共查询到20条相似文献,搜索用时 15 毫秒
1.
An accession of Camelina microcarpa suspected to be resistant to sulfonylurea herbicides was identified in Oregon in 1998 field experiments. Greenhouse research confirmed that the putative resistant biotype was resistant to chlorsulfuron and metsulfuron on a whole plant level. Compared with the resistant (R) biotype, the susceptible (S) biotype was 1000 and 10 000‐fold more sensitive to metsulfuron and chlorsulfuron respectively. The R biotype was also resistant to other sulfonylurea, sulfonylaminocarbonyl‐triazolinone, imidazolinone and triazolopyrimidine herbicides. An in vivo enzyme assay indicated that acetolactate synthase (ALS) from the R plants required 111 times more chlorsulfuron to inhibit activity by 50% compared with the amount required to have a similar effect on ALS from S plants. Analysis of the nucleotide and amino acid sequences demonstrated that a single‐point mutation from G to T in the als1 gene conferred the change from the amino acid tryptophan to leucine at position 572 in the resistant biotype. This research confirmed that ALS inhibitor resistance in an Oregon accession of C. microcarpa is based on an altered target site conferred by a single‐point mutation. 相似文献
2.
In 2003, a random survey was conducted across the Western Australian wheatbelt to establish the extent and frequency of herbicide resistance in Raphanus raphanistrum populations infesting crop fields. Five hundred cropping fields were visited, with 90 R. raphanistrum populations collected, representative of populations present in crop fields throughout the Western Australian wheatbelt. Collected populations were screened with four herbicides of various modes of action that are commonly used for the control of this weed. The majority of Western Australian R. raphanistrum populations were found to contain plants resistant to the acetolactate synthase (ALS)‐inhibiting herbicide chlorsulfuron (54%) and auxin analogue herbicide, 2,4‐D amine (60%). This survey also determined that over half (58%) of these populations were multiple resistant across at least two of the four herbicide modes of action used in the screening. Only 17% of R. raphanistrum populations have retained their initial status of susceptibility to all four herbicides. The distribution patterns of the herbicide‐resistant populations identified that there were higher frequencies of resistant and developing resistance populations occurring in the intensively cropped northern regions of the wheatbelt. These results clearly indicate that the reliance on herbicidal weed control in cropping systems based on reduced tillage and stubble retention will lead to higher frequencies of herbicide‐resistant weed populations. Therefore, within intensive crop production systems, there is a need to diversify weed management strategies and not rely entirely on too few herbicide control options. 相似文献
3.
4.
Phenoxy herbicides are integral to the control of Raphanus raphanistrum populations in Australian crop production systems, but the development of phenoxy resistant R. raphanistrum populations poses a major threat to the sustainability of these systems. In dose–response pot studies, phenoxy herbicide resistant R. raphanistrum populations, WARR12 and WARR20, suffered large biomass reductions following treatment with recommended or higher application rates of phenoxy herbicides. This indicates the presence of a weak resistance mechanism where treated plants, although surviving, are affected by these herbicides. Subsequently, the competitive ability of 2,4-D amine treated or untreated WARR12 and WARR20 populations with wheat was assessed using a target-neighbourhood experiment. The combination of wheat competition and 2,4-D amine application resulted in control of the resistant WARR12 population, but not the WARR20 population. Wheat crop competition alone resulted in large (>40%) biomass reductions of WARR12 and WARR20 populations. However, the application of the recommended rate of 2,4-D amine caused a large (>75%) reduction in WARR12 biomass, but had a reduced effect on WARR20 biomass. These studies possibly explain the largely successful control of R. raphanistrum populations being achieved with phenoxy herbicides in cropping systems across the Western Australia wheatbelt. However, the results also indicated that the strategy of combining crop competition with phenoxy herbicides for the control of this weed is likely to be an effective option in the short-term only. 相似文献
5.
采用室内生物测定方法,研究了除草剂解毒剂5-二氯乙酰基-3,6-二甲基-3-乙基-9-氧代-1,5-二氮杂二环[4.3.0]壬烷减轻氯磺隆对玉米的伤害作用。结果表明:随着土壤中氯磺隆浓度的增大,玉米的生长受到抑制,用解毒剂浸种处理后,可在一定程度上减轻氯磺隆对玉米生长的影响。当土壤中氯磺隆残留量为2μg/kg时,解毒剂浓度在1~5mg/kg时解毒效果最佳,玉米株高、株鲜重、根长、根鲜重的恢复率最高可达101.27%、63.74%、73.29%和51.81%。 相似文献
6.
Photolysis of chlorsulfuron and metsulfuron-methyl was studied in methanol under UV light. Their rates of primary photolysis followed first-order kinetics. The main photoproducts were identified as 2-methoxy-4-methyl-1,3,5-triazin-6-amine, 2-chloro-benzenesulfonamide and methyl 2-(aminosulfonyl)benzoate, which entailed the cleavage of the two N–C ureic bonds. Further photolysis of benzenesulfonamide derivatives involved oxidation of −NH2, cyclisation with loss of CH3OH, and scission of the C–S bond A trace of methyl o-mercaptobenzoate was also detected. The corresponding photolysis pathways of chlorsulfuron and metsulfuron-methyl were tentatively proposed. © 1999 Society of Chemical Industry 相似文献
7.
