首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
河北省近滨海区暗管排水排盐技术适宜性及潜在效果研究   总被引:3,自引:1,他引:2  
本文在分析河北省近滨海区暗管排水排盐技术适宜条件的基础上,依据其在该区域实施的约束条件,运用GIS、RS等信息技术和相关数据,估算了暗管排水排盐技术适宜的应用面积;据此结果,结合实施区盐碱荒地与耕地资源现状,确定了暗管排水排盐技术实施后区域耕地面积潜在增量;根据暗管排水排盐技术实施后原有耕地、毛沟平整新增耕地和荒地转化耕地的耕地增产试验数据,按夏玉米-冬小麦、谷子-冬小麦和单季棉花3种种植制度分类估算了河北省近滨海区暗管排水排盐技术实施后的耕地增产潜力。结果显示:河北省近滨海区暗管排水排盐技术实施的适宜面积为3.90×105 hm2;暗管排水排盐技术实施后,由毛沟平整和荒地转化而来的耕地面积潜在增量为5.14×104 hm2和1.76×104 hm2,两者之和占原有耕地面积3.21×105 hm2的21.5%;暗管排水排盐技术实施后,如按当地目前夏玉米-冬小麦、谷子-冬小麦和单季棉花3种种植制度的播种面积比例推算,全部耕地的增产潜力分别为4.82×108 kg、1.29×108 kg和3.67×108 kg。暗管排水排盐技术的实施可使生态系统服务功能得到提升,本文以河北省海兴县为例计算得出其生态系统服务功能潜在提升值为3.90×109元·a-1,单位面积的生态系统服务功能潜在增加值为4.06×104元·hm-2·a-1。  相似文献   

2.
近滨海盐碱地暗管排水条件下地下水埋深动态变化模拟   总被引:2,自引:0,他引:2  
农田暗管排水工程是近滨海地区盐碱地防御涝渍害、降低土壤盐分和促进作物生长的重要措施。本文应用DRAINMOD模型对河北沧州近滨海暗管排水排盐试验区(暗管埋深1.2 m,间距30 m),2011年6—9月的地下水埋深进行了模拟,并对不同控制性排水方案(无强制排水,地下水埋深控制在50 cm、80 cm和100 cm)下地下水埋深的变化进行了预测。模型所需参数(气象数据、作物数据、土壤参数和排水数据)由室内试验、田间试验和实地观测得到。研究结果表明:DRAINMOD在该地区的模拟值与观测值拟合较好,效率系数为0.67,相对误差系数为6.15%,反映出模型良好的模拟性能;农田暗管排水系统能明显降低涝渍害的发生,即使发生强降水,也能在2 d内将地下水埋深控制在60 cm以下,而若无强制排水地下水埋深需在15 d后降至60 cm;对不同排水方案模拟效果的比较表明,试验区在夏季控制性排水中,将地下水埋深控制在80 cm左右较为合适。综上,DRAINMOD模型可以很好地应用于地下水埋深变化的预测中。因此,在未来的研究中,近滨海盐碱区可以通过DRAINMOD模型模拟地下水埋深变化,从而为农田排水系统的设计提供理论依据,为暗管排水管理制度的建立提供科学的选择方法。  相似文献   

3.
In the coastal area of eastern China with monsoon climate and high water table, soil salinity exhibits strong spatial heterogeneity at the field scale. Using basic tools of geostatistics and geographic information systems (GIS), we explored the spatial characteristics of soil salinity under rain-fed conditions and subsurface drainage. The results showed that (1) spatial variability in soil salinity could be reduced significantly by leaching with rain water and subsurface drainage (LD) during the rainy season. The variability in soil salinity after LD decreased from strong to moderate. (2) After LD, soil salinity remained at more than 0.85 g/kg irrespective of values before the rainy season. In other words, it was almost impossible to remove all the salts in the plow layer. (3) Spatial heterogeneity of soil salinity showed a homogenizing tendency based on the critical point of 7 g/kg. Soil salinity less than 7 g/kg (79% of samples) homogenized to within 1.5–2 g/kg under LD and that more than 7 g/kg decreased to 1.5–4.5 g/kg. However, at this level, most salt-tolerant crops could grow. (4) The homogeneity was also reflected in the transformation of salinity grade in different areas. Before LD, the moderately and heavily saline (2–10 g/kg) soil area accounted for 88% of the pilot field in which the heavily saline area constituted 57.45% of the total salt load within the 0- to 30-cm layer; after LD, the mildly saline (1–2 g/kg) area was dominant with more than 75% ratio, contributing 65.24% of total salt load. (5) Intensive and frequent rainfall and long-term LD may reduce the spatial variability in salinity and allow for better reclamation and utilization of saline land. These results provide a scientific basis for integrated management of water and agricultural production.  相似文献   

