首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
AIM: To determine concurrent changes in serum methylmalonic acid (MMA) and vitamin B12 concentrations of ewes and their lambs on cobalt-deficient properties, subsequent to cobalt supplementation. METHODS: Three experiments were carried out on two farms. Groups of ewes (n=25-50) were either supplemented with cobalt bullets during late pregnancy, 23-47 days before the mean lambing date, or left unsupplemented. In two experiments, lambs from within each group were supplemented directly by vitamin B12 injection at 3-weekly intervals from birth, and in the third experiment by injection with micro-encapsulated vitamin B12 at tailing and 3 months later. Pasture samples were obtained for analysis of cobalt content at each sampling time. Blood samples were obtained and liveweight recorded from ewes and lambs at approximately monthly intervals. On one farm (two experiments), liver and milk samples were obtained from ewes and liver samples from lambs. RESULTS: Serum vitamin B12 concentrations in unsupplemented ewes fell below 250 pmol/L during early lactation in all experiments and mean concentrations as low as 100 pmol/L were recorded. MMA concentration was maintained below 2 micromol/L in serum from supplemented ewes but increased to mean concentrations ranging from 7 to 14 micromol/L at the nadir of serum vitamin B12 concentration during peak lactation. A significant liveweight response to supplementation was recorded in ewes on one property, and the vitamin B12 concentration in the ewes' milk and in the livers of their lambs more than doubled. No liveweight-gain response to supplementation was observed in lambs on this property. Mean serum MMA concentrations in lambs ranged from <2 in supplemented, to 19.2 micromol/L in unsupplemented lambs, and the latter had concurrent serum vitamin B12 concentrations of >300 pmol/L. Pasture cobalt concentration was lowest at 0.04-0.09 microg/kg dry matter (DM) on the property on which responses in lambs occurred but considerably higher (>0.09 microg/kg DM) on the property on which responses in ewes occurred. On the second property, serum vitamin B12 concentrations in lambs at tailing were extremely low (100 pmol/L), irrespective of supplementation of dams with cobalt. Mean serum MMA concentration was increased to 20 and 42 micromol/L in lambs from supplemented and non-supplemented ewes, respectively. Weight-gain response to direct supplementation of lambs with vitamin B12 occurred during suckling in the latter, but not the former. Lambs from ewes supplemented with vitamin B12 showed a much bigger increase in serum vitamin B12 concentrations a month after supplementation than did lambs from unsupplemented ewes (+1,400 pmol/L vs + 650 pmol/L). CONCLUSIONS: Serum MMA concentration gave a more precise indication of responsiveness to vitamin B12 or cobalt supplementation than serum vitamin B12 concentrations in ewes and lambs. Neither very low serum vitamin B12 nor elevated MMA concentrations were necessarily indicative of responsiveness to supplementation in suckling lambs, but the latter gave an early indication of impending responsiveness. Supplementation of the ewe with a cobalt bullet appeared to protect the growth performance of the lamb for 90 days and influence the subsequent serum vitamin B12 response in the lamb to vitamin B12 supplementation. CLINICAL SIGNIFICANCE: Supplementing ewes with cobalt bullets in late pregnancy can improve the vitamin B12 status of their lambs, and modify their response to vitamin B12 supplementation.  相似文献   

2.
AIM: To derive reference ranges for serum methylmalonic acid (MMA) for the diagnosis of cobalt/vitamin B12-responsiveness in lambs and critique existing serum vitamin B12 reference ranges. METHODS: Individual animal data from earlier supplementation trials, involving 225 ewes, 106 suckling lambs, 301 lambs during the suckling and post-weaning periods and 414 weaned lambs, for which weight gain to supplementation was observed, were used to derive relationships between serum vitamin B12 and MMA, and liveweight gain. RESULTS: Serum MMA concentrations were rarely elevated above the norm of <2 micromol/L when serum vitamin B12 concentrations were >375 pmol/L, and not elevated into the range where a liveweight response to supplementation occurred (>10 micromol/L) unless serum vitamin B12 concentrations were below 200 pmol/L. Suckling lambs were able to maintain high growth rates despite elevated serum MMA concentrations (>20 micromol/L). CONCLUSIONS: The current reference ranges used in New Zealand for serum vitamin B12 are set conservatively high. Serum MMA concentrations appear to allow better differentiation of a responsive condition than vitamin B12 concentrations. Serum MMA concentrations >13 micromol/L indicate responsiveness to supplementation whilst concentrations <7 micromol/L indicate unresponsiveness. In the range 7-13 micromol/L, variation in response was observed and predictability of response is less certain, but supplementation is advisable. CLINICAL RELEVANCE: The current reference ranges for vitamin B12 responsiveness are conservatively high and lead to over-diagnosis of vitamin B12 deficiency in ill-thriftiness of sheep.  相似文献   

