首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water dispersible clay (WDC) can influence soil erosion by water. Therefore, in highly erodible soils such as the ones in eastern Nigeria, there is a need to monitor the clay dispersion characteristics to direct and modify soil conservation strategies. Twenty‐five soil samples (0–20 cm in depth) varying in texture, chemical properties and mineralogy were collected from various locations in central eastern Nigeria. The objective was to determine the WDC of the soils and relate this to selected soil physical and chemical attributes. The soils were analysed for their total clay (TC), water‐dispersible clay (WDC), clay dispersion ratio (CDR), dispersion ratio (DR), dithionite extractable iron (Fed), soil organic matter (SOM), exchangeable cations, exhangeable sodium percentage (ESP) and sodium adsorption ratio (SAR). Total clay contents of the soil varied from 80–560 g kg−1. The USLE erodibility K ranges from 0·02 to 0·1 Mg h MJ−1 mm and WEPP K fall between 1·2 × 10−6–1·7 × 10−6 kg s m−4. The RUSLE erodibility K correlated significantly with CDR and DR (r = 0·44; 0·39). Also, a positive significant correlation (r = 0·71) existed between WEPP K and RUSLE K. Soils with high clay dispersion ratio (CDR) are highly erodibile and positively correlates (p < 0·51) with Fed, CEC and SOM. Also, DR positively correlates with Mg2+ and SOM and negatively correlate with ESP and SAR. Principal component analysis showed that SAR, Na+ and percent base saturation play significant role in the clay dispersion of these soils. The implication of this result is that these elements may pose potential problem to these soils if not properly managed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Land degradation can be triggered by the abuse of chemicals that damage soil quality. Agriculture is changing the chemical and physical properties of soils, and in vineyards, those changes are due to the use of pesticides. In order to assess the Pb and Cd content, 212 soil samples from La Rioja D.O.Ca were analysed. Concentrations of Pb in soil ranged from 0·96 to 64·31 mg kg−1 with a mean concentration of 21·26 mg kg−1 in the surface layer, while they ranged from 7·97–43·93 mg kg−1 with a mean of 20·83 mg kg−1 in the subsurface layer. The mean content of bioavailable lead was 1·03 mg kg−1 in the surface layer and 0·76 mg kg−1 in the subsurface. Cd overall average concentration was 0·29 mg kg−1 in the surface; in the subsurface, the mean was 0·31 mg kg−1 and ranged from 0·10 to 1·22 mg kg−1. The values in the surface layers were 0·15 mg kg−1 and in the subsurface layer 0·01 of Cd bioavailability. On the basis of pedogeochemical Pb and Cd distribution, balanced fertilization will be of great importance for sustainable development of agricultural wine‐producers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Permissible erosion rate also known as soil loss tolerance (‘T’ value) is defined as maximum erosion that can take place on a given soil without degrading its long‐term productivity. In India, default ‘T’ value of 11·2 Mg ha−1 y−1 is used for devising land restoration strategies for different types of soils. However, ability of soil to resist degradation varies with soil type, depth and physico‐chemical characteristics. Therefore, the present investigation was undertaken to determine ‘T’ value of different landforms of Delhi State by taking into account the soil saturated hydraulic conductivity (SHC), bulk density (BD), organic carbon, erodibility and soil pH. Soil state was defined by a quantitative model and scaling functions were used to convert soil parameters to a 0–1 scale. The normalised values were multiplied by appropriate weighting factors based on relative importance and sensitivity analysis of each indicator. Categorical rankings of I, II or III were assigned to soil groups based on overall aggregate score. ‘T’ value of different landforms of Delhi State was computed using the guideline of USDA‐Natural Resource Conservation Services. Majority of landforms of Delhi had ‘T’ value of 12·5 Mg ha−1 y−1, except for the soils of hill terrain, dissected hill, pediment and piedmont plain, where ‘T’ value ranged from 5 to 10 Mg ha−1 y−1. These ‘T’ values could be used for conservation planning and will help the planners in devising suitable land restoration strategies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Soil erosion from cropland is a primary cause of soil degradation in the hilly red soil region of