4.
In arid and semi-arid regions, effluent from subsurface drainage is often saline and in the absence of a natural outlet, its disposal is a serious environmental threat. A field experiment was conducted for 7 years using drainage water of different salinity levels (ECiw=6, 9, 12 and 18.8 dS/m) for irrigation of wheat during the dry winter season. The objective was to find whether crop production would still be feasible and soil salinity would not be increased unacceptably by this practice. The experimental crop was wheat during the winter season and pearl-millet and sorghum in the rainy season, grown on a sandy loam soil provided with subsurface drainage system. All crops were given a pre-plant irrigation with non-saline canal water and subsequently, saline drainage water of different salinity levels was used for the irrigation of wheat as per the treatment. On an average, the mean yield reduction in wheat yield at different ECiw was 4.2% at 6, 9.7% at 9, 16.3% at 12 and 22.2% at 18.8 dS/m. Pearl-millet and sorghum yields decreased significantly only where 12 dS/m or higher salinity water was applied to previous wheat crop. The high salinity and sodicity of the drainage water increased the soil salinity and sodicity in the soil profile during the winter season, but these hazards were eliminated by the subsurface drainage during the ensuing monsoon periods. The results obtained provide a promising option for the use of poor quality drainage water for the irrigation of winter wheat without undue yield reduction and soil degradation.  相似文献   

5.
A large area in Wafra, south of Kuwait, was developed for crop production both in open fields and agriculture units. For more than a decade, farmers had been using groundwater and desalinated water for irrigating crops under both conditions. The study area occupied about 125 000 ha lying within the northwestern sandbelt. Land-use pattern, soil characteristics and vegetation attributes were studied to assess the extent of land degradation in the area. Land-use classes in the developed area showed a total area of about 9371 ha. About 35 per cent of this area was uncultivated due to sand encroachment and soil salinity build-up problems. Soil chemical and physical properties were described and determined at various depths in representative profiles. The soil belonged to the three categories: Typic Torripsamments, Typic Haplocalcids and Typic Aquisalids. The total vegetative cover was poor, covering about 18 per cent of the marginal areas and about 33 per cent of arable lands. Plant community type was altered from Rhanterium epapposum to Cyperus conglomeratus and Stipagrostis plumosa. Annual forbs dominated species composition. Results of the study indicated that land degradation occurred both in marginal and arable areas. To expand in the Wafra agricultural area and to increase productivity potential of the existing farms, implementation of irrigation and drainage systems as well as projects to combat sand encroachment are recommended. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
基于地下水埋深的江汉平原冬小麦防涝渍排水指标确定   总被引:2,自引:2,他引:2  
2014—2015年在测坑(筒)分别开展孕穗期、灌浆期冬小麦遭受浅地下水埋深和先涝后渍胁迫试验,研究江汉平原冬小麦关键生育期适宜的地下水埋深。同时,构建不同排水标准计算方法,量化作物相对产量,提出先涝后渍胁迫下的排水指标。结果表明,孕穗期0、20和40 cm地下水位(持续受渍18 d)分别使小麦减产44.78%、17.31%和10.44%,而灌浆期相应减产67.72%、33.70%和10.34%。导致小麦减产的主要原因可能是穗粒数减少和千粒质量降低,建议江汉平原小麦田孕穗期和灌浆期地下水位维持在50 cm左右。先涝后渍过程中涝害使小麦减产幅度大于渍害,可以考虑以受涝历时和降渍历时为控制指标的排水模型、按时间划分涝害和渍害的排水模型,以及涝渍综合水深指标作为江汉平原小麦花后排除涝渍的排水模型。若允许小麦减产15%(即相对产量为85%)作为排水控制标准,建议小麦花后涝渍综合水深指标控制在275.6~283.6 cm·d。  相似文献   

