共查询到14条相似文献,搜索用时 62 毫秒
1.
桃在鲜果市场中占有重要份额。可溶性固形物含量(soluble solid content,SSC)是衡量桃品质的重要参数,是挑选优质桃以及预测最佳采摘时期的重要决策依据。该研究开发了一款基于可见近红外光谱技术的手持式黄油桃SSC无损检测设备。该设备的硬件系统主要由微型光谱仪、卤素灯、OLED显示屏、微控制器以及自主设计的驱动电路组成。为了评估所开发设备的检测性能,采用北京平谷区种植的黄油桃作为样品进行验证。首先,获取校正集样品在680~940 nm范围内的可见近红外光谱,经5点平均平滑和最大值归一化对光谱预处理建立黄油桃SSC偏最小二乘回归模型并用于预测集样本的SSC分析,预测相关系数和均方根误差分别为0.947和0.728%,单果检测时间不超过2 s。为了提高模型精度和稳定性,将校正集和预测集合并后作为新的校正集进行建模,并将重新构建的模型对独立验证集进行预测,SSC预测值与实测值的相关系数为0.906,均方根误差为0.732%。采用分段直接校正算法将主机模型传递到从机。经过模型传递后,从机对独立验证集SSC的预测值与实测值的相关系数和均方根误差分别为 0.865和0.919%。该手持式SSC检测设备可将SSC预测数据以蓝牙方式传输到手机客户端,借助手机定位功能,在地图上实现黄油桃SSC空间可视化分布。研究结果表明,该手持式SSC无损检测设备可以实现黄油桃SSC的准确测量,借助模型传递算法。实现了模型在不同设备间的有效传递,避免了重复建模,可为该设备批量生产节约大量成本,具有广阔的应用前景。 相似文献
2.
近红外光谱检测苹果可溶性固形物 总被引:7,自引:0,他引:7
该文目的是通过静态和在线两种方式的对比试验,研究苹果可溶性固形物近红外光谱静态和在线检测的差异。分别在静态(600~950 nm)和在线(600.02~950.92 nm)2种检测方式下,采用间隔偏最小二乘法,寻找苹果可溶性固形物的特征波段,建立了苹果可溶性固形物近红外光谱检测用数学模型,并进行对比分析。试验结果为:与静态检测模型相比,在线检测模型性能稍弱,模型预测相关系数为0.78,预测均方根误差为1.04oBirx。试验结果表明:近红外光谱在线检测苹果可溶性固形物的精度不理想。 相似文献
3.
4.
黄桃表面缺陷和可溶性固形物光谱同时在线检测 总被引:1,自引:2,他引:1
表面缺陷和可溶性固形物是评价黄桃品质的重要指标,采用可见/近红外漫透射光谱技术,探讨黄桃表面缺陷与可溶性固形物同时在线检测的可行性。在运动速度为5个/s、积分时间100 ms、光照强度1 000 W的条件下采集黄桃表面缺陷果与正常果的近红外漫透射光谱。对比分析了同一个黄桃样品损伤前后的光谱特征,建立了黄桃的最小二乘支持向相机判别模型与偏最小二乘判别模型。同时建立了黄桃可溶性固形物偏最小二乘回归模型并采用连续投影算法对模型进行优化,研究了表面缺陷果对黄桃可溶性固形物检测模型精度的影响,最终实现了黄桃表面缺陷与可溶性固形物同时在线检测。采用未参与建模的样品来评价模型的在线分选的准确性,其中表面缺陷果的正确判断率为100%,可溶性固形物分选准确率达到93%。试验结果表明:黄桃表面缺陷与可溶性固形物同时在线检测是可行的,研究可为黄桃在线分选提供技术参考和理论依据。 相似文献
5.
为了实现对不同剂量辐照处理后米粉的快速鉴别,提出了一种基于可见-近红外光谱技术的快速、无损检测方法。试验先利用不同剂量的60Coγ-射线对米粉进行辐照处理,得到了4种样品共200个样本。再应用ASD可见-近红外光谱仪获取所有样本的反射光谱数据,并采用主成分分析方法对数据进行聚类分析,将提取的前6个主成分作为BP神经网络的输入值,建立不同米粉样品的鉴别模型。结果表明,在设定偏差标准为±0.1的情况下,利用该模型对预测集样本进行鉴别,识别率达到100%。该文提出的方法具有很好的分类和鉴别作用,为快速鉴别米粉类产品是否经辐照灭菌及处理剂量等提供了新的技术方法。 相似文献
6.