China. Soil characteristics and the resistance of soil to erosion agents can be improved with appropriate management practices. In this study, hydraulic flume experiments were conducted to investigate the effects of five management practices [manure fertilizer (PM), straw mulch cover (PC), peanut–orange intercropping (PO), peanut–radish rotation (PR) and traditional farrow peanut (PF)] on soil detachment. Based on the results, three conservation management practices (PC, PM and PO) increased the resistance of soil to concentrated flow erosion. The rill erodibility of different treatments was ranked as follows: PC (0·001 s m−1) < PM (0·004 s m−1) < PO (0·007 s m−1) < PF (0·01 s m−1) < PR (0·027 s m−1). The rill erodibility was affected by soil organic content, aggregate stability and bulk density. The soil detachment rate was closely correlated with the flow discharge and slope gradient, and power functions for these two factors were developed to evaluate soil detachment rates. Additionally, the shear stress, stream power and unit stream power were compared when estimating the soil detachment rate. The power functions of stream power and shear stress were equivalent, and both are recommended to predict detachment rates. Local soil conservation can benefit from the results of this study with improved predictions of erosion on croplands in the red soil region of China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Turkey's forests have been continuously facing conversion into both agriculture and pasturelands, causing not only degradation and fragmentation of forested lands but also negative changes in soil properties that have not been thoroughly investigated. In order to determine possible changes in some physical and hydrophysical soil parameters along with the dispersion ratio between natural coppice forests and the neighbouring forest‐to‐grassland converted areas, a foothill of Mount Sacinka in Artvin was chosen as a research area. Besides land use, possible effects of elevation change on soil properties due to the mountainous and moderately steep landscape of the region were also taken into consideration. The soil samples were analysed for soil texture, permeability, field capacity, bulk density, organic matter, pH and dispersion ratio. The results indicated that whereas permeability (43·05 mm h−1 in forest and 18·82 mm h−1 in pasture), field capacity (43·45% in forest and 38·08% in pasture) and organic matter (6·36% in forest and 5·34% in pasture) values turned out to be higher in forest soils, bulk density (0·91 g cm−3 in forest and 1·06 g cm−3 in pasture) and pH (5·89 in forest and 6·55 in pasture) values were low in grassland soils, meaning that conversion has negative effects on soil properties. Additionally, the mean dispersion ratios of 27·55% and 33·58% for forest and pastureland soils, respectively, indicated soil erosion problems in both land uses. In addition, as for elevation effect, forest soils especially showed better characteristics at higher elevations with high permeability, field capacity and organic matter and low pH and dispersion ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Soil erosion has serious off-site impacts caused by increased mobilization of sediment and delivery to water bodies causing siltation and pollution. To evaluate factors influencing soil erodibility at a proposed dam site, 21 soil samples collected were characterized. The soils were analyzed for soil organic carbon (SOC), exchangeable bases, exchangeable acidity, pH, electrical conductivities, mean weight diameter and soil particles’ size distribution. Cation exchange capacity, exchangeable sodium percentage, sodium adsorption ratio, dispersion ratio (DR), clay flocculation index (CFI), clay dispersion ratio (CDR) and Ca:Mg ratio were then calculated. Soil erodibility (K-factor) estimates were determined using SOC content and surface soil properties. Soil loss rates by splashing were determined under rainfall simulations at 360?mmh?1 rainfall intensity. Soil loss was correlated to the measured chemical and physical soil properties. There were variations in soil form properties and erodibility indices showing influence on soil loss. The average soil erodibility and SOC values were 0.0734?t?MJ?1?mm?1 and 0.81%, respectively. SOC decreased with depth and soil loss increased with a decrease in SOC content. SOC significantly influenced soil loss, CDR, CFI and DR (P??1. Addition of organic matter stabilize the soils against erosion.  相似文献   

7.