3.
AIM: To compare serum analyses of vitamin B12 and methylmalonic acid (MMA) as indices of cobalt/vitamin B12 deficiency in lambs around weaning.

METHODS: Lambs on five properties, considered to be cobalt- deficient, were supplemented with either cobalt bullets, or short- or long-acting vitamin B12 preparations. Blood samples, and in some cases liver biopsies, and liveweights were obtained at monthly intervals. Serum samples were assayed for vitamin B12 and MMA and liver for vitamin B12 concentrations. Pasture cobalt concentrations were measured on three of the properties.

RESULTS: Pasture cobalt concentrations were generally maintained below 0.07 μg/g dry matter (DM) on the properties sampled. Growth responses to supplementation were observed on only 2/5 properties, despite serum vitamin B12 concentrations being within the currently used ’marginal‘ reference range (336–499 pmol/L) for at least 3 months on all properties and in the deficient reference range (0–335 pmol/L) for at least 2 months on all farms except one. Serum MMA concentrations in supplemented lambs were <2 μmol/L, except in those animals sampled 1 month after receiving treatment with a short-acting vitamin B12 injection. Serum MMA concentrations in unsupplemented animals on properties on which no growth response to supplementation occurred generally reached peak levels of between 4 and 7 μmol/L at the nadir of serum vitamin B12 concentration. When a growth response was observed, differences in weight gain between supplemented and unsupplemented lambs occurred as mean serum MMA concentrations increased from 9 to 14 μmol/L. On one property where supplementation commenced before weaning, normal growth rates were maintained despite serum vitamin B12 concentrations of 140 pmol/L and serum MMA concentrations in excess of 40 μmol/L serum.

CONCLUSIONS: The possibility that current serum vitamin B12 references ranges for diagnosis of cobalt deficiency are set too high and lead to over-diagnosis of responsiveness to cobalt/ vitamin B12 supplementation is discussed. The suggestion is made that serum MMA concentrations in excess of 9–14 μmol/L will provide a more reliable diagnostic test for cobalt deficiency. However, there was sufficient variation between properties in the relationships between cobalt concentrations of pasture and serum vitamin B12 or MMA concentrations to require more rigorous testing of the reliability of using serum MMA concentration for this purpose. The possibility that differences in rumen fermentation and therefore propionate and vitamin B12 production could be involved is discussed. The measurement of serum MMA and vitamin B12 appears to be of little value whilst the lamb is still suckling.

CLINICAL SIGNIFICANCE: Serum MMA concentration may offer advantages over serum vitamin B12 concentrations in the diagnosis of a cobalt/vitamin B12 responsiveness in weaned lambs.  相似文献   

4.
AIM: To derive reference ranges for serum methylmalonic acid (MMA) for the diagnosis of cobalt/vitamin B12-responsiveness in lambs and critique existing serum vitamin B12 reference ranges.

METHODS: Individual animal data from earlier supplementation trials, involving 225 ewes, 106 suckling lambs, 301 lambs during the suckling and post-weaning periods and 414 weaned lambs, for which weight gain to supplementation was observed, were used to derive relationships between serum vitamin B12 and MMA, and liveweight gain.

RESULTS: Serum MMA concentrations were rarely elevated above the norm of <2 µmol/L when serum vitamin B12 concentrations were >375 pmol/L, and not elevated into the range where a liveweight response to supplementation occurred (>10 µmol/L) unless serum vitamin B12 concentrations were below 200 pmol/L. Suckling lambs were able to maintain high growth rates despite elevated serum MMA concentrations (>20 µmol/L).

CONCLUSIONS: The current reference ranges used in New Zealand for serum vitamin B12 are set conservatively high. Serum MMA concentrations appear to allow better differentiation of a responsive condition than vitamin B12 concentrations. Serum MMA concentrations <13 µmol/L indicate responsiveness to supplementation whilst concentrations <7 µmol/L indicate unresponsiveness. In the range 7–13 µmol/L, variation in response was observed and predictability of response is less certain, but supplementation is advisable.