漫透射法无损检测荔枝可溶性固形物 总被引:1,自引:0,他引:1
为了快速无损检测荔枝内部品质并为荔枝快速检测分级提供科学依据,研究荔枝可溶性固形物无损检测途径。该文首先针对荔枝果皮较硬而且凹凸不平的特征,比较了漫反射法和漫透射法的试验效果,接着采用多种预处理方式对漫透射光谱进行了处理,并采用连续投影算法结合相关系数法优选建模波长,最后比较了最小二乘法和神经网络法的建模效果。试验结果显示漫透射方式是较好的荔枝光谱采集方式;通过连续投影算法结合相关系数法,从全部500个波长变量中最终提取出11个优选波长,只占波长总数的2.2%;基于这11个波长的神经网络模型的预测相关系数为0.867,预测均方根误差为0.370%。结果表明基于漫透射法进行荔枝可溶性固形物无损检测是可行的。 相似文献
7.
可见/近红外光谱结合遗传算法无损检测牛肉pH值 总被引:2,自引:4,他引:2
为了实现牛肉在整个货架期内(4℃环境)pH值的无损快速检测,该文采用可见/近红外光谱技术并结合遗传算法(GA,genetic algorithm),搭建了可见/近红外光谱检测系统,采集储藏在4℃下1~18d的120个牛肉样品400~1700nm范围的光谱,用不同预处理方法处理,并分别建立全波段光谱和经过遗传算法提取有效光谱的预测牛肉pH值的多元线性回归(MLR,multiple linear regression)模型、偏最小二乘回归(PLSR,partial least-squares regression)模型和最小二乘支持向量机(LS-SVM,least square-support vector machine)模型。结果表明,多元散射校正(MSC,multiplicatives catter correction)结合Savitzky-Golay(SG)平滑为最佳预处理方法,遗传算法提取光谱后所建模型的预测精度均高于全波段光谱所建模型,其中LS-SVM为最佳预测模型,其预测相关系数和标准差分别为0.935和0.111,相比全波段LS-SVM模型预测,精度得到了提高。研究表明可见/近红外光谱技术结合遗传算法所建LS-SVM预测模型能够实现4℃下牛肉整个货架期内pH值的无损快速检测。该研究为进一步开发实用的牛肉pH值无损快速检测设备提供依据。 相似文献
8.
为了提高中国厚皮类瓜果的品质质量和出口能力,增强中国水果品质检测装备制造业的技术实力和技术水平。该文以西瓜为对象,对其糖度进行了试验研究。由于西瓜各部位存在差异,因而不同部位采集近红外光谱会对糖度预测模型精度产生影响。采用自主搭建的西瓜内部品质检测系统对不同批次西瓜瓜梗、瓜脐和赤道3个部位采集漫透射光谱信息,分别采用偏最小二乘回归法(partial least squares regression,PLSR)和最小二乘支持向量机法(least squares support vector machines,LS-SVM)2种方法对西瓜糖度建立预测模型,考察西瓜不同检测部位对西瓜糖度预测模型精度的影响。2种预测模型均显示,赤道部位采集光谱所建立的预测模型检测精度较差,而采用瓜脐部位获取光谱信息建立预测模型略好于瓜梗部位,最佳预测相关系数rpre达到0.823,预测均方根误差(root mean square error of prediction,RMSEP)为0.652%。该研究结果表明,不同部位采集光谱信息对最终的检测模型精度有影响,瓜脐部位为该文西瓜内部品质检测装置的较优采集部位。 相似文献
9.
10.
玉米种子活力近红外光谱智能检测方法研究 总被引:3,自引:0,他引:3
为了实现玉米种子活力的快速无损检测,提出利用近红外光谱和BP神经网络来建立玉米种子活力智能检测模型。首先通过人工老化将样本按老化程度分为3种级别,采集样本的近红外光谱。分别通过卷积平滑(S-G)和多元散射校正(MSC)及二者组合的方法消除光谱噪声和去除奇异光谱。然后分别用主成分分析(PCA)和离散多带小波变换(DWT)提取光谱特征,作为BP神经网络的输入。依据预处理及特征提取的不同构建出6种BP神经网络种子活力检测模型。试验结果表明,组合预处理方法与主成分分析特征提取结合构建的模型最优,其识别的准确率为95.0%,平均识别时间为26.25ms。研究结果为玉米种子活力的快速无损检测提供了理论依据和实用方法。 相似文献
11.