Introduced pigs (Sus scrofa ) are recognised as having significant environmental impacts. Here, we quantify the effect of feral pigs in a catchment (undisturbed by Europeans) in the monsoonal tropics of northern Australia. Field data collected over a 5‐year period showed that the areal extent of pig disturbance ranged from 0·3 to 3·3% of the survey area (average 1·2%, σ = 0·9%). Mass of exhumed material was considerable and ranged from 4·3 to 36·0 Mg ha−1 y−1 (average 10·9 Mg ha−1 y−1). The excavations produce surface roughness which acts as sediment traps. Over the 5‐year study period, there was no evidence to suggest that pigs produce any rill or gully erosion. There does not appear to be any relationship between rainfall amount and area disturbed or volume of material exhumed. However, a significant positive relationship was observed between number of disturbances and rainfall. The location of any disturbance appears to be random and has no relationship with topography or geomorphic attributes such as slope, upslope contributing area or wetness indices derived from a high‐resolution digital elevation model of the site. While pigs are disturbingly relatively large volumes of soil, there is no clear evidence to support any increase in local erosion and soil structural change may be occurring slowly and only be observable over the long term. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Runoff sediment from disturbed soils in the Lake Tahoe Basin has resulted in light scattering, accumulation of nutrients, and subsequent loss in lake clarity. Little quantified information about erosion rates and runoff particle‐size distributions (PSDs) exists for determining stream and lake loading associated with land management. Building on previous studies using rainfall simulation (RS) techniques for quantifying infiltration, runoff, and erosion rates, we determine the dependence and significance of runoff sediment PSDs and sediment yield (SY, or erodibility) on slope and compare these relationships between erosion control treatments (e.g., mulch covers, compost, or woodchip incorporation, plantings) with bare and undisturbed, or ‘native’ forest soils. We used simulated rainfall rates of 60–100 mm h−1 applied over replicated 0·64 m2 plots. Measured parameters included time to runoff (s), infiltration and runoff rates (mm h−1), SY (g mm−1 runoff), and average sediment concentration (SC, g L−1) as well as PSDs in runoff samples. In terms of significant relationships, granitic soils had larger particle sizes than volcanic soils in bulk soil and runoff samples. Consequently, runoff rates, SCs, and SYs were greater from bare volcanic as compared to that from bare granitic soils at similar slopes. Generally, runoff rates increased with increasing slope on bare soils, while infiltration rates decreased. Similarly, SY increased with slope for both soil types, though SYs from volcanic soils are three to four times larger than that from granitic soils. As SY increased, smaller particle sizes are observed in runoff for all soil conditions and particle sizes decreased with increasing slope. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Reclaimed coal mine lands have the potential to sequester atmospheric carbon (C); however, limited information exists for the western USA coalfields. This study was carried out on two chronosequences (BA‐C3 grasses and DJ‐shrubs) of reclaimed sites at two surface coal mines to determine the effects of vegetation, soil texture, and lignin content on soil total organic carbon (TOC) accumulations. In the BA chronosequence, TOC increased over 26 years at an average rate of 0·52 Mg C ha−1 yr−1 in the 0–30 cm depth and was significantly correlated with clay content. Comparison between < 1 and 16‐year‐old stockpile soils indicated TOC content did not differ significantly. In the DJ chronosequence, TOC content in the 0–30 cm depth declined from 31·3 Mg ha−1 in 5‐year‐old soils to 23·4 Mg ha−1 in 16‐year‐old soils. The C:N ratios suggested that some (up to 2·0 per cent) of the TOC was potentially derived from coal particles in these reclaimed soils. Soil total N (TN) contents followed a similar trend as TOC with TOC and TN concentrations strongly correlated. Lignin contents in TOC of all reclaimed soils and topsoil stockpiles (TSs) were higher than that of nearby undisturbed soils, indicating the recalcitrant nature of TOC in reclaimed soils and/or possibly the slow recovery of lignin degrading