CLINICAL RELEVANCE: The current reference ranges for vitamin B12 responsiveness are conservatively high and lead to over-diagnosis of vitamin B12 deficiency in ill-thriftiness of sheep.  相似文献   

5.
AIM: To investigate growth response of cobalt deficient lambs to increasing doses of microencapsulated vitamin B12, and to measure associated changes in serum and liver vitamin B12 concentrations over 243 days. METHODS: From a flock grazing pastures that had low cobalt (Co) levels (about 0.06 mg Co/kg dry matter), 4-6-week-old lambs (n=137) were assigned to four groups and received either no treatment or a subcutaneous injection of 3.0, 4.5 or 6.0 mg of microencapsulated vitamin B12 on Day 1. At approximately monthly intervals, all lambs were weighed and blood samples were collected from a selection (n=10) of monitor animals, up to Day 243. Liver biopsies were also carried out on the monitor lambs (n=8) on Days 1, 124 and 215. RESULTS: The vitamin B12-treated lambs grew significantly faster (p<0.001) than untreated animals. Liveweights after 243 days were 28, 45, 45 and 47 kg for the untreated, 3.0, 4.5 and 6.0 mg vitamin B12-treated lambs, respectively. Of the initial group of untreated lambs, 68% had to be removed before the end of the trial because of substantial weight loss, but none of the treated animals were similarly afflicted. Serum vitamin B12 concentrations increased in all vitamin B12-treated lambs, reaching a peak at Day 25, and those of the 4.5 and 6.0 mg vitamin B12-treated lambs remained significantly higher (except at Day 124) than the untreated lambs to Day 187. However, at Day 124, but not Day 215, the liver vitamin B12 concentrations of treated lambs were two to three times higher than those of controls. CONCLUSIONS: The growth rates of Co deficient lambs were markedly improved by injection of 3.0, 4.5 or 6.0 mg of microencapsulated vitamin B12, and liveweights were maintained for at least 243 days. Serum vitamin B12 concentrations were related to this growth response; concentrations of <220 pmol vitamin B12/l were associated with a 95% probability that lambs were Co deficient and would thus respond to Co/vitamin B12 supplementation. Based on these data, the current New Zealand reference criteria for Co deficiency should be reviewed. CLINICAL SIGNIFICANCE: An injection of 3 mg microencapsulated vitamin B12 given to lambs at tailing will treat Co deficiency and will increase and maintain liveweights in a flock for up to 8 months.  相似文献   

6.
Serum vitamin B12 and methylmalonic acid (MMA) concentrations were used to monitor the development of cobalt (Co) deficiency and repletion from the deficient state in housed pregnant hill sheep. Serum MMA concentrations were less variable and provided a more accurate diagnosis of Co deficiency than serum vitamin B12. This was particularly the case for subclinical disease. However, unlike serum MMA, concentrations of the vitamin in serum could be used prognostically. The most precise diagnosis was provided by serum vitamin B12 and MMA data used in conjunction, but where one technique is to be used, serum MMA determinations are preferred.  相似文献   