R J Jettner S R Walker J D Churchett F P C Blamey S W Adkins & K Bell 《Weed Research》1999,39(4):287-295
The sensitivity of 22 major crops, pastures and weeds from the north-east grain region of Australia to atrazine and chlorsulfuron residues was determined in a glasshouse using a soil-free bioassay system. A logistic equation was fitted to the seedling fresh weights as a function of the logarithm of herbicide concentration by non-linear regression and used to calculate the doses for 10%, 30% and 50% inhibition of seedling growth (ID10 , ID30 and ID50 ). The ID50 for atrazine ranged from 0.03 to 0.04 mg a.i. L–1 for Salvia reflexa Hornem. and barley to 1.47 mg a.i. L–1 for sorghum. The ID50 for chlorsulfuron ranged from 0.19 to 0.21 μg a.i. L–1 for lucerne and snail medic to 102 μg a.i. L–1 for wheat. Based on ID50 values measured, the predicted responses of each species to a range of concentrations of atrazine and chlorsulfuron were classified into four categories ranging from no damage to severe damage. These sensitivity data will assist in planning cropping sequences in soils previously treated with atrazine or chlorsulfuron. 相似文献
8.
9.
Degradation of the sulfonylurea herbicides chlorsulfuron and triasulfuron in a high-organic-matter volcanic soil 总被引:1,自引:0,他引:1
The degradation rates of two sulfonylurea herbicides, chlorsulfuron and triasulfuron, were determined at two application rates, 15 and 30 g a.i. ha–1 , in a sandy loam soil of volcanic origin under controlled environment and field conditions. Residues were measured using a modified gas chromatographic (gc) determination method. Both herbicides degraded rapidly in the acidic soil (pH 5.7) with high organic matter levels (7.3% o.m.), generally according to first-order rate kinetics. The respective half-lives ranged from 22 to 38 d for chlorsulfuron and from 31 to 44 d for triasulfuron under five controlled temperature/soil moisture regimens, ranging from 10 to 30 °C and between 40% and 80% maximum water-holding capacity. Half-lives in the field were considerably shorter (13 d for chlorsulfuron and 12–13 d for triasulfuron). The degradation rates of the herbicides were influenced more by soil temperature than by soil moisture content. Bioassays using white mustard ( Sinapis alba L.) and forage sorghum [ Sorghum bicolor (L.) Moench] were also used to determine the persistence of phytotoxic residues of both herbicides in the field, and the results showed that the effects of chlorsulfuron disappeared within 8 weeks. Triasulfuron residues disappeared within 9 and 14 weeks for the 15 and 30 g a.i. ha–1 rates respectively. 相似文献
10.
在盆栽和田间小区模拟条件下,测定了安全剂R-28725对玉米的株高和株鲜重的影响,确定了玉米体内GSH及其支链氨基酸的变化。结果发现:当绿磺隆的使用量为2.5、5、10g/hm^2时,R-28725能够明显提高玉米株高、株鲜重,混喷的效果显著高于其它处理。在绿磺隆的使用量为5g/hm^2时,使用R-28725混喷处理,玉米的产量为对照的101.68%。R-28725能够直接提高玉米幼苗中体内谷胱甘肽(GSH)含量,在绿磺隆浓度为1μg/kg,使用R-28725浸种处理,玉米幼苗中体内GSH含量增加27.83%,说明R-28725能够诱导绿磺隆与谷胱甘肽的轭合,从而达到解毒的目的。 相似文献
11.
Weitang Liu Yaling Bi Lingxu Li Guohui Yuan Long Du Jinxin Wang 《Pesticide biochemistry and physiology》2013
Water chickweed is a widespread and competitive winter annual or biennial weed of wheat in China. One Water chickweed population (HN02) resistant to several acetolactate synthase (ALS) inhibitors was found in Henan province of China. Whole-plant bioassays showed that HN02 was high resistance to tribenuron (292.05-flod). In vitro ALS assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to tribenuron. The I50 value for HN02 was 85.53 times greater respectively than that of susceptible population (SD05). This altered ALS sensitivity in the resistant population was due to a mutation in the ALS gene resulting in a Pro197 to Ser substitution. Cross-resistance experiments indicated that HN02 exhibited various resistance patterns to pyrithiobac-sodium, florasulam and pyroxsulam, without resistance to imazethapyr. This is the first report of tribenuron-resistant Water chickweed in Henan province of China, target-site based resistance was established as being due to an insensitive form of ALS, resulting from a Pro to Ser substitution at amino acid position 197 in the ALS gene. 相似文献
12.
13.
14.