7.
暗管改碱技术试验区不同生境盐生植物资源及其群落特征   总被引:1,自引:0,他引:1  
盐生植物群落的空间格局因受土壤盐碱化的影响而呈现一定的地域性差异,其群落特征及分布对土壤盐碱化程度具有良好的指示作用。研究盐碱地区盐生植物群落特征及其分布规律,对补充和完善土壤盐碱化程度的检测和评估方法及当地盐碱地的改良和生态环境治理均具有一定的指导意义。本文以河北沧州黄骅市暗管改碱技术试验区为例,采用五点取样法分别对地下埋设暗管的荒地、夏季休耕地和未埋设暗管的荒地、夏季休耕地4种生境的植被进行调查,并采用聚类分析方法和Shannon-Wiener指数、Pielou均匀度指数、Simpson指数等分析4种生境下盐生植物资源及其群落特征。结果表明,被调查的20个样方内共有植物8科17属19种,均为草本植物,划分为5种植物群落类型。地下埋设暗管后,抗盐能力相对较低的假盐生植物和非盐生植物逐渐替代真盐生植物,成为荒地和夏季休耕地植物群落的优势种。并且地下埋设暗管的荒地和夏季休耕地物种多样性指数和均匀度指数均高于未埋设暗管的荒地和夏季休耕地。由此可见,暗管改碱技术的实施能在一定程度上降低土壤盐渍化程度,有利于保护和提高植物物种多样性,对盐碱地生态环境质量的改善具有重要意义,建议对其进行进一步研究及推广应用。  相似文献   

8.
暗管排水排盐技术是通过控制地下水位与高效利用降水或灌溉水资源改变土壤水盐运移规律,从而影响土壤盐分分布规律和土壤特性,达到改良盐碱地的效果。本文在对暗管排水排盐技术自身发展及其应用的关键条件总结概述的基础上,对其改良盐碱地机理与农田生态系统响应两方面的科学研究进展进行了综述。暗管排水排盐技术改良盐碱地机理方面的研究主要集中在暗管埋设对"四水"转化规律的改变以及由此带来的地下水埋深控制或灌溉制度变化、控制性排水和定水位排水条件下的土壤水盐运移规律、暗管埋设条件下土壤水盐运移模型模拟等方面。农田生态系统对暗管埋设排水的响应方面的研究主要集中在以土壤理化性状和土壤养分为主的土壤特性响应、作物生长发育和产量品质的生理生态适应性、农田生态系统土地与种植结构和服务功能的改变等方面。本文最后展望了未来研究的关注点。  相似文献   

9.
The information of soil compaction effects on growth and yield of crops for saline and waterlogged soils is scanty. A pot experiment was conducted on a sandy clay loam soil during 2001–2002 to study the interactive effects of soil compaction, salinity and waterlogging on grain yield and yield components of two wheat (Triticum aestivum) genotypes (Aqaab and MH-97). Compaction was achieved at 10% moisture level by dropping 5 kg weight, controlled by a tripod stand for 20 times from 0.6 m height on a wooden block placed inside the soil filled pots. Soil bulk density of non-compact and compact treatments was measured as 1.21 and 1.65 Mg m−3, respectively. The desired salinity level (15 dS m−1) was developed by mixing the required amount of NaCl in soil before filling the pots. Waterlogging was developed by flooding the pots for 21 days both at tillering and booting stages. Compaction aggravated the adverse effect of salinity on grain yield and different yield components of both the wheat genotypes. Average reduction in grain yield was 44% under non-compact saline conditions against 76% under compact saline conditions. Similarly, the reduction was about 20% more for 100 grain weight and shoot length, 30% more for number of spikelets per spike, 37% more for number of tillers per plant, and 32% more for straw weight in compact saline treatment than in non-compact saline treatment. Compaction alone caused a reduction of 36% in grain yield. The effect of waterlogging on grain yield and yield components was mostly not changed significantly due to compaction. Rather waterlogging mitigated the effect of compaction for most of the yield components except for number of spikes per plant. Therefore, as for normal soils, the cultivation of salt-affected soils should employ implements and techniques which minimize compaction of root zone soil. The effect of soil compaction can also be minimized by light irrigations with short intervals and by using a stress tolerant crop genotype.  相似文献   