7.
AIM: To determine the effect of increasing doses of long-acting injectable vitamin B12 plus selenium (Se) given pre-mating on the vitamin B12 and Se status of ewes and their lambs from birth to weaning. METHODS: Four groups of 24 Poll Dorset ewes each were injected 4 weeks pre-mating with different doses of a long-acting vitamin B12 + Se product, containing 3 mg vitamin B12 and 12 mg Se per ml. The treatment groups received 5 ml (15 mg vitamin B12 + 60 mg Se), 4 ml (12 mg vitamin B12 + 48 mg Se), 3 ml (9 mg vitamin B12 + 36 mg Se), or no vitamin B12 or Se (control). Twelve of the twin-bearing ewes per group were selected for the study. Efficacy of the product was evaluated from changes in the concentrations of vitamin B12 in serum and liver, and of Se in blood, liver and milk in the ewes during gestation and lactation, and in their lambs from birth to weaning. Pasture samples in paddocks grazed by the ewes and lambs were collected at about 2-monthly intervals from 200-m transects. RESULTS: The flock was Se-deficient, as the mean initial concentration of Se in the blood of ewes was 182 (SE 20.3) nmol/L. Compared with untreated controls, all doses significantly (p < 0.01) increased concentrations of Se in the blood of ewes for at least 300 days. Selenium concentrations in milk were likewise increased throughout lactation, as were those in the blood and liver of lambs. The mean concentration of vitamin B12 in the serum of ewes was initially > 1,000 pmol/L, but this decreased within 28 days to < 460 pmol/L. Treatment with the 5-ml and 4-ml doses raised serum vitamin B12 concentrations of ewes for at least 176 days (p < 0.01), while their lambs had significantly greater concentrations of vitamin B12 in serum and liver for less than 37 days after birth. Tissue concentrations and duration of elevation of both vitamin B12 and Se were proportional to the dose administered. The mean concentrations of Se and cobalt (Co) in the pastures were 32 and 74 microg/kg dry matter (DM), respectively. CONCLUSIONS: Injecting ewes from a Se-deficient flock 4 weeks prior to mating with 48 or 60 mg Se and 12 or 15 mg vitamin B12 increased and maintained the Se status of ewes for at least 300 days, and of their lambs from birth to weaning. The vitamin B12 status of ewes was increased for at least 176 days and that of their lambs for less than 37 days. Due to the proportional nature of the response to increasing dosage, the dose rate of the formulation tested can be adjusted according to the severity of Se and Co deficiency in a flock. CLINICAL SIGNIFICANCE: A single subcutaneous injection of vitamin B12 + Se administered pre-mating to Se-deficient flocks is likely to prevent Se deficiency in ewes and their lambs until weaning, as well as increase the vitamin B12 status of ewes and their lambs until 5 weeks after lambing.  相似文献   

8.
A field outbreak of facial eczema occurred during a vitamin B12 response trial in young growing sheep. Pasture cobalt levels were in the low range for sheep (<0.08 mg/kg, 1.358 micromol/kg) and mean (of 3) liver vitamin B12 levels in the sheep were low (<400 nmol/kg) during the period in which facial eczema occurred. Mean serum vitamin B12 levels of the untreated group were low (<485 pmol/l) for the two months (January and February) preceding the period of facial eczema. However, levels showed an approximate 3.5 fold increase in both cobalt supplemented and unsupplemented groups with the onset of facial eczema in March. From February to March the mean serum vitamin B12 and glutamyl transferase (GGT) activity showed parallel increases with a positive correlation (r = 0.73) between log serum vitamin B12 and log serum GGT activity during the period January to July for both groups. This finding suggested that the increase in serum vitamin B12 was due to sporidesmin induced liver damage. The diagnostic implication is that, in areas where facial eczema is a problem, liver is the sample of choice for determining vitamin B12 status. because sporidesmin toxicity can elevate low serum vitamin B12 levels to diagnostically normal levels.  相似文献   

9.
AIM: To investigate growth responses of cobalt-deficient lambs to increasing doses of microencapsulated vitamin B12, and to measure associated changes in serum and liver vitamin B12 concentrations over 243 days.

METHODS: From a flock grazing pastures that had low cobalt (Co) levels (about 0.06 mg Co/kg dry matter), 4-6-week-old lambs (n=137) were assigned to four groups and received either no treatment or a subcutaneous injection of 3.0, 4.5 or 6.0 mg of microencapsulated vitamin B12 on Day 1. At approximately monthly intervals, all lambs were weighed and blood samples were collected from a selection (n=10) of monitor animals, up to Day 243. Liver biopsies were also carried out on the monitor lambs (n=8) on Days 1, 124 and 215.

RESULTS: The vitamin B12-treated lambs grew significantly faster (p<0.001) than untreated animals. Liveweights after 243 days were 28, 45, 45 and 47 kg for the untreated, 3.0, 4.5 and 6.0 mg vitamin B12-treated lambs, respectively. Of the initial group of untreated lambs, 68% had to be removed before the end of the trial because of substantial weight loss, but none of the treated animals were similarly afflicted. Serum vitamin B12 concentrations increased in all vitamin B12-treated lambs, reaching a peak at Day 25, and those of the 4.5 and 6.0 mg vitamin B12-treated lambs remained significantly higher (except at Day 124) than the untreated lambs to Day 187. However, at Day 124, but not Day 215, the liver vitamin B12 concentrations of treated lambs were two to three times higher than those of controls.

