遥感技术因其操作成本低、空间分辨率高、灵活性强等优势,成为田 块尺度下农作物精细分类的重要工具。【方法】文章系统总结了国内外近10 余年无人机遥感在 农作物分类领域的研究进展,介绍了目前常用的无人机平台和传感器,归纳了农作物分类特征 及算法的使用情况,指出了无人机遥感农作物精细分类研究存在的问题。【结果】当前无人机 遥感农作物精细分类研究存在一些不足之处:(1)无人机遥感监测面积小,无法在较大尺度区 域实现农作物精准监测。(2)适用于无人机遥感的农作物分类特征仍需进一步挖掘,面向高光 谱影像的农作物分类特征及特征组合尚需进一步明确。(3)分类器使用单一,分类算法的普适性 和稳定性不强。【结论】无人机遥感农作物精细分类研究的发展趋势主要包括3 个方面:(1)无人 机遥感影像与星载遥感数据的高效融合,拓宽无人机的监测范围。(2)面向无人机遥感影像 的农作物分类特征提取与优化研究。(3)适合无人机遥感的农作物分类算法改进。  相似文献   

8.
高光谱影像由于其波段众多,传统的多光谱图像的信息提取方法不适合高光谱影像的处理。利用无人机搭载美国Headwall公司的最新纳米级高光谱成像光谱仪,采集广东省广州市增城区某处的高光谱影像,提取光谱数据,分析不同地物间光谱曲线特征和差异,采用决策树进行地物分类。结果表明:根据无人机高光谱数据中不同地物之间光谱特征曲线的差异,建立分类树,不仅可以大大减少分类处理的工作量,且分类效果良好,准确度高。  相似文献   

9.
高光谱林业遥感分类研究进展   总被引:1,自引:0,他引:1  
为了深入了解高光谱分类领域的研究现状,基于Web of Science数据库和CNKI数据库,检索了关于高光谱遥感分类的相关文献,并对文献的分布情况和研究方法等进行了归纳和分析.结果表明,关于高光谱分类的文献发布数量总体呈上升趋势,其中美国的文献发布量最多,热带森林类型受关注最多.采用最多的分类方法有最大似然法、支持向量机、随机森林、光谱角度制图和判别分析5种,5种方法各有优缺点,分类精度都较高,分类敏感波段大多在可见光、近红外和短波红外等波段.该研究可为高光谱林业遥感分类领域森林类型和分析方法的进一步研究提供参考.  相似文献   

10.
作物环境胁迫高光谱遥感监测研究进展   总被引:1,自引:0,他引:1  
作物环境胁迫频发不仅严重影响区域粮食生产和生态安全,还威胁社会经济稳定和可持续发展,高光谱遥感可实时、准确监测作物环境胁迫,与传统监测方法相比具有较大优势。首先阐述了高光谱遥感监测作物环境胁迫的理论基础,重点从基于光谱响应特征的直接监测、基于农学参数和生理信息反演的间接监测两方面,概述了高光谱遥感在监测作物病虫害、水分胁迫方面的研究进展。在此基础上,提出了目前该技术在作物环境胁迫监测应用领域的不足,如光谱响应特征的专属性认识不足、反演模型的精度及普适性较低、数据使用受到限制等,并讨论了高光谱遥感在作物环境胁迫监测方面的发展方向,旨在为农作物环境胁迫监测及预警提供参考。  相似文献   