10.
Food and fodder shortage in arid and semi‐arid regions force farmers to use marginal quality water for meeting the water requirement of crops which result in low quality, reduced production and an adverse impact on soil properties. A field study on loamy‐sand (Hyperthermic Typic Ustipsamments) saline soil was conducted during 1999–2001 at Central Institute for Research on Buffaloes, Hisar. This involved assessment of effects of conjunctive use of saline water, EC = 4·6–7·4 dSm−1, SAR = 14–22 ((mmol−1)½ with good quality water on five fodder crop rotations: oat‐sorghum (Avena sativa‐Sorghum bicolor), rye grass–sorghum (Loleum rigidumSorghum bicolor), Egyptian clover—sorghum (Trifoleum alexandrinumSorghum bicolor), Persian clover—sorghum (Trifoleum resupinatumSorghum bicolor) and Indian clover–sorghum (Melilotus indicaSorghum bicolor) and certain soil properties associated with it. Leguminous winter fodder crops were more sensitive to poor quality water use. Reductions in fodder yield with use of saline water alone throughout season were 85, 68, 54, 42, 36 and 26 per cent in Indian clover, Egyptian clover, Persian clover, oat, rye grass and sorghum respectively as compared to good quality water. Leguminous fodder crops produced protein rich (12–14 per cent) and low fibre (18–20 per cent) fodder as compared to poor quality grassy fodder under good quality water irrigation but their quality deteriorated when saline water was used. These leguminous crops accumulated proportionately higher Na+ (1·58 per cent) resulting in adverse impact on their growth as compared to grassy fodder crops. Higher soil salinity (12·2 dSm−1), SAR = 20 (mmol−1)½ was recorded with saline water irrigation; and slight adverse impact was noticed on infiltration rate and contents of water dispersible clay. Alternate cyclic use of canal and saline water could be an option for fodder production under such conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrological and water-quality measurements were made on a 44·3 ha watershed under forest cover and following deforestation and conversion to an agricultural land-use. Under secondary tropical rainforest, water yield ranged from 2·2 per cent to 3·1 per cent of annual rainfall. Deforestation of 7 per cent of the watershed area increased water yield to 7·0 per cent of annual rainfall. Baseflow increased with deforestation, and increased progressively with time after deforestation. It was 5·1 per cent of annual rainfall in 1979, 15·1 per cent in 1980, 16·4 per cent in 1981 and 17·9 per cent in 1982. In comparison, surface flow was 4·5 per cent in 1979 and 6·2 per cent in 1980, but decreased to 2·3 per cent in 1981 and 2·4 per cent in 1982. Total water yield following deforestation and conversion to agricultural land-use ranged from 9·6 per cent to 21·3 per cent of the annual rainfall received. The dry season flow decreased with time as the dry season progressed, but increased over the years following deforestation. Surface runoff during the rainy season depended on ground cover and soil quality. The extent and severity of soil degradation affected the dynamics of surface flow. Because of actively growing crops, plant nutrient concentrations in surface runoff were low. Forested lysimeters had higher seepage losses than cropped lysimeters, and the water-use efficiency was 1·9–3·6 kg ha−1 mm−1 for cowpeas compared with 6·1–11·0 kg ha−1 mm−1 for maize. The delivery ratio was high immediately after deforestation and decreased to a steady value of about 3·2 per cent within 7 years. The data show five distinct phases of soil degradation in relation to generation of surface runoff. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
小麦对渍涝的响应及排水指标确定   总被引:3,自引:2,他引:1  
湖北平原地区春季雨水较多,麦田易受渍涝危害,研究小麦对渍涝的响应,并建立作物相对产量与渍涝天数的关系模型,可为该区冬小麦农业生产防灾减灾管理提供依据。在可控制灌排的有底混凝土测筒中于小麦孕穗期和灌浆期设置持续渍涝(5、10、15和20 d)处理,旨在研究江汉平原冬小麦孕穗期和灌浆期持续渍涝胁迫对其生理活动及产量的影响。结果表明:小麦孕穗期、灌浆期受渍涝胁迫均导致叶绿素a、b和2者总含量降低,且渍涝时间越长,含量越低。孕穗期和灌浆期渍涝后,过氧化氢酶活性在旗叶、根系、灌浆期幼穗中的变化趋势均是先升高后降低,除孕穗期根系在渍涝15 d时达到最大,其余部位均是渍涝10 d时达到最大,在孕穗期幼穗中的变化趋势是随着渍涝程度的加剧,其活性持续升高;除孕穗期幼穗、灌浆期根系外,其余部位过氧化物酶活性的变化趋势是持续增加,且渍涝程度愈重,其增加幅度愈大,在孕穗期幼穗中的活性恰恰相反,在灌浆期根系中的变化趋势是先降低后升高,渍涝10 d时降到最低;旗叶、根系和幼穗中超氧化物歧化酶活性降低,且渍涝程度愈重,其降低幅度愈大。孕穗期、灌浆期小麦遭受渍涝后减产严重,孕穗期渍涝5、10、15和20 d 4个处理实际产量分别减少了18.4%、45.5%、63.9%、85.5%,灌浆期分别减少了7.6%、17.8%、43.7%、70.2%,孕穗期渍涝小麦减产的原因是单株有效穗数和穗粒数减少,灌浆期是穗粒数和千粒质量减少。若以小麦减产15%作为田间渍涝排除标准,孕穗期、灌浆期能承受的渍涝时间为3.6、6.4 d,田面渍涝排除后应在3 d内将地下水位降到70 cm以下。该研究可为长江中下游稻作区麦田排水管理提供科学依据。  相似文献   