CONCLUSIONS: The growth rates of Co-deficient lambs were markedly improved by injection of 3.0, 4.5 or 6.0 mg of microencapsulated vitamin B12, and liveweights were maintained for at least 243 days. Serum vitamin B12 concentrations were related to this growth response; concentrations of <220 pmol vitamin B12/l were associated with a 95% probability that lambs were Co-deficient and would thus respond to Co/vitamin B12 supplementation. Based on these data, the current New Zealand reference criteria for Co deficiency should be reviewed.

CLINICAL SIGNIFICANCE: An injection of 3 mg microencapsulated vitamin B122 given to lambs at tailing will treat Co deficiency and will increase and maintain liveweights in a flock for up to 8 months.  相似文献   

10.
At pasture outlet, mean plasma vitamin B12 varied between 210 and 1,200 pmol/l in 1 month old lambs, 19% of them had values below 250 pmol/l. In those put on OWLD pastures, mean values dropped after 2-4 weeks, and mostly stayed below 150 pmol/l throughout grazing. Plasma methylmalonic acid (MMA) rose above 5 mumol/l 2-8 weeks after outlet, and above 15 mumol/l 4 weeks later. Reduced growth occurred 3-8 weeks after plasma B12 dropped below 150 pmol/l, and 4-6 weeks after MMA rose above 5 mumol/l. Clinical OWLD was most often associated with plasma B12 less than 150 pmol/l and MMA greater than 15 mumol/l. Cobalt fertilization of pastures induced satisfactory plasma B12/MMA values for 3 succeeding years. Elevated plasma B12 was found 3 weeks after Co pellet dosing. The use of Co lick resulted in large individual variations in plasma B12/MMA. The control lambs, which were healthy and grew well on pastures which some years contained marginal/deficient cobalt, had plasma B12/MMA values which varied considerably. One year values indicated functional Co deficiency, but none developed OWLD, and growth was satisfactory, but less than other years. In these lambs, high MMA was not always associated with low B12, or depressed growth. OWLD occurred in Co/B12 deficient lambs, but Co/B12 deficient lambs on other pastures did not develop OWLD.  相似文献   

11.
AIM: To obtain information on serum and liver vitamin B12 and urinary methylmalonic acid concentrations as diagnostic tests to predict a weight gain response to supplementation with vitamin B12 in young dairy cattle when grazing pasture of low cobalt content. Methodology. Forty dairy cattle (12 Friesian, 14 Friesian x Jersey and 14 Jersey) were allocated to two equal sized groups, treated and untreated, based on liveweight. At monthly intervals for 14 months, all animals were weighed, their serum and urine sampled, their liver biopsied and the pasture sampled from the paddocks they were grazing and going to graze. Serum and liver were assayed for vitamin B12 concentrations. For the first 5 months of the trial, urine was assayed for methylmalonic acid concentrations. Both washed and unwashed pasture samples were assayed for cobalt concentrations. RESULTS: No weight gain response occurred vitamin B12 supplementation in young growing cattle grazing pasture with a cobalt concentration of 0.04-0.06 mg/kg DM. For 5 months of the trial, liver vitamin B12 concentrations from untreated calves were in the range 75-220 nmol/kg and serum vitamin B12 concentrations were as low as 72 pmol/1. There was no associated growth response to supplementation. CONCLUSION: Further trials involving young cattle grazing pastures with cobalt concentrations less than 0.04 mg/kg DM are required to reliably determine liver and serum vitamin B12 concentrations at which growth responses to vitamin B12 or cobalt supplementation are likely under New Zealand pastoral grazing conditions.  相似文献   