organism. Results indicated that TOC accumulations in DJ were largely controlled by its composition, particular lignin content. In BA sites TOC accumulation was strongly influenced by both clay and lignin contents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper evaluates soil loss due to water erosion in an area of 32,362 ha with a predominant land use of vineyards (Alt Penedès–Anoia region, Catalonia, Spain). The Soil and Water Assessment Tool (SWAT) was used incorporating daily climatic data for the period 2000–2010 and also detailed soil and land use maps. Particular attention was given to the universal soil loss equation cover and management factor (C factor) of vineyards, with a minimum value of 0·15 being determined for this crop. The model was calibrated using daily flow data for the year 2010, which yielded satisfactory results. Even so, significant differences were obtained on days with high‐intensity rainfall events, when the model overestimated runoff and peak discharge. In these vineyards, the simulated average soil losses per sub‐basin ranged between 0·13 and 9·73 Mg ha−1 y−1, with maximum values of between 26·32 and 42·60 Mg ha−1 y−1 registered in fine‐loamy soils developed on unconsolidated Tertiary marls. Other findings were related to problems associated with SWAT calibration under Mediterranean conditions characterised by major climate variability and high‐intensity rainfall events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Interrill and rill erodibility in the northern Andean Highlands   总被引:2,自引:0,他引:2  
There is a lack of quantitative information describing the physical processes causing soil erosion in the Andean Highlands, especially those related to interrill and rill erodibility factors. To assess how susceptible are soils to erosion in this region, field measurements of interrill (Ki) and rill (Kr) erodibility factors were evaluated. These values were compared against two equations used by the Water Erosion Prediction Project (WEPP), and also compared against the Universal Soil Loss Equation (USLE) erodibility factor. Ki observed in situ ranged from 1.9 to 56 × 105 kg s m− 4 whereas Kr ranged from 0.3 to 14 × 10− 3 s m− 1. Sand, clay, silt, very fine sand and organic matter fractions were determined in order to apply WEPP and USLE procedures. Most of the evaluated soils had low erodibility values. However, the estimated USLE K values were in the low range of erodibility values. Stepwise multiple regression analyses were applied to ascertain the influence of the independent soil parameters on the Ki and Kr values. After this, we yield two empirical equations to estimate Ki and Kr under this Andean Highlands conditions. Ki was estimated using as predictors silt and very fine sand, while Kr used as predictors clay, very fine sand and organic matter content. Relationship among Ki, Kr and K are described for the Highland Andean soils.  相似文献   

12.
Cultivation of irrigated desert soils in Central Iran is one way of utilizing under‐exploited land to produce more food. This study explores the value of soil quality indicators as measures when converting desert to croplands. Soil samples from unfarmed desert, wheat and alfalfa sites in the Abarkooh Plain (Central Iran) were taken from 0–10, 10–20 and 20–30 cm depths. Soil quality indicators including organic carbon, total nitrogen, carbohydrate, particulate organic carbon (POC) in aggregate fractions, and aggregate water‐stability were determined. The desert soils contained organic carbon of 0·26–0·56 g kg−1, total nitrogen of 0·05–0·08 g kg−1 and carbohydrate of 0·03–0·11 g kg−1 at 0–30 cm depth. Across this depth, the contents of organic carbon, total nitrogen and carbohydrate in wheat were about 3–7, 2–3 and 6–26‐times higher than those of desert soils, respectively. These values for alfalfa were 5–12, 3–4 and 7–35 times, respectively. The POC (near zero in desert soils) and generally other soil quality indicators showed greater improvement in alfalfa than in wheat fields. The results indicated a significant decrease in proportion of the fraction <0·05 mm in cultivated soils, whereas the proportion of the large aggregate size classes (2–4 and 1–2 mm) was increased by irrigation and cultivation. A significant improvement in aggregate water‐stability was observed in cultivated soils. At all depths, a large portion of the total soil organic carbon was stored in the fractions <0·05 mm for desert and macroaggregates (0·25–2 