Repeated use of ACCase‐ and ALS‐inhibiting herbicides in northern Greece has resulted in the evolution of a population of Lolium rigidum resistant to diclofop and chlorsulfuron. The biotype from Athos was highly resistant to diclofop and also exhibited differential cross‐resistance to clodinafop, fluazifop, tralkoxydim and sethoxydim. Assay of ACCase activity confirmed that the resistant biotype was tenfold more resistant to diclofop than the susceptible biotype, suggesting that the resistance mechanism could involve an altered target site. The diclofop‐resistant biotype has also exhibited multiple resistance to chlorsulfuron and the mechanism for this is unknown. Seed‐bioassay was found to be a rapid, cheap and reliable method to identify populations of L rigidum resistant to ACCase inhibitors and chlorsulfuron. Moreover, root elongation in the seed bioassay was more sensitive to ACCase inhibitors and chlorsulfuron than shoot elongation. © 2000 Society of Chemical Industry 相似文献
15.
16.
17.
Harry J. Strek 《Pest management science》1998,53(1):29-51
The behaviour and fate of chlorsulfuron in aqueous and soil systems were examined in laboratory studies. Aqueous hydrolysis was pH-dependent and followed pseudo-first-order degradation kinetics at 25°C, with faster hydrolysis occurring at pH 5 (half-life 24 days) than at either pH 7 or 9 (half-lives >365 days). Degradation occurred primarily by cleavage of the sulfonylurea bridge to form the major metabolites chlorobenzenesulfonamide (2-chlorobenzenesulfonamide) and triazine amine (4-methoxy-6-methyl-1,3,5-triazin-2-amine). This route is a major degradation pathway in water and soil systems. Aqueous photolysis (corrected for hydrolysis) proceeded much more slowly (half-life 198 days) than aqueous hydrolysis and is not expected to contribute significantly to overall degradation. Hydrolysis in soil thin-layer plates exposed to light (half-life 80 days), however, progressed at a much faster rate than in dark controls (half life 130 days), which suggests that a mechanism other than direct photolysis may have been operative. An aerobic soil metabolism study (25°C) in a Keyport silt loam soil (pH 6·4, 2·8% OM) showed that degradation was rapid (half-life 20 days). Dissipation in an anaerobic sediment/water system (initial pH of water phase 6·7, final pH 7·4) progressed much more slowly (half-life >365 days) than in aerobic soil systems. Major degradation products in aerobic soil included the chlorobenzenesulfonamide and triazine amine as in the aqueous hydrolysis study. Neither of these degradation products exhibited phytotoxicity to a variety of crop and weed species in a glasshouse experiment, and both exhibited an acute toxicological profile similar to that of chlorsulfuron in a battery of standard tests. Demethylation of the 4-methoxy group on the triazine moiety and subsequent cleavage of the triazine ring is another pathway found in both aqueous solution and soils, though different bonds on the triazine amine appear to be cleaved in the two systems. Hydroxylation of the benzenesulfonamide moiety is a minor degradation pathway found in soils. Two soils amended with 0·1 and 1·0 mg kg-1 chlorsulfuron showed slight stimulation of nitrification. The 1·0 mg kg-1 concentration of chlorsulfuron resulted in minor stimulation and inhibition of 14C-cellulose and 14C-protein degradation, respectively, in the same soils. Batch equilibrium adsorption studies conducted on four soils showed that adsorption was low in this system (Koc 13–54). Soil thin-layer chromatography of chlorsulfuron (Rf=0·55–0·86) and its major degradation products demonstrated that the chlorobenzenesulfonamide (Rf=0·34–0·68) had slightly less mobility and that the triazine amine (Rf=0·035–0·40) was much less mobile than chlorsulfuron. In an aged column leaching study, subsamples of a Fallsington sandy loam (pHwater 5·6, OM 1·4%) or a Flanagan silt loam (pHwater 6·4, OM 4·0%) were treated with chlorsulfuron, aged moist for 30 days in a glasshouse and then placed upon a prewet column of the same soil type prior to initiation of leaching. This treatment resulted in the retention of much more total radioactivity (including degradation products) than by a prewet column, where initiation of leaching began immediately after chlorsulfuron application, without aging (primarily chlorsulfuron parent). © 1998 SCI 相似文献
18.
用紫外线照射非荧光特性的砜嘧磺隆和氯磺隆,通过生成具有荧光特性的衍生物,分别研究了其在不同介质中的荧光特性及其影响因子,建立了测定土壤中砜嘧磺隆和氯磺隆残留的光化学荧光分析法(PCF)。结果表明:在2×10-3 mol/L、一定酸碱度(砜嘧磺隆pH 7、氯磺隆pH 12)的十六烷基三甲基氯化铵(CTAC)胶体分散体系中,紫外照射150 s是PCF法测定砜嘧磺 隆和氯磺隆残留的最佳条件,在此条件下砜嘧磺隆和氯磺隆的检出限(LOD)分别为0.7和0.6 μg/kg, 相对标准偏差(RSD)分别为1.7%和2.1%;在黄松田水稻土、黄红壤性水稻土和青紫泥田水稻土3种不同性质的土壤中,砜嘧磺隆和氯磺隆同时测定的平均回收率分别为99.0%±1.0%和98.7%±4.1%、97.6%±1.7%和97.0%±4.7%、96.7 %±2.3%和95.4%±5.5%;所建立的PCF法可有效、快速测定土壤中同时残留的微量砜嘧磺隆和氯磺隆。 相似文献
19.