12.
AIMS: This paper reviews the principles for the establishment of biochemical reference criteria for assessing the trace element status of farmed livestock and summarises data for copper, selenium, vitamin B12 and iodine for farmed red deer. COPPER: Enzootic ataxia and osteochondrosis occur when liver copper concentrations are below 60 micromol/kg fresh tissue, and serum copper concentrations are below 3-4 micromol/l. Growth responses to copper supplementation have been equivocal when blood copper concentrations were 3-4 micromol/l, but were significant when mean blood copper concentrations were 0.9-4.0 micromol/l. No antler growth or bodyweight response to copper supplementation was observed when blood ferroxidase levels averaged 10-23 IU/l (equivalent to serum copper concentrations of 6-13 micromol/l) and liver copper concentrations averaged 98 mumol/kg fresh tissue. These data suggest that 'deficient', 'marginal' and 'adequate' ranges for serum copper concentrations should be 5, 5-8, and 8 micromol/l, respectively, and those for liver copper concentrations should be 60, 60-100, and 100 micromol/kg, respectively. SELENIUM: White muscle disease has been reported in young deer with blood and liver selenium concentrations of 84-140 nmol/l and 240-500 nmol/kg fresh tissue, respectively. No growth-rate response to selenium supplementation occurred in rising 1-year-old deer when blood selenium concentrations were less than 130 nmol/l, the range in which a growth-rate response would be expected in sheep. VITAMIN B12: Vitamin B12 concentrations in deer are frequently below 185 pmol/l without clinical or subclinical effects. No growth response was observed in young deer with vitamin B12 concentrations as low as 75-83 pmol/l. A growth response to cobalt/vitamin B12 supplementation occurs in lambs with serum vitamin B12 concentrations 336 pmol/l. CONCLUSIONS: Data that can be used to establish reference ranges for assessing trace element status in deer are limited. More robust reference values for farmed red deer need to be established through further studies relating biochemical data to health and performance.  相似文献   

13.
Bodyweight, plasma vitamin B12 and blood selenium concentrations were monitored in prime lambs given different forms of supplementation at 2 sites in separate years. At the first site treatment groups comprised control, vitamin B12 injection, selenium given orally and a combination of vitamin B12 and selenium. At the second site cobalt and selenium supplied in a glass bullet was compared with an untreated group. Significant sex-related responses were observed to treatment in terms of bodyweight and at site 2 in plasma vitamin B12 concentrations. A marked bodyweight response to glass bullet supplementation was observed in castrated male lambs but not in ewe lambs. These studies show that sex differences should be considered when investigating trace element deficiencies.  相似文献   

14.
Reproductive performance and lamb viability in cobalt sufficient and subclinically deficient ewes, and from ewes experiencing repletion from and depletion into cobalt deficiency, were investigated in two experiments. The sheep were fed a cobalt deficient ration and supplementation was by oral dose according to treatment. The treatments had a significant effect (P less than 0.001) on ewe serum vitamin B12 and methylmalonic acid concentrations. There were no significant effects on ewe liveweight, condition score or conception rate. Cobalt deficient ewes produced fewer lambs and had more stillbirths and neonatal mortalities than cobalt sufficient controls. Lambs from deficient ewes were slower to start suckling (P less than 0.05), had reduced concentrations of serum immunoglobulin G and zinc sulphate turbidity levels (P less than 0.05), and had lower serum vitamin B12 and higher methylmalonic acid concentrations (P less than 0.05), than lambs from cobalt sufficient dams. Cobalt supplementation in either the first or second half of pregnancy only did not fully alleviate these adverse effects.  相似文献   

15.
AIM: To establish a protocol for determining the iodine status of a flock and managing the risks of iodine deficiency, using thyroid-weight:birthweight ratios of newborn lambs and serum iodine concentrations of ewes. METHODS: Data were collected from iodine supplementation studies in Southland and Rangitikei, of sheep fed exclusively pasture or pasture plus brassica during the latter half of gestation (n=350, or 89 per treatment group). The ewes were supplemented pre-mating or at the time of pregnancy scanning with an injection of long-acting iodised oil. Serum iodine concentrations were measured in ewes prepartum in Rangitikei and postpartum at both locations. The thyroid-weight:birthweight ratios (as g/ kg) in 229 newborn lambs were determined at post-mortem examination and compared between iodine supplemented vs unsupplemented flocks using probit analysis. Samples of pasture and kale were analysed monthly for determination of iodine and selenium. RESULTS: Initial mean serum iodine concentration of all ewes was 41 mug iodine/L. Supplementation increased serum iodine concentrations regardless of forage fed, and concentrations remained high for between 127 and 206 days. The range of thyroid-weight:birthweight ratios in lambs from supplemented ewes was 0.09-0.70 (mean 0.35, standard deviation (SD) 0.147) g/kg. Among lambs from unsupplemented ewes, the range was much wider (0.21-8.5; mean 1.61, SD 1.95 g/kg). About half of those ratios were >0.8 g/kg and clearly indicative of goitre, including 62% from the groups on brassica and 18% from the Rangitikei group fed exclusively pasture. Probit calculations showed that a ratio of 0.40 (95% confidence interval (CI)=0.29-0.47) g/kg predicted with 35% probability, and a ratio of 0.80 (95% CI=0.70-0.99) g/kg predicted with 90% probability that a lamb came from an unsupplemented flock. CONCLUSIONS: Compared to iodine concentrations in forages, thyroid-weight:birthweight ratios more accurately reflected the iodine status of the flock and could be used to identify which flocks to supplement the following year. Serum iodine concentrations of ewes measured before or after lambing did not reflect forage fed, but values near 40 mug/L were associated with goitrous lambs. CLINICAL RELEVANCE: Thyroid-weight:birthweight ratios >0.8 g/kg were indicative of iodine deficiency, and ewes should be supplemented pre-mating or during pregnancy to prevent goitre the following year. Ratios <0.4 g/kg rarely occurred among deficient flocks, so the probability of benefit from supplementation was low. Intermediate ratios were ambiguous, and the iodine status of the flock could not be determined from biomarkers. In such cases individual-farm supplementation trials might be required to detect and manage the risks of marginal deficiency.  相似文献   