mm) for cultivated soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Soil erosion by water causes substantial on‐site degradation and off‐site damages in the densely populated state of North Rhine‐Westphalia (Germany). Measures of soil conservation should be adjusted to soil erodibilities and should be based on an understanding of the processes involved in water erosion including aggregate breakdown, rainsplash erosion, surface sealing, and soil loss. For a state‐wide assessment of erosion processes and erodibilities, we tested representative cultivated soils of North Rhine‐Westphalia in laboratory and field experiments with artificial rain. In the laboratory experiments described in this paper, rainsplash erosion, sealing susceptibility, and interrill erodibility of 25 topsoils filled in 0.5 m2 boxes were investigated. Results of different aggregate‐stability tests correlate with organic‐matter contents but not with parameters of rainsplash or soil loss. On most soil materials, rainsplash increases or maintains constant rates in the course of the simulation runs indicating that the soil surface did not attain a higher shear resistance. High sealing susceptibilities are found for soils of quite different textures ranging from loam sand to silt clay, whereas other silt clays, clay loams, and some clay silts maintain high infiltration rates. A trend of increasing sealing susceptibility and total soil loss with increasing clay content is observed for the loam sands to sand loams. Dynamics of soil loss is largely governed by runoff rates. Total soil loss is also determined by sediment concentration in surface runoff, which is low on most clayey soils, on loam sands poor in clay, and on a sand loam, and high in the case of highly erodible clay silts, loam sands, and sand loams. The most crust prone soils are not necessarily the most erodible. On most soils, soil‐loss rates do not stabilize until the end of the rainfall experiments. For comparing the interrill erodibilities of the soils, total soil loss is preferred instead of interrill erodibility factors (Ki, Kiq) published in the literature.  相似文献   

14.
《CATENA》2001,45(2):103-121
Equations used to calculate erodibility in the Water Erosion Prediction Project soil erosion model (WEPP) are based on erodibility studies in the USA and may not function well in another region. This study was conducted to: (i) analyze erodibility and infiltration characteristics of some predominant soils of southern Spain, and (ii) test equations used to calculate interrill erodibility in the WEPP model on these soils. The five soils chosen for this study in Andalusia, southwest Spain, were: two terrace soils (referred to as ‘Red and Yellow Alfisols’), an alluvial soil (‘Fluvent’), a shallow hillside soil (‘Inceptisol’), and a cracking clay soil (‘Vertisol’). A static, solenoid operated rainfall simulator was operated at an intensity of approximately 60 mm h−1 during a 60-min dry run followed by a 30-min wet run the next day on 0.75 m2 plots with 30% ridge slopes. Infiltration rates were high (always exceeding 50% except for the wet run of the Fluvent). The Fluvent had the lowest infiltration rate (0.00 mm min−1 at the end of the wet run) and highest soil loss (985 g m−2 h−1 in the dry run and 1557 g m−2 h−1 in the wet run). The Vertisol, Inceptisol and Red Alfisol had low soil loss (415, 605, and 527 g m−2 h−1 in the dry run and 824, 762 and 629 g m−2 h−1 in the wet run, respectively). Soil loss of the Vertisol doubled between dry and wet run and infiltration rate did not stabilize, suggesting that erodibility of Vertisols increases when they are wet. The Yellow Alfisol had lower final infiltration rate in the dry run (0.33 mm min−1) than in the wet run (0.58 mm min−1) and higher soil loss in dry run (1203 g m−2 h−1) than in wet run (961 g m−2 h−1), the reason still being unclear. Soil loss was significantly correlated to silt+very fine sand content (r=0.96), indicating that erodibility of these soils is determined by similar properties as soils in these soil orders in the USA. However, the equation for WEPP-interrill erodibility overestimated erodibility significantly (two to four times), indicating the need to develop new erodibility equations for the Mediterranean region. Infiltration rates were generally high and soil loss rates low compared to reports from the USA, suggesting that limited runoff generation is a primary reason for low erodibility of these soils.  相似文献   

15.