13.
江苏沿海垦区暗管排水对冬小麦产量的影响模拟   总被引:3,自引:3,他引:0  
江苏沿海垦区农田地下水位埋深较浅,冬小麦生长易受到渍害的影响;为探究不同暗管排水条件影响下冬小麦产量的变化,该研究根据在江苏东台试验站实测的气象、土壤、地下水埋深等数据,联合运用田间水文模型DRAINMOD和作物模型AquaCrop模拟不同暗管排水条件对冬小麦产量的影响.结果显示:DRAINMOD模型可准确模拟研究区地...  相似文献   

14.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
因干旱和半干旱下游灌区地势较低,排水出路不畅,排水系统往往成为承泄区外来水(上游灌溉退水和排水)的蓄水场所,使排水沟水位高于农田地下水位,反渗补给农田地下水,作物利用部分排水以后,如何维持农田良性的水盐平衡成为下游灌区一个迫切需要解决的科学问题。该文基于农田水盐平衡原理,以陕西一半干旱区下游灌区为例,在实测资料的基础上,首先利用田间水文模型DRAINMOD模拟了排水沟蓄水条件下,农田水位变化情况,然后计算分析了农田与排水沟的水盐交换关系。结果表明:在一个完整的种植年内单位长度排水沟上累计承接区外来水量为9.3 m3,减去流出水量,累计蓄积区外来水量为5.5 m3,农田单位面积上反渗累计补给田间地下水量为49.2 mm;累计农田排水量仅为2.3 mm。与作物蒸散发相比,现状条件下补给量虽然较小,但对维持和补给农田地下水起到了一定的作用。所产生的补给作用虽然增加了排水沟内盐分向田间地下水中的运动,但作物利用地下水过程中根区没有出现严重的盐分累积,对田间地下水盐分浓度影响也不大。所以,通过合理调控措施,充分利用区外来水,可以提高水资源利用效率。但排水系统长期运行条件下,高水位对农田水盐平衡的影响尚需进一步研究。  相似文献   

16.
针对江苏沿海垦区地势平坦、降雨量大,农业生产易受涝渍灾害影响,而新开垦农田土壤贫瘠、有机质含量极低的问题,该研究基于江苏省东台市内省水科院农田暗管排水试验基地的气象、土壤、作物等数据,联合运用田间水文模型-DRAINMOD和土壤有机碳模型-DNDC(Denitrification-Decomposition Model),研究了轮作和秸秆还田方式对暗管排水农田土壤有机碳(Soil Organic Carbon,SOC)累积过程的影响。结果显示:对于地下水位埋深较浅的沿海垦区,在DRAINMOD准确预测暗管排水农田地下水位动态的基础上,运用DNDC模型可以更好的预测土壤有机碳的累积过程;以现有土壤有机碳含量(2.95 g/kg)为初始值,DNDC模型32 a长序列模拟发现,冬小麦-玉米轮作配施全量秸秆还田措施效果最佳,可提升耕层土壤有机碳含量至17.85 g/kg;冬小麦-玉米-冬小麦-绿肥(紫花苜蓿)轮作配施全量秸秆还田措施可提升耕层土壤有机碳含量至16.12 g/kg,具有很好的固碳效果。与研究区现有明沟排水系统相比,暗管排水可快速降低地下水位,减少涝渍胁迫,作物产量提升3.9%,耕层固碳速率提升39.39%。暗管排水条件下,湿润年频繁降雨造成了土壤干湿交替变化,由此激发了高强度土壤的呼吸作用,导致了一定程度的SOC损失;建议采用农田控制排水措施来抑制过度排水,减少高强度土壤呼吸对SOC累积过程的不利影响。研究成果可为沿海垦区农田地力提升和农业碳中和提供参考。  相似文献   