16.
AIM: To develop a long-acting Vitamin B12 injection to prevent Co deficiency in sheep. METHODS: Formulations of microencapsulated Vitamin B12 in lactide-glycolide polymers were injected intramuscularly or subcutaneously into the anterior neck region of groups of 10 lambs and their efficacy determined from changes in serum and liver Vitamin B12 concentrations. RESULTS: The 95:5 lactide glycolide and the 100 lactide formulations containing more than 12.5% Vitamin B12 w/w significantly increased and maintained serum Vitamin B12 concentrations for at least 210 days as well as liver Vitamin B12 concentrations in treated lambs when compared with untreated controls. CONCLUSIONS: Injections of microencapsulated Vitamin B12 in lactide/glycolide copolymers are able to increase and maintain the Vitamin B12 status of lambs for at least 210 days. CLINICAL SIGNIFICANCE: Another option for the prevention of Co deficiency in sheep is now available using a long acting injectable Vitamin B12.  相似文献   

17.
Reference curves demonstrating the relationship between serum or liver vitamin B12 and weight gain were derived from the examination of 16 published and 48 unpublished N.Z. trials. From these curves probability of obtaining an economic reponse (>10g/day body weight increase) for any serum or liver vitamin B12 can be determined. No significant (P<0.05) weight gain responses occurred to vitamin B12 or cobalt treatment in trials with mean serum vitamin B12 levels above 500 pmol/l or liver vitamin B12 levels greater than 500 nmol/kg. The reference curves were therefore derived from trials with vitamin B12 levels below these levels; 36 trials with serum vitamin B12 and 19 trials with liver vitamin B12 data. The mean vitamin B12 level at the mid point of the weight gain response period was selected from each trial. Examination of serum vitamin B12 reference curves for spring, summer, autumn and winter indicated that curves derived from data closest to the middle of January (summer) adequately reflected response to treatment at any time during the first year of life. Reference curves for liver vitamin B12 also used data closest to middle of January. This was partly because insufficient liver data was available to compare seasonal variations. The fitted response curve approached 0 gram/day at 500 pmol/l for serum vitamin B12 and 375 nmol/kg for liver vitamin B12. The minimum vitamin B12 level at which an economic response to treatment (>10 g/day) is not likely was 336 pmol/l for serum and 282 nmol/kg for liver.  相似文献   

18.
Investigation into diagnosis and treatment of cobalt deficiency in lambs.   总被引:1,自引:0,他引:1  
The development of cobalt deficiency was studied in 30 Scottish Blackface lambs grazing pasture on a soil containing 0-17 ppm cobalt. By the end of an eight-week period 50 per cent of lambs were subjectively appraised as showing signs of cobalt deficiency. After a further period lasting four weeks, during which three groups of lambs were studied (one group, least affected by cobalt deficiency, acted as control, the second received a single cobalt bullet and the third received oral doses of 200 mg cobalt chloride at the beginning of the period and three weeks later). Mean urinary formiminoglutamic acid (FIGLU) concentrations were inversely related to serum vitamin B12 concentrations and increased from 0-08 to 0-20 mumole per ml in group 1, and decreased to virtually zero within one week of treatment in groups 2 and 3. The use of serum vitamin B12 and urinary FIGLU concentrations in the diagnosis of cobalt deficiency in sheep are discussed.  相似文献   

19.
Aim. To obtain information on serum and liver vitamin B12 and urinary methylmalonic acid concentrations as diagnostic tests to predict a weight gain response to supplementation with vitamin B12 in young dairy cattle when grazing pasture of low cobalt content.