11.
基于机载激光雷达和高光谱数据的树种识别方法   总被引:1,自引:1,他引:1  
训练样本的选取是影响监督分类精度的直接原因之一,数据空间分辨率越高,训练样本要求越准确,而人机交互训练样本选取推广力有限。利用机载高光谱(AISA)和激光雷达(LiDAR)主被动遥感数据,探讨基于高分辨率影像的训练样本自动提取技术以及适合树种识别的遥感变量。根据树木的结构和高度差异,开展树高分层掩膜试验,并计算光谱间夹角,在每个高度层中自动化优选树种的高纯度训练样本。计算植被指数、主成分分析等特征变量,基于支持向量机分类器对研究区进行树种精细分类。实验表明:通过对阔叶林、马尾松Pinus massoniana,毛竹Phyllostachys edulis,杉木Cunninghamia lanceolata,油茶Camellia oleifera的训练样本分层自动提取后再进行分类,激光雷达和不敏感色素指数变量能有效提高树种分类精度。其中高光谱+激光雷达+结构不敏感色素指数变量组合的分类精度最高,其总体精度和Kappa系数分别为89.12%和0.86,阔叶林、马尾松、毛竹、杉木、油茶的用户精度分别为75.00%,100.00%,86.36%,90.91%和96.55%。该方法对本研究区森林树种的识别是有效的。  相似文献   

12.
基于随机森林回归方法的水稻产量遥感估算   总被引:2,自引:0,他引:2  
为寻求高效的水稻产量估算方法,以2017年长春市九台和德惠地区的采样点为样本,遥感数据和气象数据为特征变量,通过对产量与特征变量间的相关性分析与特征变量之间的主成分分析和袋外数据(out-of-data,OOB)变量的重要性分析对特征变量进行选择,以选择后的特征变量为输入变量建立水稻产量估算的随机森林回归(RFR)模型。结果表明:特征变量优选后的RFR模型对水稻产量估算的精度更高,决定系数R~2和平均相对误差MRE分别为0.950和0.060;并将该模型应用到农安地区,以多元逐步回归模型作为比较模型,表明RFR模型的水稻产量估算精度明显优于多元逐步回归模型,RFR模型的R~2和MRE分别为0.730和0.090,多元逐步回归模型的R~2和MRE分别为0.530和0.120。  相似文献   

13.
Hyperion高光谱数据森林郁闭度定量估测研究   总被引:17,自引:3,他引:17  
该文探讨和评价了利用星载EO-1 Hyperion高光谱遥感数据定量估测森林郁闭度的能力.高光谱数据光谱特征空间降维采用两种方式, 一种是光谱特征选择的波段选择法(BS),另一种是光谱特征提取的主成分变换法(PCA).从森林资源变化图上获取200个样点的实测郁闭度值,130个用于建模,70个用于验证.对应图像的取值采用单像元值(NP)和3×3窗口的平均值(W33) 两种方法.两种光谱特征降维方式和两种图像取值方法构成4种估测模型(BS-NP、BS-W33、PCA-NP和PCA-W33).分析过程为:①对图像进行预处理,选出质量好的波段;②采用逐步回归技术提取与郁闭度相关性高的波段或变量;③建立多元回归模型估测郁闭度;④估测精度验证.经检验,估测精度分别为: BS-NP 83.17%、BS-W33 84.21%、 PCA-NP 85.62% 和 PCA-W33 86.34%.初步结果表明,光谱特征提取的主成分变换分析法比光谱特征选择的波段选择法的郁闭度估测更有效;3×3窗口的图像取值方法比单像元取值方法的估测精度高.   相似文献   

14.
基于随机森林算法的原始土壤图更新研究   总被引:3,自引:0,他引:3  
以湖北省黄冈市红安县华家河镇滠水河流域为研究区,利用随机森林算法(random forest,RF)结合多源环境变量,对研究区原有的土壤图斑进行分解制图,将混合多种土壤类型的复合土壤图斑进行细化,在土壤多边形内部画出新的边界来代表单一土壤类型,并通过373个实地采样点验证更新后的土壤图。结果显示,更新后的土壤图其制图精度从原有的63%提高到了76%,展现了更为详细的空间细节和空间变化信息,表明利用随机森林算法进行数字土壤制图的可行性和可靠性。  相似文献   