基于可见-近红外光谱技术的蜜源快速识别方法 总被引:3,自引:5,他引:3
蜂蜜蜜源决定了蜂蜜的药用价值。为了实现快速无损识别蜂蜜蜜源,提出了基于可见-近红外光谱技术结合机器学习的方法来实现蜂蜜蜜源的快速无损识别。该研究采集来自4个蜜源共232份蜂蜜样本光谱数据,随机选取其中212个样本用来构建分类器,剩余20个样本进行分类器泛化学习能力的检验评估。光谱数据预处理采用基线校正,数据标准化和平滑消除干扰和噪声。基于一对多分类规则,采用主成分分析结合贝叶斯线性判别构造线性多分类器,并就分类效果和泛化学习能力与前向神经网络器构成的非线性分类器进行比较。结果表明:基于主成分分析结合贝叶斯线性判别构造的多分类器分类正确率为91.95%,前向神经网络的分类正确率为100%。该研究也表明应用可见-近红外技术对蜂蜜蜜源进行快速分类是可行的。 相似文献
12.
可见-近红外光谱联合随机蛙跳算法检测生物柴油含水量 总被引:2,自引:1,他引:2
生物柴油是一种优质清洁柴油,可从各种生物质中提炼,其特有的优势受到越来越广泛的关注。该文应用可见-近红外光谱技术原理对生物柴油的含水率进行了检测。配置含水率分别为0、2.5%、5.0%、7.5%和10.0%的试验样品并获取可见-近红外光谱,进行主成分分析,观察不同含水率生物柴油的聚类性,并采用Random Frog算法进行特征波段的提取,最后采用随机蛙跳算法(Random Frog)挑选出的特征波段作为偏最小二乘回归(partial least squares regression,PLSR)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)模型的输入量,建立生物柴油含水量的预测模型。结果发现:采用Random Frog提取出的8条特征波段(563、560、642、565、562、493、559和779 nm)所建立非线性模型LS-SVM所得到的结果较好,其中Random Frog-LS-SVM的结果中R均大于0.95,校正集均方根误差RMSEC=0.722,预测集均方根误差RMSEP=0.520。结果表明采用Random Frog-LS-SVM模型可以准确的预测生物柴油的含水量,为实际应用提供参考。 相似文献
13.
可溶性蛋白是植物生化及抗性生理研究的重要指标之一。快速、准确、无损测定可溶性蛋白含量对作物生长状况的动态监测及抗性作物品种的筛选具有重要意义。近红外光谱具有快速、简单方便、非破坏性的特点,已在农业、食品、化工等领域广泛应用,尤其是近年来基于光谱技术快速无损的获取作物生理生化信息的研究已成为当前农业领域研究的热点。本文采用近红外光谱技术结合化学计量学方法以实现大豆叶片可溶性蛋白含量的快速无损检测。首先,采用Savitzky-Golay平滑(SG)、一阶导数(1-Der)、二阶导数(2-Der)等7种光谱预处理方法分别建立大豆叶片可溶性蛋白含量的偏最小二乘(PLS)预测模型,经对比发现SG预处理方法为大豆叶片可溶性蛋白含量预测的最优光谱预处理方法。其次,分别采用连续投影算法(SPA)、随机蛙跳(RF)和遗传算法(GA)对SG预处理后的光谱数据进行特征波长提取。最后,基于提取的特征波长分别建立了大豆叶片可溶性蛋白含量的SPA-PLS、RF-PLS和GA-PLS预测模型,发现基于SPA提取的11个特征波长建立的大豆叶片可溶性蛋白含量SPA-PLS模型具有最佳的预测效果,其预测集相关系数(R2p)为0.864,预测均方根误差(RMSEP)为1.894 mg/g,预测偏差为2.061(RPD)。上述结果表明,应用近红外光谱技术检测大豆叶片中可溶性蛋白含量是可行的,可为大豆生长状况动态监测及抗性大豆品种的筛选提供新的方法。 相似文献
14.
基于近红外分析技术检测大豆脂肪酸含量的研究 总被引:4,自引:2,他引:4
为探索近红外光谱技术在大豆脂肪酸测试中的应用,寻找一种快速的检测方法。以黑龙江省各地的25份大豆品种为材料,采用Perten8620型近红外光谱仪对搜集到的样品进行扫描并得到光谱数据,采用多元线性回归(MLR)和偏最小二乘法(PLS)对试验数据进行了多元统计分析。结果表明:在1700~2300 nm范围内检测大豆脂肪酸含量是可靠的,并且PLS模型的性能优于MLR模型。该文还对近红外仪中的滤光片组合作了初步探讨,表明不同的滤光片组合对测量精度有一定影响。 相似文献