Methodology. Forty dairy cattle (12 Friesian, 14 Friesian × Jersey and 14 Jersey) were allocated to two equal sized groups, treated and untreated, based on liveweight. At monthly intervals for 14 months, all animals were weighed, their serum and urine sampled, their liver biopsied and the pasture sampled from the paddocks they were grazing and going to graze. Serum and liver were assayed for Vitamin B12 concentrations. For the first 5 months of the trial, urine was assayed for methylmalonic acid concentrations. Both washed and unwashed pasture samples were assayed for cobalt concentrations.

Results. No weight gain response occurred to Vitamin B12 supplementation in young growing cattle grazing pasture with a cobalt concentration of 0.04-0.06 mg/kg DM. For 5 months of the trial, liver Vitamin B12 concentrations from untreated calves were in the range 75-220 nmol/kg and serum vitamin B12 concentrations were as low as 72 pmol/1. There was no associated growth response to supplementation.

Conclusion. Further trials involving young cattle grazing pastures with cobalt concentrations less than 0.04 mg/kg DM are required to reliably determine liver and serum Vitamin B12 concentrations at which growth responses to Vitamin B12 or cobalt supplementation are likely under New Zealand pastoral grazing conditions.  相似文献   

20.
AIM: To establish a protocol for determining the iodine status of a flock and managing the risks of iodine deficiency, using thyroid-weight:birthweight ratios of newborn lambs and serum iodine concentrations of ewes.

METHODS: Data were collected from iodine supplementation studies in Southland and Rangitikei, of sheep fed exclusively pasture or pasture plus brassica during the latter half of gestation (n=350, or 89 per treatment group). The ewes were supplemented pre-mating or at the time of pregnancy scanning with an injection of long-acting iodised oil. Serum iodine concentrations were measured in ewes prepartum in Rangitikei and postpartum at both locations. The thyroid-weight:birthweight ratios (as g/kg) in 229 newborn lambs were determined at post-mortem examination and compared between iodine supplemented vs unsupplemented flocks using probit analysis. Samples of pasture and kale were analysed monthly for determination of iodine and selenium.

RESULTS: Initial mean serum iodine concentration of all ewes was 41 µg iodine/L. Supplementation increased serum iodine concentrations regardless of forage fed, and concentrations remained high for between 127 and 206 days. The range of thyroid-weight:birthweight ratios in lambs from supplemented ewes was 0.09–0.70 (mean 0.35, standard deviation (SD) 0.147) g/kg. Among lambs from unsupplemented ewes, the range was much wider (0.21–8.5; mean 1.61, SD 1.95 g/kg). About half of those ratios were >0.8 g/kg and clearly indicative of goitre, including 62% from the groups on brassica and 18% from the Rangitikei group fed exclusively pasture. Probit calculations showed that a ratio of 0.40 (95% confidence interval (CI)=0.29–0.47) g/kg predicted with 35% probability, and a ratio of 0.80 (95% CI=0.70–0.99) g/kg predicted with 90% probability that a lamb came from an unsupplemented flock.

CONCLUSIONS: Compared to iodine concentrations in forages, thyroid-weight:birthweight ratios more accurately reflected the iodine status of the flock and could be used to identify which flocks to supplement the following year. Serum iodine concentrations of ewes measured before or after lambing did not reflect forage fed, but values near 40 µg/L were associated with goitrous lambs.

CLINICAL RELEVANCE: Thyroid-weight:birthweight ratios >0.8 g/kg were indicative of iodine deficiency, and ewes should be supplemented pre-mating or during pregnancy to prevent goitre the following year. Ratios <0.4 g/kg rarely occurred among deficient flocks, so the probability of benefit from supplementation was low. Intermediate ratios were ambiguous, and the iodine status of the flock could not be determined from biomarkers. In such cases individual-farm supplementation trials might be required to detect and manage the risks of marginal deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号