15.
[目的]研究水稻叶温与冠层反射光谱间的关系,为水稻叶温的模拟与监测提供理论依据.[方法]利用FieldSpec Pro FR光谱仪和Raynger ST红外温度探测仪测量水稻抽穗期冠层的反射光谱和叶片温度,分析原始反射光谱、一阶微分光谱、归一化植被指数(NDVI)、比值植被指数(DVI)、再归一化差值植被指数(RDVI)和转换型土壤调整指数(TSAVI)与叶温的关系.[结果]叶温的变化直接影响水稻冠层光谱的反射率,影响水稻红边特征.一阶微分光谱与叶温存在极显著相关性(P<0.01,下同),990 nm处相关系数(0.889)最高,885 nm处相关系数(-0.893)最低.选取叶温敏感波段光谱组合计算植被指数,发现RDVI和TSAVI与叶温的关系呈极显著相关,相关系数分别为0.724和0.733.由RDVI和TSAVI建立经验模型,结果显示由TSAVI建立的叶温估算模型效果更好,其验证样本的决定系数为0.610,相对误差为1.97%,均方根误差为2.546.[建议]综合考虑多种预处理方法,最大程度还原光谱信息;优化特征波长的提取,提高建立模型的精度;基于高光谱技术,实现冠层叶温的无损监测.  相似文献   

16.
基于高光谱的油菜叶面积指数估计   总被引:2,自引:0,他引:2  
以冬油菜为研究对象,2014-2015年度设计了不同施氮水平直播油菜小区试验,在不同生育时期测量冠层光谱、土壤背景光谱以及叶面积指数(leaf area index,LAI),通过相关分析选取了12个光谱特征参数和11个植被指数,建立6叶期至角果期LAI的5种线性和非线性定量反演模型。结果表明:二次多项式反演模型比较适合估算油菜LAI苗期时以红边参数为代表的光谱特征参数,可准确估算出LAI;6叶期时红边幅值预测模型R~2为0.81,RMSEP为0.39,RPD为1.62;8叶期时红蓝边面积比归一化预测模型R~2为0.79,RMSEP为0.60,RPD为2.30;10叶期时红边幅值预测模型R~2为0.92,RMSEP为0.47,RPD为2.36;盛花期时蓝边面积预测模型R~2为0.87,RMSEP为0.34,RPD为2.57;角果期时以RDVI为代表的植被指数也可准确估算出LAI,预测模型R~2为0.74,RMSEP为0.57,RPD为1.36。油菜全生育期采用相同光谱特征参数、植被指数建模估计LAI精度明显降低,预测R~2远小于0.75,RMSEP大于0.65,RPD值均小于1.40,表明难以采用统一参数建模准确估计油菜全生育期LAI,不同生长时期需选择合适的光谱参数、植被指数分段建模估计LAI。  相似文献   

17.
基于高光谱数据的棉田虫害鉴别研究   总被引:1,自引:1,他引:1  
【目的】快速、准确、无损伤地鉴别棉花虫害类别,以便针对性制定植保施药方案。【方法】对棉花叶片高光谱数据进行采集和分析。采用波段范围为350~2 500 nm的FieldSpec?3便携式光谱分析仪,分别获取受蚜虫和红蜘蛛危害的棉花叶片以及正常棉花叶片的高光谱数据。采用K-近邻和SVM算法区分受红蜘蛛和蚜虫侵害的叶片以及正常叶片。为进一步优化虫害识别模型、提高识别精度,利用主成分分析方法 (PCA)进行特征降维,并利用网格搜索法进行参数寻优。【结果】使用K-近邻算法和SVM算法构建了虫害识别模型,2种模型的识别率分别为86.08%和89.29%;引入PCA进行特征降维并使用网格搜索进行参数寻优后,可以提高虫害识别率,K-近邻算法和SVM算法的识别精度分别达到88.24%和92.16%。【结论】利用高光谱数据可以区分受蚜虫和红蜘蛛侵害以及正常的棉花叶片;结合PCA降维和网格搜索法,能够提高识别率且不需要获得具体的特征波段;对于受蚜虫和红蜘蛛侵害以及正常的叶片识别,基于径向基核函数的SVM算法优于K-近邻算法。  相似文献   