17.
为探讨干旱区盐渍化农田水利改良措施的可行性,在新疆玛纳斯河流域安集海灌区进行了田间暗管与竖井排水工程试验,分别在距离暗管0.5 m(P1)、7.5 m(P2),距离竖井0.5 m(S1)、30 m(S2)和60 m(S3),以及未铺管区(CK)域设置7处观测区,评估农田排水措施在盐渍土改良期间的排水功能、土壤脱盐效果,同时监测棉花生长与地下水位动态。结果表明:5 a排水改良期间,0~80 cm深度土壤含盐量的总体降幅达到29.2 g/kg,棉花干物质量和籽棉产量年际增幅分别为22%和28%,浅层地下水位年际降幅1.16 m;改进的暗管与竖井协同排水相比单独应用暗管排水量与地下水位年际降幅分别增加了118%,进一步减少了盐分淋溶时期的深层渗漏量。研究结果可为干旱盐渍区的水土资源合理利用提供科学和理论依据。  相似文献   

18.
Abstract

Excess soil moisture is believed to cause reduced levels of soil mineral N and crop production in winter wheat on the Southern Piedmont. Artificial subsurface drainage was used to relieve excess soil moisture and soil mineral N levels, mineralization, nitrification, denitrification and a group of soil properties were analyzed in both drained and undrained treatments. Drainage increased rates of mineralization and nitrification and decreased rates of denitrification, leading to higher levels of soil mineral N in drained plots than in undrained plots. Wheat yields were not affected by drainage, probably because the rate of N applied in spring (80 kg‐N/ha) was high enough to counteract the effects of decreased soil mineral N levels in undrained treatments.  相似文献   

19.
Abstract. Dryland salinity in the Mt Lofty Ranges, South Australia has developed as a result of native vegetation being replaced with pastures that use less water. Groundwaters have risen and mobilized ions (sodium, chloride, sulphate and iron) stored within deeply weathered micaceous sandstones and schists. Salinity resulting from sodium chloride is common in agricultural catchments around Australia, but saline sulphidic soils (with sulphate and iron) have only been studied in South Australia. Salinity is also associated with waterlogging and secondary sodicity. The amelioration of dryland salinity and waterlogging involves management of whole catchments, not just the area that is currently saline. It is imperative that all processes operating in saline catchments and their interactions are clearly understood.
Salinity, waterlogging, sodicity, sulphidization and water erosion were studied in four saline sub-catchments in the Mt Lofty Ranges. Grey (bleached) and yellow mottles (iron depletions) or black and red stains (iron concentrations) develop under certain conditions of water saturation, salinization, sulphidization, sodification and water erosion in surface and subsurface horizons. The amounts of these diagnostic features were used to develop a farm planning key for managing saline catchments in the Mt Lofty Ranges. Using soil diagnostic features, soil-water processes in saline catchments are easily identified by farmers and land managers. Management options (e.g. fencing, tree planting and drainage) are then targeted to specific soils and can be easily incorporated by agricultural advisers into farm management plans. We recommend that soil diagnostic features which help predict the onset of land degradation be used in the production of land capability maps for farm planning purposes.  相似文献   

20.
Alkali lands in India occupy about 3 million ha. Due to poor physical properties, excessive exchangeable sodium and high pH, most of these lands support a very poor vegetation cover. Many of the medicinal and aromatic plants are in great demand for both internal requirements and export. But since these crops are non‐conventional in nature, it is not always possible for them to be produced on fertile lands, which can be used for arable crops. The marginal lands, specifically the lands affected by salinity or sodicity problems where profitable returns are not possible from agricultural crops, could be successfully utilized for the cultivation of these high‐value crops with marginal inputs. Results reported in this paper clearly indicated that out of three aromatic grasses, palmarosa (Cymbopogon martinii (Roxb.) Wats.) and lemon grass (C. flexuosus (Steud.) Wats.) could successfully be grown on moderatly alkali soils of pH up to 9·2 while vetiver (Vetiveria zizanioides (L.) Nash), which withstands both high pH and stagnation of water, could successfully be grown without significant yield reduction on highly alkali soils. These grasses not only produce essential oils used for industrial purposes but also ameliorate the soil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号