Revegetation of road cuts and fills is intended to stabilize those drastically disturbed areas so that sediment is not transported to adjacent waterways. Sediment has resulted in water quality degradation, an extremely critical issue in the Lake Tahoe Basin. Many revegetation efforts in this semiarid, subalpine environment have resulted in low levels of plant cover, thus failing to meet project goals. Further, no adequate physical method of assessing project effectiveness has been developed, relative to runoff or sediment movement. This paper describes the use of a portable rainfall simulator (RS) to conduct a preliminary assessment of the effectiveness of a variety of erosion‐control treatments and treatment effects on hydrologic parameters and erosion. The particular goal of this paper is to determine whether the RS method can measure revegetation treatment effects on infiltration and erosion. The RS‐plot studies were used to determine slope, cover (mulch and vegetation) and surface roughness effects on infiltration, runoff and erosion rates at several roadcuts across the basin. A rainfall rate of ≈60 mm h−1, approximating the 100‐yr, 15‐min design storm, was applied over replicated 0·64 m2 plots in each treatment type and over bare‐soil plots for comparison. Simulated rainfall had a mean drop size of ≈2·1 mm and approximately 70% of ‘natural’ kinetic energy. Measured parameters included time to runoff, infiltration, runoff/infiltration rate, sediment discharge rate and average sediment concentration as well as analysis of total Kjeldahl nitrogen (TKN) and dissolved phosphorus (TDP) from filtered (0·45 μm) runoff samples. Runoff rates, sediment concentrations and yields were greater from volcanic soils as compared to that from granitic soils for nearly all cover conditions. For example, bare soil sediment yields from volcanic soils ranged from 2–12 as compared to 0·3–3 g m−2 mm−1 for granitic soils. Pine‐needle mulch cover treatments substantially reduced sediment yields from all plots. Plot microtopography or roughness and cross‐slope had no effect on sediment concentrations in runoff or sediment yield. RS measurements showed discernible differences in runoff, infiltration, and sediment yields between treatments. Runoff nutrient concentrations were not distinguishable from that in the rainwater used. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This study evaluates surface runoff generation and soil erosion rates for a small watershed (the Keleta Watershed) in the Awash River basin of Ethiopia by using the Soil and Water Assessment Tool (SWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. The simulated surface runoff closely matched with observed data (derived by hydrograph separation). Surface runoff generation was generally high in parts of the watershed characterized by heavy clay soils with low infiltration capacity, agricultural land use and slope gradients of over 25 per cent. The estimated soil loss rates were also realistic compared to what can be observed in the field and results from previous studies. The long‐term average soil loss was estimated at 4·3 t ha−1 y−1; most of the area of the watershed (∼80 per cent) was predicted to suffer from a low or moderate erosion risk (<8 t ha−1 y−1), and only in ∼1·2 per cent of the watershed was soil erosion estimated to exceed 12 t ha−1 y−1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the watershed was divided into four priority categories for conservation intervention. The study demonstrates that the SWAT model provides a useful tool for soil erosion assessment from watersheds and facilitates planning for a sustainable land management in Ethiopia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Development of alternative sources through wastewater reuse is important to meet water demands in arid regions. However, effects of wastewater irrigation on soil properties and crop performance must be evaluated before advocating its widespread use. Objectives of this study were to evaluate: (i) effects of prior evaporative disposal of saline‐sodic blowdown water (BW) on soil (fine‐loamy, mixed, and thermic Typic Calciorthods) properties in the disposal area, and (ii) effects of flood irrigation with three water qualities (control, BW 1X, and BW 2X) on soil salinity and alfalfa performance using a greenhouse soil column study (soil collected from same study area as objective (i)). Results indicated that although prior land disposal of BW had increased salinity and sodicity of soil, they were within the tolerance limits of the intended crop, alfalfa. Mass balance calculations indicated measured (15·6 Mg ha−1) and calculated (13·2 Mg ha−1) salt accumulation at the test site used for evaporative disposal were similar. Alfalfa grown using BW under greenhouse conditions produced prime quality hay and biomass yield similar to the control treatment (8·3 g column−1 vs. 10·5 g column−1 in control). Although 3·6 years equivalent of flood irrigation with BW 1X did not result in saline soil (BW 1X irrigated soils