18.
基于高光谱图像技术的大豆品种无损鉴别   总被引:2,自引:0,他引:2  
为解决传统大豆品种检测方法存在的效率低和精度差等问题,应用高光谱图像分析技术展开大豆品种甄别研究。采集10个品种(每品种100粒,共1 000粒)大豆样本400.92~999.53 nm的高光谱反射图像,分别进行中值平滑、多元散射校正和数据标准归一化预处理去噪,提取样本图像中心30×30 pixels感兴趣区域的平均光谱曲线和标准差曲线。分别以样本平均光谱值主成分得分、标准差光谱值主成分得分及两者结合作为模型输入,基于T-S模糊神经网络和随机森林思想组合分类器构建鉴别模型。经中值平滑的光谱平均值和标准差作输入,结合随机森林思想的组合分类模型鉴别效果最佳,训练集、测试集的平均鉴别率分别达99.6%和97.6%。结果表明,采用高光谱图像技术可实现大豆品种高精度无损鉴别。  相似文献   

19.
基于随机森林的杉木适生性预测研究   总被引:1,自引:0,他引:1  
以中国林业科学研究院热带林业实验中心杉木树种为研究对象,从森林资源二类调查数据中提取优势树种为杉木的小班,将样本数据按7:3的比例分为训练样本和测试样本。以海拔、地貌类型、坡度、坡向、坡位、土壤种类、成土母岩、土壤厚度、腐殖质层厚度为输入变量,以杉木生长适宜性为输出变量,运用随机森林算法建立杉木适生性预测模型,对不同立地条件下的造林地进行杉木适生性预测。同时,利用随机森林模型的变量重要性评估功能,分析了各立地因子对杉木生长的影响权重。结果表明:基于随机森林的杉木适生性预测模型的训练精度为84.3%,泛化精度达到89.5%,具有较高的预测准确率;研究区域内对杉木生长影响较大的立地因子依次为坡度、坡向、腐殖质层厚、海拔,影响因素较小的是土壤种类、土层厚度;就单因素的影响而言,海拔≥350 m的低山和中山地区,坡度在25°~34°之间比较适宜杉木生长。基于随机森林的杉木适生性预测模型可处理复杂的非线性关系,可将模型应用到无林地的造林决策,实现有林地与无林地对杉木适生性判断的有机统一,也可推广到其他树种,为适地适树提供依据。   相似文献   

20.
以机载高光谱为数据源,对研究区土壤光谱分别进行去除包络线(CR)、倒数(IR)、对数(LR)、一阶导数(FDR)、二阶导数(SDR)、倒数&一阶导数(IFDR)、对数&一阶导数(LFDR)、倒数&对数(ILR)变换,并分别构建归一化光谱指数(NDSI)(分别相应记为NDSI-CR、NDSI-IR、NDSI-LR、NDSI-FDR、NDSI-SDR、NDSI-IFDR、NDSI-LFDR、NDSI-ILR)。对NDSI与胡敏酸含量的相关性进行分析,筛选出特征光谱,利用多元线性回归(MLR)、偏最小二乘(PLSR)、反向神经网络(BPNN)、支持向量机(SVM)方法构建模型,以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)为评价指标,筛选最佳建模方法,用于田间尺度胡敏酸含量的高效估算。结果表明:NDSI-FDR、NDSI-SDR、NDSI-IFDR、NDSI-LFDR与胡敏酸含量的相关性更高。在396~1 000 nm,有3处与胡敏酸含量敏感的波段密集区域,分别位于480~550 nm与510~570 nm组合处、730~790 nm与740~800 nm组合处、880~930 nm与880~930 nm组合处。基于NDSI-LFDR建立的BPNN模型,建模集和验证集上的R2分别为0.916、0.805,RMSE分别为0.799、1.107,RPD值为2.189,可满足田间尺度胡敏酸含量估算的精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号