EC ranged from 2·2 to 3·5 dS m−1), BW 2X irrigation resulted in saline soils. Sodicities of irrigated soils were greater in fine textured deep soils than coarse textured surface soils (e.g., SAR of 6·1 at 0–5 cm vs. 19·5 mmol1/2 L−1/2 at 30–60 cm in BW 1X), indicating the need for high solubility Ca amendments for long‐term irrigation with BW on fine texture soils within the soil profile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This study analyzes effects of soil and water conservation (SWC) on soil quality and implications to climate change adaptation and mitigation in the Upper Blue Nile River Basin of Ethiopia by using the Anjeni watershed as a case study site. Disturbed and undisturbed soil samples were collected from two sub‐watersheds of Anjeni: the Minchet sub‐watershed (with SWC measures) and the Zikrie sub‐watershed (without SWC measures). Soil samples were taken from 30‐cm depth from five representative landscape positions and analyzed following the standard soil lab analysis procedures. The results show that soils from the conserved sub‐watershed had improved quality indicators compared with those from the non‐conserved site. Significant improvement due to SWC measures was observed in the soil hydrological [total moisture content (+5·43%), field capacity (+5·35%), and available water capacity (+4·18%)] and chemical [cation exchange capacity (+4·40 cmol(+) kg−1), Mg2+ (+1·90 cmol(+) kg−1), Na+ (+0·10 cmol(+) kg−1)] properties. SWC interventions significantly reduced soil erosion by 57–81% and surface runoff by 19–50% in the conserved sub‐watershed. Reduction in soil erosion can maintain the soil organic carbon stock, reduce the land degradation risks, and enhance the C sequestration potential of soils. Therefore, adoption of SWC measures can increase farmers' ability to offset emissions and adapt to climate change. However, SWC measures that are both protective and sufficiently productive have not yet been implemented in the conserved sub‐watershed. Therefore, it is important that SWC structures be supplemented with other biological and agronomic measures in conjunction with soil fertility amendments appropriate to site‐specific conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Aggregate stability is a fundamental property influencing soil erodibility and hydraulic characteristics. Knowledge of soil components controlling aggregate stability is very important to soil structure conservation. The objective of this study, which was carried out in surface soils from central Greece, was to relate wet aggregate stability to selected soil properties, with emphasis on excessive free carbonate content. The wet‐sieving technique of air‐dried aggregates was used for structural stability evaluation, according to a test that calculates an instability index. The soils studied were developed on Tertiary marly parent material and ranged in calcium carbonate content from 5 to 641 g kg−1. From the texture analysis before and after removal of carbonates, it was concluded that carbonates mainly contributed to total silt and sand fractions, that is to the mechanical fractions which, as a rule, negatively affect aggregate stability. The results of the correlation analysis showed that aggregate stability was positively affected by aluminosilicate clay content, cation exchange capacity (CEC) and Al‐containing sesquioxides. Clay fraction from carbonates and total sand and silt negatively affected aggregate stability. CEC has been proved a very significant determinant of aggregate stability, which in a hyperbolic form relationship with instability index explained 78·9 per cent of aggregate stability variation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The overall aim of the paper is the assessment of human‐induced accelerated soil erosion processes due to forest harvesting in the Upper Turano River Basin. The spatio‐temporal pattern of soil erosion processes was investigated by means of a spatially distributed modelling approach. We used the Unit Stream Power Erosion and Deposition model. During the soil erosion‐modelling phase, the forest cover changes were mapped via remote sensing. According to this operation, the forest sectors exploited for timber production amounted to about 2781 ha or 9·9% of the wooded surface from March 2001 to August 2011. In this period, the average annual net soil erosion rate estimated by means of modelling operations totalled 0·83 Mg ha−1 y−1 for all the forest lands. The net soil erosion rate predicted for the disturbed forest lands is significantly higher than the average value for the entire forest (5·34 Mg ha−1 y−1). Estimates indicate a soil loss equal to 8521 Mg y−1 (net soil erosion 0·34 Mg ha−1 y−1) in the undisturbed forest area (254 km2), whereas the 27·8 km2 of disturbed forest area could potentially lose 14 846 Mg y−1. The paper shows that a disturbed forest sector could produce about 74·2% more net erosion than a nine times larger, undisturbed forest sector. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号